61
Kristalna struktura i geometrija elementarnih kristalnih rešetki

Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Embed Size (px)

Citation preview

Page 1: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Kristalna struktura i geometrija elementarnih kristalnih rešetki

Page 2: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

2

KRISTALOGRAFIJA (potiče od grčkih reči «krýstallos» = led, naziv upotrebljen za prozirni kvarc, gorski kristal, za koji se smatralo da je zamrznuta voda, i "gráphein" = pisati) je nauka o KRISTALNOM STANJU. Proučava spoljašnji oblik kristala i njihovu unutrašnju građu.

KRISTALIZACIJA je prelaz tečne ili gasne faze u čvrstu, i to pravilnim trodimenzionalnim raspoređivanjem materijalnih čestica u kristalnu rešetku.

Page 3: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

3

Nivoi pakovanja atoma u materijalima: a) Inertni monoatomski gas sa neuređenim atomima, b,c) Neki materijali, kao što je vodena para, amorfni silicijum i silikatna stakla imaju samo delimično uređene atome i d) Metali, legure, mnoge keramike i neki polimeri imaju

uređene atome po celoj zapremini.

Page 4: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

4

ČVRSTE MATERIJE mogu biti AMORFNE i KRISTALNE.

AMORFNE MATERIJE nemaju pravilnu unutrašnju građu i ne smatraju se pravim čvrstim materijama, već jako pothlađenim tečnostima. One nemaju određeno topljenje, već pri zagrevanju postepeno omekšavaju dok se ne rastope. Primeri takvih materija su staklo i vosak.

KRISTALI, nasuprot tome, imaju pravilnu unutrašnju građu svojstvenu za većinu čvrstih materija.

Kristalni SiO2 (Kvarc)

Amorfni SiO2 (Staklo)

Kristalna građa Amorfna građa

Page 5: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

5

KRISTALI su pravilna geometrijska tela, omeđena površnama koje se seku u ivicama, a ivice u uglovima. Kristali su pravilne unutrašnje građe. Kristal ima određen geometrijski oblik. Uglovi između odgovarajućih površina kristala neke materije konstantni su i karakteristični za tu materiju. Geometrijski oblik kristala u vezi je s njegovom geometrijskom unutrašnjom strukturom. Drugim rečima, spoljni geometrijski oblik kristala u vezi je s određenim rasporedom njegovih strukturnih jedinica - iona, atoma ili molekula. Svaki kristal se sastoji, dakle, od trodimenzionalno pravilno raspoređenih strukturnih jedinica, a njihov raspored daje karakteristična svojstva i oblik. Kristalna struktura neke materije predstavlja celokupni poredak strukturnih jedinica u tzv. prostornoj rešetki.

Page 6: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

6

Jedinična ili elementarna ćelija je najmanji deo prostorne rešetke koji, ponavljan u tri dimenzije, daje celu kristalnu rešetku. Parametar rešetke je najmanja udaljenost između dva atoma uzduž ivice jedinične ćelije. Jedinična ćelija kristalne strukture sadrži najmanji mogući broj strukturnih jedinica.

Jedinična ćelija Tačka

rešetke

Page 7: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

7

Jedinična ćelija je osnovna «cigla» čijim se slaganjem može izgraditi čitav kristal.

z

y

x

Pravljenje kristalne strukture iz jedinične ćelije uz ponavljanje po kristalografskim osima

Page 8: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

8

Prema odnosu veličina parametara a, b, c i uglova α, β i γ sve kristalne strukture mogu se prikazati u 14 vrsta jediničnih ćelija razvrstanih u 7 osnovnih kristalnih sistema.

