32
Role of axial-vector meson ex change interaction in the hy pernuclear nonmesonic weak de cays NP@JPARC Symposium Tokai, Jun. 1-2, 2007 K. Itonaga Univ. of Miyazaki T. Motoba Osaka E-C . Univ. T. Ueda Hiroshi ma Th. A. Rijken Radboud Un iv.

Role of axial-vector meson exchange interaction in the hypernuclear nonmesonic weak decays

  • Upload
    dieter

  • View
    43

  • Download
    0

Embed Size (px)

DESCRIPTION

Role of axial-vector meson exchange interaction in the hypernuclear nonmesonic weak decays. K. Itonaga Univ. of Miyazaki T. Motoba Osaka E-C. Univ. T. Ueda Hiroshima Th. A. Rijken Radboud Univ. NP@JPARC Symposium Tokai, Jun. 1-2, 2007. §Basic problems: - PowerPoint PPT Presentation

Citation preview

Page 1: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

Role of axial-vector meson exchange interaction in the hypernuclear nonmesonic weak decays

NP@JPARC Symposium Tokai, Jun. 1-2, 2007  

K. Itonaga Univ. of MiyazakiT. Motoba   Osaka E-C. Univ. T. Ueda HiroshimaTh. A. Rijken Radboud Univ.

Page 2: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

  §Basic problems:   □  To understand the nonmesonic decay

observables Γnm, Γn/Γp, α1

totally and consistently.

  □  Meson theoretical model can explain the decay interaction or not?

   □  If the meson exchange model works, which

specific role can each meson play?

   □  To find a link between the meson theoreticalinteraction and the quark physics.

Page 3: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

§Brief review

1. First step ; one-pion exchange int.natural, but naïvetensor force dominance →Γp : enhanced  Γn/Γp : small

2. Second step;(a) meson-octet (psendo-scalar, vector)

exchange intheavy meson (ρ, ω, K , K* ) exch. int

←since Non-mesonic weak decay is high-mom. process

 

Page 4: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

(b) 2π/σ-exch. : tensor-free int. 2π/ρ-exch. : tensor :

opposite-sign to that of 1π-exch.

Γnm : can be explainedΓn/Γp : ~ 0.3-0.4   (improved)

3. 3rd step : K-exch. int. is recognized to be important.Vπ+ V K : additive for (3S1 → 3P1)

destructive for (1,3S → 1,3S)and (3S1 → 3D1)

:Γn/Γp : enhanced “exp”

But, α1(αΛ) asymmetry parameter : cannot be explained in the meson-exchange model

Page 5: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

4. Present stage : How to explain the asymmetry parameter?

α1(αΛ) : sign and magnitude?

(a) Effective field theory.

(b) Isoscalar int., σ-meson exchange + quark int.

(c) Axial-vector meson (meson-pair) exchange?a1-exchange is New.

[ note: a1-exchange is important in “strong” V(ΛN-ΛN) & V(NN-NN) int. in ESC04 mod

el ]

Page 6: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

§Angular distribution of an emitted      proton from the polarized hypernuclei

pure vector polarization PH

density matrix

nP=P

JP(1J

311J2

1)J

HH

HHHH

H

)・

Nonmesonic decay +p → n+p

k1 : neutron mom.k2 : proton mom. (kp=k2)

Page 7: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

Angular distribution of the proton

parameterasymmetry:

)nk̂(cos

cos)T,J(P

M)J(Mtr2d

)k̂)J((d

0

11

p

HH1H0

Hk̂

pH

p

Page 8: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

Asymmetry parameter (free space)

]fedc[3ba])dc2(f3/)d2c(baeRe[32

222222

***

p

α

Page 9: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

§Why a1 meson exchange?

□   We need a potential which has properties:・  short range・  central force : negative

= opposite sigh to V 2 π/σ

・  tensor force : positive = opposite sign to V2π/ρ

□   In strong NN-force, a1-exch. pot

・  central : opposite to Vσ (NN)・  tensor : opposite sign to Vρ(NN)

    ⇒  a1 meson (ρπ-meson pair) exch. favorable in weak case ??

)()(])()()([)( )( NNVSrM4m3rm

4gNNV 2

a2112T2N

2

21c

2A

a 11

Page 10: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

§ A1 exchange weak decay potential

N N

N

N

a1

w

N N

N

a1w

N N

N

N

a1

w

( A ) ( B )

a1 exch. σπ/a1 exch.

Page 11: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

§ A1 exchange (/a1 exch.) weak decay potential a1 meson m=1230. MeV

J =1+

Chiral partner of (J =1-) meson

a1 → exp(a1 → ) = 250 - 600 MeV

/a1 exch. pot.

