Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate school of Science, Tohoku Univ. Toshiyuki Gogami

Embed Size (px)

Citation preview

  • Slide 1
  • Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate school of Science, Tohoku Univ. Toshiyuki Gogami
  • Slide 2
  • Contents Introduction Experimental setup Analyses Missing mass Summary
  • Slide 3
  • Contents Introduction Experimental setup Analyses Missing mass Summary ee u u d u s s u d p K+K+ ** (e,eK + ) reaction
  • Slide 4
  • hypernuclear spectroscopy Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564. 52 V
  • Slide 5
  • Spectroscopic experiment by the (e,eK + ) reaction p n ** K+K+ e-e- e + p e + K + + target nucleus ~ 1990s The (K -, - ), ( +,K + ) reactions Energy resolution ~ a few MeV n e-Spectrometer K + -Spectrometer p e p K+ Missing Mass M HY 2000~ The (e,eK + ) reaction Energy resolution ~0.5 MeV p
  • Slide 6
  • Experimental motivation JLab E05-115 (2009, Hall-C) Elementary processes (, 0 ) 7 He [1], 9 Li, 10 Be N charge symmetry breaking N-N coupling 12 B [2][3][4] Consistency check with the past experiments Check analysis progress 52 V Single particle energy For measurements with heavier targets [1] S.N.Nakamura et al., PRL 110, 012502 (2013) [2] T.Miyoshi et al., PRL 90, 232502 (2003) [3] L.Yuan, PRC 73, 044607 (2006) [4] M.Iodice, PRL 99, 052501 (2007)
  • Slide 7
  • Contents Introduction Experimental setup Analyses Missing mass Summary HES
  • Slide 8
  • Experimental setup (E05-115 @ JLab Hall-C)
  • Slide 9
  • Contents Introduction Experimental setup Analyses Missing mass Summary
  • Slide 10
  • Analysis
  • Slide 11
  • x, x, y, y p, x, y @ Reference plane @ Target Missing Mass
  • Slide 12
  • Energy scale calibration e, K + Polyethylene target (0.45 g/cm 2 ) FWHM ~ 1.8 MeV
  • Slide 13
  • Contents Introduction Experimental setup Analyses Missing mass Summary
  • Slide 14
  • 10 Be, 12 B histograms N s ~190 ss pp FWHM~0.9 MeV N s ~530 ss Preliminary T.Motoba et al., PTP Supplement 185 ( 2010 ) Analyses are in progress to achieve better energy resolution with keeping good linearity. Analyses are in progress to achieve better energy resolution with keeping good linearity.
  • Slide 15
  • Summary and outlook JLab E05-115 (2009) , 0, 7 He, 9 Li, 10 Be, 12 B, 52 V Analyses are in progress Matrix tuning Blind analysis Efficiencies
  • Slide 16
  • E05-115 collaboration
  • Slide 17
  • Backup
  • Slide 18
  • New challenging experiment , 0 Elementary process Energy scale calibration 12 B Consistency check 27 Mg, 48 Sc Deformation 208 Tl Single particle energy 1m p n ** K+K+ e-e- target nucleus
  • Slide 19
  • New challenging experiment , 0 Elementary process Energy scale calibration 12 B Consistency check 27 Mg, 48 Sc Deformation 208 Tl Single particle energy 4 H Charge symmetry breaking 1m p n -- target nucleus
  • Slide 20
  • New challenging experiment , 0 Elementary process Energy scale calibration 12 B Consistency check 27 Mg, 48 Sc Deformation 208 Tl Single particle energy Design and setup 3-D magnetic field calculation Monte Carlo simulation Experimental operation Analyses Energy scale calibration Tracking 1m 4 H Charge symmetry breaking