Podela kristalnih rešetki po kristalnim sistemima (Bravijis-ove rešetke)

Page 9: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

9

b a

c

Primitivna (prosta, jednostavna) - elementarnoj ćeliji pripada po jedna čestica (atom); u svakom roglju (čvoru) elementarne ćelije nalazi se 1 atom koji je zajednički za svih osam ćelija ((8 ⋅ 1/8) = 1),

Bazno centrirana - elementarna ćelija ima po jedan atom na svakom roglju i još po jedan atom u sredini donje i gornje osnove (sl. 1.10b); to znači da na elementarnu ćeliju dolazi 2 atoma ((8 ⋅ 1/8 + 2 ⋅ 1/2 ) = 2).

b a

c

Page 10: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

10

Prostorno centrirana - ima po jedan atom u rogljevima elementarne ćelije i jedan atom u njenom središtu (sl. 1.10c); to znači, da elementarnoj ćeliji pripadaju 2 atoma (8 ⋅ 1/8 + 1 ) = 2).

Površinski centrirana - ima u elementarnoj ćeliji po jedan atom na svakom roglju i po jedan atom u sredini svake strane (sl. 1.10d); elementarnoj rešetki tada pripada 4-atoma ((8 ⋅ 1/8 + 6 ⋅ 1/2) = 4).

b a

c

b

c

a

Page 11: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

11

Prema usvojenoj simbolici struktura hemijskih elemenata označava se slovom A (npr. A1, A2, A3, do A8). Slovo A se dopunjava odredjenim brojem za tip strukture (1 - površinski centrirana, 2 - prostorno centrirana, 3 - gusto pakovana heksagonalna, 4 - dijamantska kubna, 5 - prostorno-centrirana tetragonalna, 6 - površinski centrirana tetragonalna, 7 - romboedarska, 8 - trigonalna (trougaona)).

Kod tehničkih metala, uglavnom se sreću tri tipa osnovnih ćelija:

o površinski centrirana kubna rešetka (A1),

o prostorno centrirana kubna rešetka (A2) i

o gusto pakovana heksagonalna rešetka (A3).

Po drugim tipovima rešetke kristališu se neki za tehniku manje značajni metali, keramike i polimeri.

Page 12: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

12

Elementarne rešetke tehničkih metala

Većina inženjerskih metala kristališe se po kubnoj rešetki, a samo nekoliko po heksagonalnoj rešetki.

Razlikuju se:

• površinski centrirana kubna rešetka (A1),

• prostorno centrirana kubna rešetka (A2) i

• gusto pakovana heksagonalna rešetka (A3).

Pored tipa rešetke bitno je još poznavati broj atoma (n) koji pripadaju osnovnoj ćeliji, radijus atoma R, koordinacioni broj (K) koji predstavlja broj atoma podjednako udaljenih od centralnog atoma u elementarnoj rešetki i koeficijent ispunjenosti rešetke (KIR) koji se odredjuje iz odnosa zapremine atoma elementarne rešetke i zapremine same rešetke.

Kad bude reči o obrazovanju legura videće se značaj atomskog radijusa za legiranje, jer se samo atomi sličnih dimenzija mogu zamenjivati. Atomski radijus se može izračunati iz dimenzija elementarne rešetke.

Page 13: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

13

• Kubna jedinična ćelija je 3D ponovljiva jedinica • Retka (samo Po (polonijum) ima ovu strukturu) • Gusto pakovani pravci (directions along which atoms touch each other) are cube edges.

• Koordinacioni broj = 6 (broj najbližih suseda)

Prosta kubna rešetka

Page 14: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

14

Dva načina prikazivanja površinsko-centrirane kubne rešetke

Površinski centrirana kubna rešetka (A1 )

Atomi se nalaze na svakom uglu (ćošku) i centrima svih stranica rešetke; Cu, Al, Ag, Au su metali koji imaju ovu kristalnu rešetku.

Page 15: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

15

• Koordinacioni broj = 12

• Pravci gustog pakovanja su dijagonale stranica.

Napomena: Svi atomi su identični; površinski centrirani atomi su osenčeni (beli) samo da bi bili istaknuti.

Površinski centrirana kubna rešetka

Page 16: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

16

Atomi se nalaze na svakom uglu (ćošku) i u centru rešetke; Cr, α-Fe, Mo su metali koji imaju ovu kristalnu rešetku.