)pp()p()pp()p(M2

fi

gH

)(gH

,aN5NNNa

,aN5NNNaNNa

**aaa

1

1

111

111

N N

N

N

a1

Page 12: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

ρπ/a1 ( B ) exch.   weak decay potential

a1 meson

m=1230. MeV J = 1+

a1 →  

exp(a1→) = 250 - 600   Me

V

)(M4

f

)(gH

)(gH

,,

,

*,

*aaa 111

N N

N

a1w

( B )

Page 13: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

σπ/a1 exch.   weak decay potential

a1 meson

m=1230. MeV J = 1+

a1 →  

    seen   ( Part. Data Booklet )

)pp()p()pp()p(M2

fi

gH

)(gH

,aN5NNNa

,aN5NNNaNNa

,a**

aa

11

111

111

N N

N

N

a1

w

Page 14: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

Coupling const. ga1

1. Width

p)mp(

311

m1

4g

)a( 22a

2a

11

1

P = 353 MeV/c Γ exp= 250 - 600 MeV

0.0f

5893.8g

MeV)600(400)a(ifMeV)5500(4490g

1

1

1

NNa

NNa

1a

due to Th.A. Rijken

Page 15: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

2.  Loop integral,   parameters

1

11

a41

stronga

.approxstrong)A(a/

,i

n

2i

2

2i

3a

2

42

210

4

g,,

)NNNN(V)NNNN(V

:Assumed

parameters2,1nk

]ck[kFkFF)(

)(kd

diverge at large k2

regularization factor introduced

of ESC04 model

Λ

(N) N

Np2´

p2p1

ρ

p1´-p1+k

p1-k

p1´

a1

N

Page 16: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

1ag.onstcCoupling

11

1

1

1

1

1

1

1

1

NNaAa

,a5A

a

22

3

222a

22a

2

3a

2

322a

1

C/MeV7.455P2a

32a

1

g2g2g

)(2

g2

currentvectorAxial.2

(?)159.9g.)cal(MeV4.278,45

2604)1969(177.PR,Weinberg.S

cos)mm(

)mm(m21

mF12)mm(

)a(

.cf

m2P

34

4g

)a(

Width.1

(A)IL

Page 17: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

potentialtransitionV1a/

Force characteristics transitionchannel

Central negative, strong 1S0→1S0

opposite behavior 3S1→3S1

to V2

Tensor positive 3S1→3D1

opposite behaviorto V2

Vector 1S0→3P0

similar behavior 3S1→1P1

to V2

typer̂)(i 21

Page 18: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

Characteristic features of V(ΛN – NN) potentials

Central Tensor Vector (pv.)ps π strong ( + ) e( + ), f( - )s 2π/σ strong ( + ) 0v 2π/ρ strong ( - ) e: strong ( + )v ω ( - )

ps K strong ( - ) f: strong ( - )av ρπ/a1 strong ( - ) strong ( + ) e: strong ( + )

av σπ/a1 ( - )

sum. ( - )strong weakb( - ), e( + ), f( - )

strong

0

.fm1r,VV.fm1r,VV Ta/

T/2

ca/

c/2 11

Page 19: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

0.2 0.6 1 1.4 1.8 R (fm)

-200

-100

0

100

200

V(

N-N

N )

( G

eV )

Central

V2 /

V2 /

V

x10-10 (1S0)p-(1S0)npVK

V

SUM

No V/a1

0.2 0.6 1 1.4 1.8 R (fm)

-200

-100

0

100

200

V(

N-N

N )

( G

eV )

Central

V2 /

V2 /

V

x10-10 (1S0)p-(1S0)np

VK

V

SUMV a1

V a1

With V/a1+ V a1

Page 20: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

0.2 0.6 1 1.4 1.8 R (fm)

-200

-100

0

100

200

V(

N-N

N )

( G

eV )

Vector

V2 / V2 /

V

x10-10 (1S0)p-(3P0)np

V

VK

SUM

No V/a1

0.2 0.6 1 1.4 1.8 R (fm)

-200

-100

0

100

200

V(

N-N

N )

( G

eV )

Vector

V2 /

V2 /

V

x10-10 (1S0)p-(3P0)np

V

VK

SUMV a1

V a1

With V/a1+ V a1

Page 21: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

0.2 0.6 1 1.4 1.8 R (fm)

-400

-200

0

200

400

V(

N-N

N )

( G

eV )

Central

V2 /

V2 / V

x10-10 (3S1)p-(3S1)np

V

VK

SUM

No V/a1

0.2 0.6 1 1.4 1.8 R (fm)

-400

-200

0

200

400

V(

N-N

N )

( G

eV )

Central

V2 /

V2 /

V

x10-10 (3S1)p-(3S1)np

V

VK

SUMV a1

V a1

With V/a1+ V a1

Page 22: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

0.2 0.6 1 1.4 1.8R (fm)

-400

-200

0

200

400

V(

N-N

N ) (

GeV

)

