KuenziFilter.pdf

Embed Size (px)

Citation preview

  • 8/12/2019 KuenziFilter.pdf

    1/38

    Wir schaffen Wissen heute fr morgen

    Paul Scherrer Institut

    10.05.2014

    Ren Knzi

    Filter Design - Passive Power Filters

    CERN ccelerator School !"#$% &a'en% Swit(erlan'

  • 8/12/2019 KuenziFilter.pdf

    2/38

    Suitable Filter Structures

    R. Knzi Power Filter Design CAS 2014 10.05.2014 2

  • 8/12/2019 KuenziFilter.pdf

    3/38

    Suitable Filter Structures

    R. Knzi Power Filter Design CAS 2014 10.05.2014 3

  • 8/12/2019 KuenziFilter.pdf

    4/38

    H-Bridge

    R. Knzi Power Filter Design CAS 2014 10.05.2014 4

  • 8/12/2019 KuenziFilter.pdf

    5/38

    H-Bridge with CM filter

    R. Knzi Power Filter Design CAS 2014 10.05.2014 5

  • 8/12/2019 KuenziFilter.pdf

    6/38

    2nd order filter - Transferfunction

    R. Knzi Power Filter Design CAS 2014 10.05.2014 6

    1

    1

    1

    1

    R

    C

    s 1

    LCRC s L C C s

    RCs 1

    1

    1

    with

    3rd order PT

    (1)

    1st order PD

  • 8/12/2019 KuenziFilter.pdf

    7/38

    2nd order filter - Transferfunction

    R. Knzi Power Filter Design CAS 2014 10.05.2014 7

    1

    1

    1

    3rd order PT in itsnormalized form:

    (2)

  • 8/12/2019 KuenziFilter.pdf

    8/38

    2nd order filter - Transferfunction

    R. Knzi Power Filter Design CAS 2014 10.05.2014 8

    By expanding (2) and comparing the coefficients with (1) we get:

    1

    1

    (3a)

    (3b)

    (3c)

    The 3 independent equations (3a.3c) contain 5 unknowns (L1, C1, RD, CD and0). Therefore we have the choice to select 2 of them and the remaining 3 depend

    on that selection.

  • 8/12/2019 KuenziFilter.pdf

    9/38

    2nd order filter - Selection of 0

    R. Knzi Power Filter Design CAS 2014 10.05.2014 9

    For a given frequency

    B well in the blocking area (

    B >>

    0) we can define thedesired attenuation GB. In the blocking area the highest order terms of both the nu-merator and denominator in equation (1) dominate, therefore (1) can be simplified to:

    ! 1

    (4)

  • 8/12/2019 KuenziFilter.pdf

    10/38

    2nd order filter - Definition of L1

    R. Knzi Power Filter Design CAS 2014 10.05.2014 10

    For cost reasons L1 shouldbe as small as possible,but a too small inductancewill result in an excessive

    ripple current!

    The DC-voltage across C1 is m*VDC. When the IGBT is on, the current in L1 increases

    and the peak-peak ripple current

    IL1 can be calculated:

    "# $%#

    $& "' "' "' 1 (

    )*# ( + $%#

    $& ( 1

    ,- "

    ' 1 (

    "' 1 ( (

    ,-

    "' ./0

    ,- )*#

    Maximum 0.25for m = 0.5

    (5)

  • 8/12/2019 KuenziFilter.pdf

    11/38

    2nd order filter - Definition of L1

    R. Knzi Power Filter Design CAS 2014 10.05.2014 11

    Alternative approach to determine L1:

    *#2345567255

    2345567255

    0 8 ,345567

    2345567255

    0 8 ,345567 *#2345567255(6)

  • 8/12/2019 KuenziFilter.pdf

    12/38

    2nd order filter Calcualting filter elements

    R. Knzi Power Filter Design CAS 2014 10.05.2014 12

    Substitute (3a) in (3c) and we receive:

    Selection: L1 and 0 Selection: C1 and 0 Selection: L1 and C1

    Solve (3b) for CD:

    Solve (3a) for RD:

    (7a) (7b) (7c)

    (8)

    (9)

  • 8/12/2019 KuenziFilter.pdf

    13/38

    2nd order filter Example 1

    R. Knzi Power Filter Design CAS 2014 10.05.2014 13

    DC-link voltage: 200V DC-link current: 500A IL1 50App. C1 must be 22mF (because of high ripple current)

    Design a 2nd order filter for all three given optimization methods and compare the results.

  • 8/12/2019 KuenziFilter.pdf

    14/38

    2nd order filter Example 1

    R. Knzi Power Filter Design CAS 2014 10.05.2014 14

    Select L1 to meet the ripplecurrent requirement:

    Select C1:

    Calculate the remaining

    filter elements

    (6)

    (7c, 8, 9)

    2345567255

    0 8 ,345567 *#2345567255

    0.. ./19 "::

    0 8 9..; .