Zapreminski centrirana kubna rešetka (A2)

Page 17: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

17

• Koordinacioni broj = 8

• Pravci gustog pakovanja su dijagonale rešetke.

Napomena: Svi atomi su identični; centralni atom je osenčen (beo) samo da bi se razlikovao od ostalih atoma.

Zapreminski centrirana kubna rešetka

Page 18: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

18

Zašto? Metali imaju... • gusto pakovanje (metalnu vezu) • veliku atomsku masu Keramike imaju... • manju gustinu pakovanja (kovalentnu vezu) • nešto lakši elementi Polimeri imaju... • loše pakovanje (često amorfni) • lakši elementi (C,H,O) Kompoziti imaju... • srednje vrednosti

Gustina različitih materijala

ρ metala > ρ keramika > ρ polimera

Page 19: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Hemijske veze u kristalima

Page 20: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Jonske veze u kristalima

• električna privlačenja oko jona ravnomerna • imaju velike module elastičnosti i čvrstoće • deformabilnost im je mala (krhki su) • dobru topljivost u vodi • NaCl

Page 21: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Kovalentne veze u kristalima

• formiraju atomi nemetala – C (grafit/dijamant), SiO2 (kvarc). • Imaju velike module elastičnosti, čvrstoće • male su električne i toplotne provodljivosti • ima različite čvrstoće u različitim pravcima. Pojava različitih

svojstava u različitim pravcima naziva se anizotropijom. grafit dijamant

grafit

Page 22: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Metalne veze u kristalima

• Metalne kristale formiraju atomi i katjoni metala koji su otpustili elektrone.

• Zbog jakih privlačenja katjona metala i otpuštenih elektrona metali imaju visoke module elastičnosti i čvrstoće.

• Velika pokretljivost otpuštenih elektrona i relativno male promene intenziteta privlačenja s promenama razmaka imaju za posledicu dobru električnu i toplotnu provodljivost metala kao i njihovu veliku sposobnost na istezanje.

Page 23: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Molekulski kristali

• Molekulske kristale formiraju molekule, s kovalentno vezanim atomima (npr. H2O, CO2 , C12H26), uzajamno povezane van der Waalsovim silama.

• mali su moduli elastičnosti i čvrstoće. • velika deformabilnost. • Zbog odsutnosti slobodnih elektrona imaju vrlo nisku

električnu i toplotnu provodljivost – deluju kao izolatori.

• Kristalne agregacije s molekulskim kristalnim rešet-kama slabo su topljive u vodi i dobro topljive u organskim rastvorima.

Page 24: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Defekti kristalne rešetke

Page 25: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Defekti kristalne rešetke

• Osnovni principi kristalografije, važe samo za kristalografske strukture, koje su geometrijski potpuno pravilne. Takvu strukturu imaju samo idealni kristali.

• U tehničkoj praksi srećemo se sa realnim kristalima, u čijoj kristalnoj gradji se pojavljuju različita odstupanja - greške rešetke. Realni metali i čisti metali sadrže uvek odredjenu količinu atoma stranih elemenata .

Page 26: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

26

Pored ove nesavršenosti izazvane prisustvom stranih atoma, mogu se kristalne rešetke prostorno rasporedjenih osnovnih atoma razlikovati na pojedinim mestima od očekivanih i bez uticaja stranih atoma. Te oblasti u kojima raspored osnovnih atoma ne odgovara idealnom smatraju se strukturnim greškama.

Strukture čvrstih materija

Page 27: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

27

Monokristali i polikristali Kristalne materije se mogu podeliti na dve grupe, na:

monokristale i polikristale.

Metalni monokristal predstavlja zapreminu metala u kojoj je orijentacija kristala jednoznačna. Izradjuju se danas kao tzv. vlaknasti kristali i masivni monokristali.

Vlaknasti kristali imaju prečnik nekoliko mikrometara, a dužinu do nekoliko centimetara. U današnje vreme to su najsavršeniji kristali, koje možemo dobiti. Imaju veoma mali broj defekata, a njihova jačina se približava teorijskoj vrednosti jačine metala sa idealnom kristalnom rešetkom.