(3S1)p-(3D1)npTensor

V2

VK

V

V

x10-10

SUM

No V/a1

0.2 0.6 1 1.4 1.8R (fm)

-400

-200

0

200

400

V(

N-N

N ) (

GeV

)

(3S1)p-(3D1)npTensor

V2 VK

VV

x10-10SUM

V a1

V a1

With V/a1+ V a1

Page 23: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

0.2 0.6 1.0 1.4 1.8 R (fm)

-100

0

100

200

300

V(

N-N

N )

( G

eV )

Vector

V2 /

V2 /

V

x10-10 (3S1)p-(1P1)np

V

VK

SUM

No V/a1

0.2 0.6 1.0 1.4 1.8 R (fm)

-100

0

100

200

300

V(

N-N

N )

( G

eV )

Vector

V2 /

V2 /

V

x10-10 (3S1)p-(1P1)np

V

VK

SUM

V a1

V a1

With V/a1+ V a1

Page 24: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

0.2 0.6 1 1.4 1.8 R (fm)

-200

-100

0

100

200

V(

N-N

N )

( G

eV )

VectorV2 /

V2 /

V

x10-10 (3S1)p-(3P1)np

VK

SUM

No V/a1

0.2 0.6 1 1.4 1.8 R (fm)

-200

-100

0

100

200

V(

N-N

N )

( G

eV )

VectorV2 /

V2 /

V

x10-10 (3S1)p-(3P1)np

VK SUM

V a1

V a1

With V/a1+ V a1

Page 25: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

Recoil:no Recoil:yes nm 0.279 0.278

n/p 0.107 0.109

0.367 0.417

nm 0.375 0.379

n/p 0.711 0.707

.001 0.833

a

+ a1

nm 0.359 0.358 ( 0.364)n/p 0.511 0.508 ( 0.503) 0.096 0.083 ( 0.100)

He5

nm[] , 1

Exp.nm=0.424±0.024[1] n /p=0.45±0.11±0.09[1] =0.07±0.08     [3] +0.080.00

Page 26: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

Nonmesonic decay rates and asymmetry parameter

He5

aa

nmnp11

1

1

NNaa

a

NNa

g2gMeV 1650MeV 2000

MeV5020g

5893.8g

Asymmetry parameter

0d,0c0f,0b0e,0a

015.0010.0025.0)dc2(f3/)d2c(bae

083.0083.0/019.0)4(237.0)4(

011

1

0

Page 27: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

He5

aa

nm+np 11

1

1

NNaa

a

NNa

g2gMeV 1600MeV 2000

MeV5500g

5893.8g

Asymmetry parameter

0d,0c0f,0b0e,0a

019.0010.0034.0)dc2(f3/)d2c(bae

100.0100.0/024.0)4(242.0)4(

011

1

0

Page 28: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

Recoil:no Recoil:yes nm 0.621 0.620

n/p 0.100 0.101

0.330 0.340

nm 0.838 0.843

n/p 0.619 0.618

0.805 0.629

a

/a1

nm 0.757 0.754 ( 0.767)n/p 0.415 0.407 ( 0.404) 0.052 0.045 + 0.062 )

C12

nm []

1J1J

Exp.nm=0.940±0.035[1] n /p=0.56±0.12±0.04[1] =-0.16±0.28       [3]+0.180.00

Page 29: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

Nonmesonic decay rates and asymmetry parameter

C12

aa

062.0045.0

404.0407.0/767.0754.0

MeV5500gMeV5020gJ

1J][

pn

nm

aa

1nm

11

11

1

1

NNaa

a

NNa

g2g

g

5893.8g

Page 30: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

§Summary and outlook

1. The ρπ/a1   and σπ/a1 –exch. interactions have vital roles in modifying the short-range part of the ΛN→NN transition potential.

2. In our π+2π/σ+2π/ρ+ω+ K +ρπ/a1+σπ/a1   exch. model, the potential has following features:

central force : negatively strong at tensor force : positive at

weak at vector force : strong for (b), (e) & (f) channels.

.fm1r

.fm1r .fm1r

Page 31: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

3. Nonmesonic decay rates Γnm, n/p ratio (Γ n /Γp) and asymmetry parameter α1 ( αΛ) are evaluated for .CandHe 125

)C(045.0),He(083.0:

)C(41.0),He(51.0:)/(

)C(75.0),He(36.0:

125cal

125calpn

125calnm

for the adopted coupling const. and parametersof ρπ/a1 and σπ/a1 – exch. int.

Page 32: Role of axial-vector meson exchange  interaction in the hypernuclear nonmesonic weak decays

4. The decay observables (exp. data) are ratherwell explained in our model, though not enough,especially for Γnm.

5. The coupling constants and the parameters adopted in our model have some uncertainties which should be further studied.