    00(?

  • 8/12/2019 KuenziFilter.pdf

    15/38

    2nd order filter Example 1

    R. Knzi Power Filter Design CAS 2014 10.05.2014 15

    x3 x5 x8

    Results:

  • 8/12/2019 KuenziFilter.pdf

    16/38

    2nd order filter Example 1

    R. Knzi Power Filter Design CAS 2014 10.05.2014 16

    Maximum amplitude of resonance:Butterworth 4.5 dBBessel 3.1 dBCritical damping 2.3 dB

    Frequency, for -3 dB attenuation:Butterworth 74 Hz

    Bessel 67 HzCritical damping 59 Hz

    Attenuation: -28dB @ 300Hz

  • 8/12/2019 KuenziFilter.pdf

    17/38

    2nd order filter Example 2

    R. Knzi Power Filter Design CAS 2014 10.05.2014 17

    DC-link voltage: 120V fs = 20kHz IOut_max = 500A IL1 50App.

    Attentuation: GB = 250 @

    B = 2*

    *20kHz

    Same premises asfor example 3

    Design a 2nd order filter for all three given optimization methods and compare the results.

  • 8/12/2019 KuenziFilter.pdf

    18/38

    2nd order filter Example 2

    R. Knzi Power Filter Design CAS 2014 10.05.2014 18

    "' ./0

    ,- )*#

    10." ./0

    0.>@ .< 9.=>

    Select L1 to meet the ripplecurrent requirement:

    Select 0 to meet theattenuation requirement:

    Calculate the remaining

    filter elements

    (5)

    (7a, 8, 9)

    (4)

    d

  • 8/12/2019 KuenziFilter.pdf

    19/38

    2nd order filter Example 2

    R. Knzi Power Filter Design CAS 2014 10.05.2014 19

    x3 x5 x8

    Results:

    2 d d fil E l 2

  • 8/12/2019 KuenziFilter.pdf

    20/38

    2nd order filter Example 2

    R. Knzi Power Filter Design CAS 2014 10.05.2014 20

    Maximum amplitude of resonance:Butterworth 4.5 dBBessel 3.1 dB

    Critical damping 2.3 dB

    Frequency, for -3 dB attenuation:Butterworth 1.5 kHz

    Bessel 1.4 kHzCritical damping 1.2 kHz

    Attenuation: -48dB @ 20kHz

    4th d filt T f f ti

  • 8/12/2019 KuenziFilter.pdf

    21/38

    4th order filter - Transferfunction

    R. Knzi Power Filter Design CAS 2014 10.05.2014 21

    1

    1

    1

    1

    1

    1

    1

    1

    4th d filt T f f ti

  • 8/12/2019 KuenziFilter.pdf

    22/38

    4th order filter - Transferfunction

    R. Knzi Power Filter Design CAS 2014 10.05.2014 22

    1

    A B

    1

    1

    AA B

    B

    1

    B

    A

    with

    1st order PD

    5th order PT

    (10)

    4th d filt T f f ti

  • 8/12/2019 KuenziFilter.pdf

    23/38

    4th order filter - Transferfunction

    R. Knzi Power Filter Design CAS 2014 10.05.2014 23

    5th order PT in its normalized form:

    (11) 1

    1 1

    1

    Optimisation methods:

    4th order filter Transferfunction

  • 8/12/2019 KuenziFilter.pdf

    24/38

    4th order filter - Transferfunction

    R. Knzi Power Filter Design CAS 2014 10.05.2014 24

    1

    A A

    B

    B

    1

    By expanding (11) and comparing the coefficients with (10) we get:

    B

    B

    A

    A

    (12a)

    (12b)

    (12c)

    (12d)

    (12e)

    4th order filter selection of and L

  • 8/12/2019 KuenziFilter.pdf

    25/38

    4th order filter selection of 0 and L1

    R. Knzi Power Filter Design CAS 2014 10.05.2014 25

    The 5 independent equations (12a.12e) contain 7 unknowns (L1, C1, L2, C2, RD, CDand 0). Therefore we have the choice to select 2 of them (0 and L1) the remaining 5depend on that selection.