Npr. već su izradjeni vlaknasti kristali (viskeri) gvoždja, ugljenika, srebra, zlata, bakra, nikla, kalaja, cinka itd.

Idealan kristal

Page 28: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

28

Tečna fazaTečna faza Granice metalnogzrna

Jezgrakristalizacije

Kristali od kojih seformira metalno zrno

Metalna zrna

Polikristalne materije nastaju iz velikog broja centara kristalizacije. Orijentacija rešetki susednih zrna je različita pa je zato prelazni sloj izmedju susednih zrna oblast sa izrazitim narušavanjem kristalne gradje i naziva se granica zrna. Veličina zrna je važna metalografska karakteristika polikristalnih materijala. Materijali sa sitnijim zrnima imaju obično bolje mehaničke osobine (jačinu, tvrdoću, žilavost) nego krupnozrnasti materijali.

Shema kristalizacije metala Orijentacija zrna u polikristalu

Granice zrna

Page 29: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Strukturne greške

• Strukturni defekti predstavljaju odstupanja od pravilnog geometrijskog rasporeda atoma kristalne rešetke.

• Ti defekti posebno utiču na mehaničke i fizičke osobine metalnih materijala. Od vrste, količine i uzajamne interakcije izmedju različitih vrsta defekata zavise takodje procesi koji se dešavaju u metalnim materijalima pri plastičnoj obradi i termičkoj obradi. Prema geometrijskom obliku mogu se strukturni defekti podeliti na nekoliko grupa:

Page 30: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

30 2

• Vakancije • Intersticijski atomi • Substitucijski atomi • Šotkijev defekt • Frenkelov defekt

• Dislokacije • Granice subzrna • Granice zrna • Greške slaganja

Tačkaste greške Linijske greške Površinske greške Zapreminske greške

Podela strukturnih grešaka

• Pore, pukotine, uključci

Page 31: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

31

Tačkaste (bezdimenzijske) greške su najjednostavnije greške kristalne rešetke.

Nastaju npr. ozračivanjem metala česticama visoke energije (npr. neutronima), kao i zbog zagrevanja metala do visokih temperatura (bliskim temperaturi topljenja), pa brzog hladjenja i prerade metala plastičnom deformacijom.

Tačkaste greške

Page 32: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

32

Tačkasti defekti u strukturi mogu biti oblika:

• Vakancija (upražnjena mesta u rešetki)

•Atoma zamene (supstitucija)

• Atoma popune (intersticija)

Iskrivljenost kristalne rešetke Na mestima tačkastih grešaka

Page 33: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

33

Atom zamene (substitucija)

Atom popune (intersticija)

Primeri: Substitucija i intersticija

Substituciono legiranje (npr. Cu u Ni)

Intersticiono legiranje (npr. C u Fe)

Page 34: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

34

Vakancije Vakantan (lat.), upražnjen, prazan

Nedostajanje atoma na mestu gde se normalno očekuje da postoji nazivamo vakancijom.

Vakancije mogu nastati dejstvom toplotne energije, zbog poremećaja u rastu kristala i zbog neravnoteže u naelektrisanju. Dobiju li čestice u površinskom sloju kristala dovoljnu energiju (npr. toplotnu), oslobadjaju se iz svoje čvorne tačke u rešetki i zaposedaju čvorne tačke na slobodnoj površini kristala. Oslobodjena čvorna tačka ostaje nepopunjena-stvorena je vakancija.