  • Slide 21
  • Background events in the HKS z [cm] y [cm] x [cm] KDC1 KDC2 KDC1 KDC2 9 Be, 38.4 [A] REAL DATA SIMULATION e+e+ 52 Cr target Luminosity ( 1/10 ) Worse S/N Tracking is not easy
  • Slide 22
  • Tracking efficiency and residual ~ 160 m Plane efficiency Tracking residual ~ 350 m
  • Slide 23
  • 52 Cr(e,eK + ) 52 V Preliminary N bind ~870
  • Slide 24
  • Hit wire selection REAL DATA Black : hit wires Blue : selected wires Red : track 52 Cr Target REAL DATA CH 2 Target Compared to the conventional code Number of K + +130% Analysis time 30% CUT
  • Slide 25
  • JLab E05-115, Carbon (112mg/cm 2 )
  • Slide 26
  • Energy scale calibration e, K + conversion Mx M < 100 keV/c2
  • Slide 27
  • REAL DATA Black : hit wires Blue : selected wires Red : track CH 2 Target H 2 O Target
  • Slide 28
  • 52LV
  • Slide 29
  • Singles rate summary Up to ~30 [MHz] Up to ~15 [MHz] HES HKS HKS trigger ~ 10[kHz] HES trigger ~ a few[MHz] HKS-HES Collaboration Meeting, T.Gogami29
  • Slide 30
  • B.G. mix rate (real data) a b * hks ntulpe HKS-HES Collaboration Meeting, T.Gogami30
  • Slide 31
  • e + simulation SIMULATION To see 1.Number of event 2.Angle & momentum of e + generated in target To see 1.Number of event 2.Angle & momentum of e + generated in target HKS-HES Collaboration Meeting, T.Gogami31
  • Slide 32
  • Spectroscopic experiment by the (e,eK + ) reaction p n ** K+K+ e-e- e + p e + K + + ee target nucleus Feynman diagram u u d u s s u d p K+K+ ** ~ 1990s The (K -, - ), ( +,K + ) reactions Energy resolution ~ a few MeV n e-Spectrometer K + -Spectrometer p e p K+ Missing Mass H HY 32 2000~ The (e,eK + ) reaction Energy resolution ~0.5 MeV p 2012/9/14JPS meeting in Kyoto, Toshi Gogami
  • Slide 33
  • Background events in the HKS z [cm] y [cm] x [cm] KDC1 KDC2 KDC1 KDC2 9 Be, 38.4 [A] REAL DATA SIMULATION ~2.24 ~4.94 e+e+ 52 Cr target Luminosity ( 1/10 ) Worse S/N Tracking is not easy
  • Slide 34
  • 10 Be, 12 B histograms N s ~190 ss pp FWHM~0.9 MeV N s ~530 ss Preliminary
  • Slide 35
  • Experimental motivation JLab E05-115 (2009, Hall-C) Elementary processes (, 0 ) 7 He [1], 9 Li, 10 Be N charge symmetry breaking N-N coupling 12 B Consistency check with the past experiments Check analysis progress 52 V Single particle energy (systematic study) ls splitting, core-configuration mixing [1] S.N.Nakamura et al., PRL 110, 012502 (2013)
  • Slide 36
  • Detectors & Trigger K + p, + e-e- Drift chambers TOF walls (Plastic scintillators) Cherenkov detectors Aerogel (n=1.05) Water (n=1.33) HES HKS HKS trigger (TOF1x2x3) x Chrenkov ~10 kHz HKS trigger (TOF1x2x3) x Chrenkov ~10 kHz HES trigger (TOF1x2) ~2000 kHz HES trigger (TOF1x2) ~2000 kHz Coincidence trigger HES x HKS < 2 kHz Coincidence trigger HES x HKS < 2 kHz 2012/10/6Core2Core in Barcelona, Toshi Gogami36
  • Slide 37
  • 52 Cr(e,eK + ) 52 V Mixed event analysis s p d f Preliminary
  • Slide 38
  • Electro-production of K + JLab E05-115 experiment by the (e,eK + ) reaction Small Q 2 ( ~0.01 [GeV/c] 2 ) almost real photon Real photon 2013/3/27JPS meeting in Hiroshima, Toshi Gogami38
