17
LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj - dovršenje i cjelovito sagledavanje gradiva iz Kassakianovog udžbenika, - upoznavanje s osnovama projektiranja elektroničkih pretvarača na primjeru jednog istosmjernog pretvarača, - upoznavanje s dinamičkim ponašanjem pretvaračkih sklopova i njihovim upravljanjem. Ovog časa, nešto više, o potpuno nedotaknutom području, a to je: dinamika i upravljanje.

LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

  • Upload
    dessa

  • View
    43

  • Download
    1

Embed Size (px)

DESCRIPTION

LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj - dovršenje i cjelovito sagledavanje gradiva iz Kassakianovog udžbenika, - upoznavanje s osnovama projektiranja elektroničkih pretvarača na primjeru jednog istosmjernog pretvarača, - PowerPoint PPT Presentation

Citation preview

Page 1: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

LABORATORIJ ENERGETSKE ELEKTRONIKE(izborni predmet)

Sadržaj

- dovršenje i cjelovito sagledavanje gradiva iz Kassakianovog udžbenika,

- upoznavanje s osnovama projektiranja elektroničkih pretvarača na primjeru jednog istosmjernog pretvarača,

- upoznavanje s dinamičkim ponašanjem pretvaračkih sklopova i njihovim upravljanjem.

Ovog časa, nešto više, o potpuno nedotaknutom području, a to je: dinamika i upravljanje.

Page 2: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Što je dinamičko ponašanje pretvaračkog sklopa?

Dinamičko ponašanje pretvaračkog sklopa opisuje prijelaz pretvaračkog sklopa iz jednog ustaljenog stanja u drugo ustaljeno stanje (ako postoji). Drugo ustaljeno stanje nastupa, primjerice, zbog promjene struje tereta, promjene napona napajanja ili promjene kuta upravljanja.

Zašto upravljanje?

Ako je drugo ustaljeno stanje prihvatljivo i ako je prijelaz u drugo ustaljeno stanje prihvatljiv, što je rijetkost, korisnik može sa zadovoljstvom dopustiti rad sklopa bez korekcijskog djelovanja. Najčešće se inherentno dinamičko ponašanje mora spriječiti odgovarajućim upravljanjem (regulacijom).

Page 3: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Tipična struktura elektroničkog pretvarača

unaprijedna veza

povratna veza

poremećaji

mjerni šumupravljački sklop,kompenzator, kontroler energetski sklop

upravljački ulazi

petlja povratne vezeželjeni nazivni radni uvjeti

energetski sklop

mjereni izlazi

ostali važni izlazi

Osnovni zadatak upravljačkog sklopa: održavati željene radne uvjete prethođenjem ili kašnjenjem uklopnih trenutaka sklopki.

Page 4: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

pobudni stupanj

modulator širine impulsa

Primjer strukture istosmjernog pretvarača

Page 5: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Uzgredna opaska

Petlje povratne veze (pozitivne i negativne) postoje i u netehničkim sustavima. Primjerice, izgradnja gradova u Europi (povećanje broja stanovnika) početkom drugog tisućljeća. Nakon intenziviranja poljoprivrede uvođenjem vodenog kola i konja te trogodišnjeg plodoreda (pozitivna povratna veza, tzv. autokatalitička veza), uslijedilo je osiromašenje i erozija tla (negativna povratna veza). Negativna povratna veza zauzdala je rast gradova, koji je generirala pozitivna povratna veza (kraj trinaestog stoljeća). To je potrajalo sve do pronalaska parnog stroja 1690. godine (tada je Englez T. Savery konstruirao prvi parni stroj za crpljenje vode iz rudničkih okana, a 1706. Francuz D. Papin ga je poboljšao).

Page 6: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Projektiranje upravljačkog sklopa zasniva se na poznavanju dinamičkog ponašanja pretvaračkog sklopa. Zato ćemo se, u kolegiju Laboratorij energetske elektronike, upoznati s metodama analize dinamičkog ponašanja pretvaračkih sklopova i sa strukturama upravljačkih sklopova za popravljanje njihovog inherentnog dinamičkog ponašanja.

Modeli za proučavanje dinamičkog ponašanja pretvaračkih sklopova:

- usrednjeni modeli,

- modeli u prostoru stanja.

Usrednjeni modeli i modeli u prostoru stanja, u općem slučaju, su nelinearni modeli. Naravno, odmah se postavlja pitanje njihove linearizacije. Kako uočavate, posla ima dosta.

Page 7: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Usrednjeni modeli

Metoda usrednjavanja upotrijebljena je pri proračunu srednje vrijednosti izlaznog napona vd silaznog pretvarača:

U ustaljenom stanju srednja vrijednost napona na diodi jednaka je srednjoj vrijednosti napona na kapacitetu, jer je srednja vrijednost napona na induktivitetu jednaka nuli. Naime, Kirchhoffov zakon napona, osim za trenutačne vrijednosti, vrijedi i za srednje vrijednosti:

vD

Page 8: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

0d1

d1

d1

0

Tt

t

L

Tt

t

d

Tt

t

D

LdD

tvT

tvT

tvT

vvv

Trenutak t može biti bilo koji.

Page 9: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Primjer upotrebe metode usrednjavanja –istosmjerni elektromotorni pogon

Treba izračunati valni oblik armaturne struje za skokovitu promjenu kuta upravljanja .