0 1 2 3 4 5 6 104

700

600

500

400

300

Tem

pera

tura

, °C

Koncentracija vakancija

Zavisnost koncentracije vakancija Od temperature

Page 35: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

35

Vakancije u kristalnoj rešetki nisu vezane za odredjeno mesto, već se mogu (pri višim temperaturama) kroz kristal pomerati (migracija vakancija). Ta je migracija vezana za prelaženje čestica (atoma); npr. vakantno mesto se pomeri iz jednog položaja u drugi, a njegov prvobitni položaj zauzme susedni atom. Od ovakvih elementarnih pomeranja vakantnih mesta sastoji se njihova migracija kroz kristal. Vakancije se premeštaju na mesta gde mogu biti apsorbovane; takva su mesta npr. slobodne površine kristalne supstance, granice zrna u polikristalima i sl.. Nasuprot tome, ako se metal lokalno zagreva, deluju i te oblasti kao izvori vakancija iz kojih one migriraju do okolne mase. Koncentracija vakancija utiče na mnoge vrste termičke obrade (žarenje, taloženje-precipitaciju i dr.), jer olakšava premeštanje čestica-difuziju, koja ove načine termičke obrade prati.

Migracija vakancija

Page 36: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

36

Migracija Vakancija (animacija)

Page 37: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

37

Frenkelov i Šotkijev defekt:

• Katjon-vakancija + Katjon-intersticijal = Frenkelov defekt • Katjon-vakancija + Anjon-vakancija = Šotkijev defekt

Šotkijev defekt

Frenkelov defekt

Šotkijev defekt Ova greška se javlja u uravnoteženoj jonskoj rešetki u kojoj istovremeno nedostaju anjon (+) i katjon (-)

Par vakance i intersticijalne čestice u susednom položaju naziva se Frenkelova greška. Obadve komponente Frenkelove greške mogu se samostalno premeštati kroz kristal, tako da nastaju dve nezavisne greške (vakancija i intersticijalne čestice).

Frenkelov defekt

Tačkaste greške imaju veliki uticaj na fizičke osobine metala (npr. na električni otpor) kao i na mehaničke osobine metala (npr. na tvrdoću).

Page 38: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

38

Linijske greške (dislokacije) Jednodimenzijske greške - dislokacije - nastaju nagomilavanjem niza tačkastih defekata.

Dislokacije se definišu pomoću Burgersove putanje (petlje), koja je za perfektan kristal prikazana na. Ako se podje iz početne tačke (•) i predje četiri medjuatomna rastojanja u pozitivnom pravcu ose x, i zatim u pravcu ose y, pa onda nastavi u suprotnom smeru dolazi se u početnu poziciju. Kaže se da je Burgersova putanja zatvorena.

Suprotno tome, Burgersova putanja na delu kristala koji sadrži dislokaciju neće biti zatvorena. Vektor potreban da se putanja zatvori, usmeren od završne pa do početne tačke zove se Burgersov vektor.

Burgersov vektor

Burgersova kontura

Page 39: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

39

Prema medjusobnom položaju Burgersovog vektora i tzv. dislokacione linije, razlikuju se: • ivične i • zavojne dislokacije

Ivična dislokacija

Ako se na idealnu rešetku deluje silom smicanja biće potreban relativno visok napon za pomeranje gornjeg sloja atoma. U slučaju kad u kristalu postoje dislokacije (realni kristali) medjuatomne veze su slabije, te se jedan sloj atoma lakše pokreće, tj. napon tečenja znatno je niži.

klizanje ravanklizanja

silasmicanja

Page 40: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

40

Ova greška kristalne rešetke nastaje zbog formiranja ekstra ravni smeštene izmedju redovnih vertikalnih ravni. Završni red atoma umetnute poluravni obrazuje dislokacionu liniju. Burgersov vektor upravan je na dislokacionu liniju, obeleženu sa znakom ⊥. Vodoravna crtica označava položaj dislokacione ravni, a vertikalna se odnosi na ekstra poluravan.

Idealan kristal

Ekstra ravan

Ivična dislokacija

Dislokaciona linija

Page 41: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Mašinski materijali - Dr Dragan Adamovic 41

Ivična dislokacija

Smičući napon

Burgersov vektor = b

Analogija gusenice

Linija klizanja

Page 42: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

42

Ivična dislokacija

Ivična dislokacija praćena je promenom naponskog stanja u oblasti oko ekstra ravni. Iznad ravni klizanja pojavljuje se oblast sa pritisnim naponima, dok se ispod ravni klizanja pojavljuju naponi zatezanja

Pritisak

Zatezanje

Naponsko polje kod ivične dislokacije

Page 43: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

43

Idealan kristal Zavojna dislokacija

Ravan sečenja i Smicanja atoma

Zavojna dislokacija

Zavojna dislokacija nastaje kao smicanje u ravni klizanja, tako da je najveće pomeranje, odnosno deformacija na početku i ta deformacija opada do nule.