  • Slide 39
  • An importance of measurement of K + production at forward angles At forward angles Data show lack of consistency We can access K cm ~ 15 deg P.Bydzovsky and T.Mart, Phys. Rev. C 76, 065202 (2007) 2013/3/27JPS meeting in Hiroshima, Toshi Gogami39 Real photon Q 2 = 0 [ GeV/c ] 2
  • Slide 40
  • , 0 from polyethylene ( CH 2 )target JPS meeting in Hiroshima, Toshi Gogami 2013/3/27 Preliminary 40
  • Slide 41
  • , 0 from CH 2 target JPS meeting in Hiroshima, Toshi Gogami 2013/3/27 Preliminary 41 p(e,eK + ) ~1.8MeV (FWHM) m = 19 17 keV/c 2 p(e,eK + ) 0 ~1.8MeV (FWHM) m = 73 47 keV/c 2 JLab E05-115 CH 2, ~ 450 [mg/cm 2 ] ~ 2.0 [A] ~ 38 [hours]
  • Slide 42
  • Cross sections 2013/3/27JPS meeting in Hiroshima, Toshi Gogami42 SAPHIR : K.H. Glander et al., Eur. Phys. J. A 19, 251-273 (2004) CLAS : R. Bradford et al., Phys. Rev. C 73, 035202 (2006) (*) + p K + + (*) + p K + + 0 Preliminary 200 16 91 Preliminary 85 13 34
  • Slide 43
  • Cross sections 2013/3/27JPS meeting in Hiroshima, Toshi Gogami43 SAPHIR : K.H. Glander et al., Eur. Phys. J. A 19, 251-273 (2004) CLAS : R. Bradford et al., Phys. Rev. C 73, 035202 (2006) JLab E94-107 : P. Markoviz et al., Proceedings of SENDAI08 (2009) JLab E91-016 : F. Dohrmann et al., arXiv 0707.3059v2 (2007) (*) + p K + + (*) + p K + + 0 Preliminary 200 16 91 Preliminary 85 13 34
  • Slide 44
  • Q 2 dependence (JLab E05-115) JLab E05-115, CH 2 target Preliminary 2013/3/27JPS meeting in Hiroshima, Toshi Gogami44 W = 1.93 GeV CM = 17 degrees W = 1.93 GeV CM = 17 degrees (SAPHIR)
  • Slide 45
  • Apply to u,v-layer Applied to uu and vv layers, too. Selective region determined by 1X and 2X Convert v v-layer x x-layer JPS meeting in Kyoto, Toshi Gogami452012/9/14
  • Slide 46
  • Hit wires event display (2) GREEN region Selective region RED markers & lines Selected hit wires BLACK markers & lines Rejected hit wires v v u uu u x x v v u uu u x x KDC1 KDC2 particle JPS meeting in Kyoto, Toshi Gogami462012/9/14
  • Slide 47
  • Detectors & Trigger K + p, + e-e- Drift chambers TOF walls (Plastic scintillators) Cherenkov detectors Aerogel (n=1.05) Water (n=1.33) HES HKS 2012/10/6Core2Core in Barcelona, Toshi Gogami47
  • Slide 48
  • Detectors & Trigger K + p, + e-e- Drift chambers TOF walls (Plastic scintillators) Cherenkov detectors Aerogel (n=1.05) Water (n=1.33) HES HKS HKS trigger (TOF1x2x3) x Chrenkov ~10 kHz HKS trigger (TOF1x2x3) x Chrenkov ~10 kHz HES trigger (TOF1x2) ~2000 kHz HES trigger (TOF1x2) ~2000 kHz Coincidence trigger HES x HKS < 2 kHz Coincidence trigger HES x HKS < 2 kHz 2012/10/6Core2Core in Barcelona, Toshi Gogami48
  • Slide 49
  • Coincident K + Identification (OFF-LINE) 2012/10/6Core2Core in Barcelona, Toshi Gogami49 Cherenkov selection Coincidence time selection Aerogel (n=1.05) Water (n=1.33) K+K+ ++ p CUT p cut + cut = HKS T - HES T ( e,ep ) ( e,e + ) CUT ( e,eK + ) Coincidence of (e,eK + ) selection CUT m K 2 selection Coincident K + : ~90% ( + : < 1%, p : < 2% )
  • Slide 50
  • 10 Be, 12 B histograms N s ~190 ss pp FWHM~0.9 MeV N s ~530 ss Preliminary