    For a given frequency B well in the blocking area (B >> 0) we can define thedesired attenuation GB. In the blocking area the highest order terms of both the

    numerator and denominator in equation (10) dominate, therefore (10) can besimplified to:

    A

    A A

    B

    B

    B

    B

    D(13)

    ! B 1

    Select L1 according to ripple current requirements with (5) or (6)

    4th order filter Calculating filter elements

  • 8/12/2019 KuenziFilter.pdf

    26/38

    4th order filter Calculating filter elements

    R. Knzi Power Filter Design CAS 2014 10.05.2014 26

    By solving the equation system (12a12e) we get:

    B

    B

    A

    A

    B A

    BA 1

    A

    BA

    A

    A

    B A

    with

    (14a)

    (14b)

    (14c)

    (14d)

    (14e)

    4th order filter Example 3

  • 8/12/2019 KuenziFilter.pdf

    27/38

    4th order filter Example 3

    R. Knzi Power Filter Design CAS 2014 10.05.2014 27

    Design a 4th order filter for all three given optimization methods and compare the results.

    DC-link voltage: 120V

    fs = 20kHz IOut_max = 500A IL1 50App. Attentuation: GB = 250 @ B = 2**20kHz

    Same premises asfor example 2

    4th order filter Example 3

  • 8/12/2019 KuenziFilter.pdf

    28/38

    4th order filter Example 3

    R. Knzi Power Filter Design CAS 2014 10.05.2014 28

    "' ./0

    ,- )*#

    10." ./0

    0.>@ .< 9.=>

    Select L1 to meet the ripplecurrent requirement:

    Select 0 to meet theattenuation requirement:

    D

    Calculate the remaining

    filter elements

    (5)

    (14a.e)

    (13)

    4th order filter Example 3

  • 8/12/2019 KuenziFilter.pdf

    29/38

    4 order filter Example 3

    R. Knzi Power Filter Design CAS 2014 10.05.2014 29

    Results:

    4th order filter Example 3

  • 8/12/2019 KuenziFilter.pdf

    30/38

    4 order filter Example 3

    R. Knzi Power Filter Design CAS 2014 10.05.2014 30

    Maximum amplitude of resonance:Butterworth 8.6 dBBessel 5.4 dB

    Critical damping 3.8 dB

    Frequency, for -3 dB attenuation:Butterworth 5.5 kHz

    Bessel 5.0 kHzCritical damping 3.9 kHz

    Attenuation: -48dB @ 20kHz

    Comparison of different filter designs

  • 8/12/2019 KuenziFilter.pdf

    31/38

    Comparison of different filter designs

    R. Knzi Power Filter Design CAS 2014 10.05.2014 31

    +64%

    +42%

    Comparison of different filter designs

  • 8/12/2019 KuenziFilter.pdf

    32/38

    Comparison of different filter designs

    R. Knzi Power Filter Design CAS 2014 10.05.2014 32

    Practical Aspects - Wiring

  • 8/12/2019 KuenziFilter.pdf

    33/38

    Practical Aspects Wiring

    Effect of a 0.5m longwire 16mm2 (wiring of C1and C2)

    Skin Effect Skin depth in Cu @

    20kHz: 0.5mm

    Reduces the effective

    cross section to 6.3 mm2

    Wire resistance @20kHz: 1.4m

    Wire inductance is

    approx. 0.5H

    R. Knzi Power Filter Design CAS 2014 10.05.2014 33

    To be avoided !

    Practical Aspects low inductive setup

  • 8/12/2019 KuenziFilter.pdf

    34/38

    Practical Aspects low inductive setup

    R. Knzi Power Filter Design CAS 2014 10.05.2014 34

    C1

    L1

    L2

    C2

    RD

    CD

    Life time of electrolytic capacitors

  • 8/12/2019 KuenziFilter.pdf

    35/38

    y p

    R. Knzi Power Filter Design CAS 2014 10.05.2014 35

    The useful life time of an electrolytic capacitor depends verymuch on the ripple current and the ambient temperature.

    Nominal ripple current at nominal frequency (100Hz) and nominal capacitor temperature (85C).

    17.4A in our example

  • 8/12/2019 KuenziFilter.pdf

    36/38

    Life time of electrolytic capacitors

  • 8/12/2019 KuenziFilter.pdf

    37/38

    y p

    R. Knzi Power Filter Design CAS 2014 10.05.2014 37

    Determine the allowed ripple

    current for a desired usefullife and Ta:

    For 25000h (3 years)

    and Ta = 50C,2.6 * 23.5A = 61A

    For 250000h (30years)and Ta = 50C

    0.85 * 23.5A = 20A

    The useful life time dramatically decreases at higher ambient temperatures!

  • 8/12/2019 KuenziFilter.pdf

    38/38

    References

    U. Tietze, Ch. Schenk; Halbleiter-Schaltungs-Technik, 12. Auflage, Pages 815ff

    Epcos, Datasheet, Capacitors with screwterminals Type B43564, B43584, November2012

    R. Knzi Power Filter Design CAS 2014 10.05.2014 38