Page 44: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

44

Treći tip ravanskih defekata nastaje zbog nepravilnog slaganja pojedinih slojeva. Atomi u ravni ili u delu ravni kristala mogu zauzeti položaje koji ne odgovaraju redosledu datog sloja u rešetki. Ako je jedan deo ravni izbačen, ubačen ili pak pomeren javljaju se defekti u slojevima koji su opkoljeni savršenom rešetkom i od nje su odvojeni linijskim defektima - dislokacijama.

Greške u slojevima

Zapreminske greške

Zapreminske greške su vrlo složene i njihovo proučavanje prevazilazi okvire ovog kursa.

U zapreminske greške spadaju: • pore • pukotine i • uključci

Page 45: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Pauza

Page 46: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

Ponašanje metala pri delovanju spoljnih sila

Page 47: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

47

Ako na metalno telo deluje spoljna sila, telo menja svoj oblik i

pri dovoljnoj veličini spoljne sile dolazi do njegovog razaranja.

Delovanjem sile nastaju istovremeno u telu naponi, jer se ono

unutrašnjim silama suprostavlja promeni oblika. Promena

oblika izazvana delovanjem spoljnih sila se naziva deformacija

(ponekad takodje preoblikovanje).

Osnovni pojmovi

Page 48: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

48

Vrste opterećenja

Savijanje

Zatezanje Pritiskivanje Smicanje Uvijanje

Mašinski delovi mogu da budu Opterećeni nekim od sledećih Opterećenja ili njihovom kombinacijom.

Page 49: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

49

• Zatežući napon,R: • Smičući napon, τ:

σ =FtAo

original area before loading Jedinica za napon:

N/m2 (ili MPa )

Inženjerski napon

Početna površina pre opterećenja

Površina, Površina,

Page 50: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

50

Elastična deformacija

F

δ

bonds stretch

return to initial

1. Početno 2. Malo opterećenje 3. Rasterećeno

Vraćanje na početak

Po uklanjanju opterećenja Elastična deformacija nestaje

Granično izduženje

Pri niskim vrednostima spoljnih sila (i niskim naponima) deformacija je samo elastična (opružna); po rasterećenju ta deformacija nestaje, a telo poprima prvobitni oblik. U kristalnoj rešetki se elastična deformacija ispoljava samo malim otklanjanjem atoma iz njihovog ravnotežnog položaja; otklon ne prelazi polovinu parametra rešetke.

Page 51: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

51

Plastična deformacija metala

Plastina deformacija po uklanjanju opterećenja ne nestaje!

1. Početno 2. Malo opterećenje 3. Rasterećenje

F

δlinear elastic

linear elastic

δplastic δelastic

Prekorači li veličina spoljašnje sile odredjenu granicu dolazi do plastične (trajne) deformacije, a po rasterećenju telo ostaje deformisano. Pri trajnoj deformaciji menjaju atomi svoj položaj za udaljenost najmanje jednaku parametru rešetke.