Valovitost izlaznog napona pretvarača nas ne zanima, jer pretpostavljamo da izaziva beznačajnu valovitost armaturne struje. Zanimljiva je samo srednja vrijednost armaturne struje.

Page 10: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Usrednjeni krug izgleda ovako:

dv

Protuelektromotorna sila E motora proporcionalna je brzini vrtnje. Uzet ćemo da je mehanička vremenska konstanta znatno veća od električne, tako da armaturna struja postigne novu ustaljenu vrijednost prije zamjetljivije promjene E.

Usrednjeni napon postigne novu vrijednost najkasnije za jednu poluperiodu. Prema tome, metoda usrednjavanja daje dobre rezultate ako je trajanje prijelazne pojave dosta dulje od jedne poluperiode.

Ako se kut upravljanja trenutačno smanji, armaturna struja raste po eksponencijalnom zakonu.

Usmjerivač je nadomješten srednjim izlaznim naponom ovisnim o kutu upravljanja.

Page 11: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Usrednjeni modeli su nužni

Pretvarač radi s frekvencijom 50 kHz, tj. sklopna perioda T iznosi 20 s. Neka su: R = 2 , C = 220 F i L = 0,25 mH. Želimo održati srednju vrijednost izlaznog napona <vo> unutar 5 % nazivne ili referentne

vrijednosti Vref = 9 V, usprkos skokovitog pada ulaznog napona vin od

nazivne vrijednosti Vin = 12 V do neke manje vrijednosti, tako niske kao

što je Vin = 8 V.

Page 12: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Podsjetite se sljedeće. Ako tranzistor periodički sklapa i radi s faktorom vođenja D, te ako pretvarač radi u neisprekidanom načinu rada pri vin = Vin, tada izraz <vo> = Vin D/D’, gdje je D’ = 1 – D, dobro

aproksimira srednju vrijednost izlaznog napona vo. (Uočite promjenu

polariteta napona između ulaza i izlaza). Zato, da bi se dobio željeni izlazni napon u nazivnim uvjetima, faktor vođenja treba namjestiti na nazivnu vrijednost, tj. na D = Vref/(Vref Vin) = 0,43.

Page 13: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

a) Odziv idealiziranog modela uzlazno-silaznog pretvarača na skokovitpad ulaznog napona vin od 12 V na 8 V.b) Odziv na isti skok, samo uz postojanje unaprijedne veze.

Dakle, odziv izlaznog napona na pad ulaznog napona ne zadovoljava, čak i ako se ponašanje pretvaračkog sklopa može opisati ovim idealiziranim modelom. Dinamičko ponašanje pretvarača se ne može objasniti statičkim modelom.

Page 14: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Modeli u prostoru stanja

Usrednjeni modeli ponekad ne zadovoljavaju:

– ne zanima nas usrednjeno ponašanje valnih oblika strujnih krugova,

– lako upotrebljivi usrednjeni modeli ne postoje za mnoge energetske sklopove,

– modeli u prostoru stanja nadmoćni su usrednjenim modelima, jer obuhvaćaju i sklopne (trenutačne) i usrednjene modele kao posebne slučajeve.

Page 15: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Primjer: Model u prostoru stanja silazno-uzlaznog pretvarača

Jedina razlika prema do sada razmatranom pretvaraču je u tome što je u seriju s kapacitetom dodan nadomjesni otpor RC. .Zbog jednostavnosti se

pretpostavlja da u svakom trenutku vodi ili tranzistor ili dioda. Ova pretpostavka isključuje isprekidani način rada; način rada u kojemu su oba ventila isključena tijekom jednog dijela periode. Neka sklopna funkcija q(t) opisuje stanje sklopke, funkcija ima vrijednost q(t) = 1 kada je tranzistor uklopljen i vrijednost q(t) = 0 kada je isklopljen. Neka q’(t) označuje funkciju 1 – q(t).

Page 16: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Model u prostoru stanja ovog sklopa dobije se uočavanjem onih varijabli čije su početne vrijednosti bitne za određivanje daljnjeg ponašanja sustava. Fizikalni odabir varijabli stanja su struja kroz induktivitet iL i

napon na kapacitetu vC (prisjetite se: transformatorske jednadžbe

izvedene su iz poznavanja napona na induktivitetu i struje kroz kapacitet) Fizikalne ulazne varijable su napon izvora vin i upravljački

signal q(t).Kada je q(t) = 1, onda je:

)(1

d

d)(

d

d)( in

tvRRt

vCti

vt

iLtv

CC

CC

LL

a kada je q(t) = 0, onda je:

)()(1

d

d)(

)()(d

d)(

tvtRiRRt

vCti

tvtiRRR

R

t

iLtv

CLC

CC

CLCC

LL

Page 17: LABORATORIJ ENERGETSKE ELEKTRONIKE (izborni predmet) Sadržaj

Združivanjem oba sustava jednadžbi, uvođenjem funkcije q(t) te preuređenjem dobiva se željeni model u prostoru stanja:

)()()()(

1

d

d

)()(1

)()()()()(d

din

tvtitqRRRCt

v

tvtqL

tvtqtitqRRRL

R

t

i

CLC

C

CLCC

L