Page 52: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

52

Elastična i plastična deformacija • Zatezni test:

Page 53: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

53

• Izduženje: • Suženje:

• Smičuća deformacija:

θ/2

π/2

π/2 - θ

θ/2

δ/2

δ/2δL/2δL/2

Lowo

γ = tan θ

Inženjerska deformaija

Page 54: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

54

• Modul elastičnosti, E: (zove se još i Jungov modul elastičnosti)

• Hukov zakon:

Jedinica: E: [GPa]

Linearna elastičnost

Jednoosno zatezanje

σ = E ε Izmedju elastične deformacije (ε) i napona (σ) postoji linearna zavisnost koja je poznata kao Hukov zakon:

Page 55: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

55

0.2

8

0.6

1

Magnesium,Aluminum

Platinum

Silver, Gold

Tantalum

Zinc, Ti

Steel, NiMolybdenum

Graphite

Si crystal

Glass-soda

Concrete

Si nitrideAl oxide

PC

Wood( grain)

AFRE( fibers) *

CFRE*GFRE*

Glass fibers only

Carbon fibers only

Aramid fibers only

Epoxy only

0.4

0.8

2

46

10

20

406080

100

200

600800

10001200

400

Tin

Cu alloys

Tungsten

<100>

<111>

Si carbide

Diamond

PTFE

HDPE

LDPE

PP

Polyester

PSPET

CFRE( fibers) *

GFRE( fibers)*

GFRE(|| fibers)*

AFRE(|| fibers)*

CFRE(|| fibers)*

Metali Legure

Grafit Keramike Poluprovodnici

Polimeri Kompoziti

E(GPa)

109 Pa

Modul elastičnosti, E

Ekeramike > Emetala >> Epolimera

Page 56: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

56

Poasonov koeficijennt

• Poasonov koeficijent, ν: bez promene zapremine: ν = 0.5 metali: ~ 0.33 keramike: ~0.25 polimeri: ~0.40

Jedinica: ν: bezdimenziona

Poprečna deformacija, εL

• Odnosi za izotropne materijale:

G =

E2(1+ ν)

K =E

3(1− 2ν)

Jednoosno zatezanje Uzdužna deformacija, ε

Page 57: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

57

• Jednoosno zatezanje: kabal

oσ =

FA

• Smicanje: pogonsko vratilo

oτ =

FsA

Ski lift

Naponsko stanje

Poprečni presek

Page 58: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

58

Canyon Bridge, Los Alamos, NM

• Pritiskivanje:

Ao

Balanced Rock, Arches National Park

Naponsko stanje

Page 59: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

59

• Dvo-osno zatezanje: • Hidrostatički pritisak:

Plinski rezervoar

σz > 0

σθ > 0

σ < 0 h

Naponsko stanje

Riba pod vodom

Page 60: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

60

Odredjivanje precizne granice izmedju elastične i trajne deformacije je teško; kod polikristalnih materija se takva granica praktično i ne pojavljuje (neka su zrna trajno deformisana, druga samo elastično). Zato se oblast elastičnih deformacija ograničava naponom pri kome ipak dolazi do merljive trajne deformacije koja se označava kao granica elastičnosti. Odredjivanje ove ove granice dosta teško i dugotrajno. U tehničkoj praksi se za napon, koji karakteriše početak trajne deformacije uzima napon, koji izaziva trajnu deformaciju 0.2% i označava se kao granica R0.2

Kod nekih metala može se početak trajne deformacije lako očitati sa dijagrama kidanja. Dostigne li napon vrednost koja odgovara tački H, dolazi do rasta trajne deformacije, koji je praćen naglim padom napona. Sniženje napona pri kojem se deformacija nastavlja, naziva se tečenje materijala; tačka H koja prikazuje početak trajne deformacije označava se kao gornja granica tečenja ili samo napon tečenja. Deformacija εH, koja odgovara tački H, može se smatrati za granicu izmedju elastične i trajne deformacije.

Page 61: Kristalna struktura i geometrija elementarnih kristalnih ... · PDF fileHemijske veze u kristalima. Jonske veze u kristalima • električna privlačenja oko jona ravnomerna • imaju

61

Oblast ulevo se koristi za procenu konstrukcionih osobina materijala (gde nije dopuštena trajna deformacija), oblast udesno sadrži informacije potrebne za tehnološke postupke, zasnovane na trajnim deformacijama (naročito pri kovanju, valjanju).

Gornja granica tečenja

Donja granica tečenja

Žilav lom

Krt lom

Suženje

Deformacija, ε

Nap

on,

σ

H

εH