42
Chapter 41. OneDimensional Quantum Mechanics Mechanics Quantum effects are important in nanostructures important in nanostructures such as this tiny sign built by scientists at IBM’s research laboratory by moving xenon atoms around on a metal f surf ace. Chapter Goal: To understand and apply the essential ideas and apply the essential ideas of quantum mechanics.

LectureChapters41v3-2kk

Embed Size (px)

DESCRIPTION

jkm

Citation preview

  • Chapter41.OneDimensionalQuantumMechanicsMechanics

    Quantumeffectsareimportant in nanostructuresimportantinnanostructuressuchasthistinysignbuiltbyscientistsatIBMsresearchlaboratorybymovingxenonatomsaroundonametal

    fsurface.

    ChapterGoal:Tounderstandand apply the essential ideasandapplytheessentialideasofquantummechanics.

  • Chapter41.OneDimensionalQuantumMechanics

    Topics:

    S h di E ti Th L f P i

    QuantumMechanics

    SchrdingersEquation:TheLawofPsiSolvingtheSchrdingerEquation

    A Particle in a Rigid Box: Energies and WaveAParticleinaRigidBox:EnergiesandWaveFunctions

    AParticleinaRigidBox:InterpretingtheSolutionTheCorrespondencePrinciple

    FinitePotentialWellsWaveFunctionShapes

    TheQuantumHarmonicOscillatorMore Quantum ModelsMoreQuantumModels

    QuantumMechanicalTunneling

  • TheSchrdingerEquationTheSchrdingerEquationConsideranatomicparticlewithmassmandmechanicalenergyEinanenvironmentcharacterizedbyapotentialenergyfunctionU(x).TheSchrdingerequationfortheparticleswavefunctionisis

    Conditionsthewavefunctionmustobeyare1. (x)and(x)arecontinuousfunctions.2. (x)=0ifxisinaregionwhereitisphysically

    impossiblefortheparticletobe.3 (x) 0 as x + and x 3. (x)0asx+andx.4. (x)isanormalizedfunction.

  • SolvingtheSchrdingerEquationSolvingtheSchrdingerEquation

    Ifasecondorderdifferentialequationhastwoindependentsolutions1(x)and2(x),thenageneralp 1( ) 2( ) gsolutionoftheequationcanbewrittenas

    whereAandBareconstantswhosevaluesaredeterminedbytheboundaryconditions.

  • ThereisamoregeneralformoftheSchrodingerequationwhichincludestimedependenceandx,y,zcoordinates;

    Wewilllimitdiscussionto1Dsolutions

    MustknowU(x),thepotentialenergyfunctiontheparticleexperiencesasitmoves.

    Objectiveistosolvefor(x)andthetotalenergyE=KE+Uoftheparticle.In bound state problems where the particle is trapped (localized in space)In boundstate problemswheretheparticleistrapped(localizedinspace),theenergieswillbefoundtobequantizeduponsolvingtheSchrodingerequation.

    Inunboundstateswheretheparticleisnottrapped,theparticlewilltravelasatravelingwavewithanamplitudegivenby(x)

  • E,KE,andPEE,KE,andPE

  • E,KE,andPEE,KE,andPE

  • TheSchrdingerEquationwithConstantpotentialTheSchrdingerEquationwithConstantpotential

  • AParticleinaRigidBoxAParticleinaRigidBox

  • AParticleinaRigidBoxAParticleinaRigidBox

    Consideraparticleofmassmconfinedinarigid,onedimensionalbox.Theboundariesoftheboxareatx =0andx =L.

    1. Theparticlecanmovefreelybetween0andLatconstant speed and thus with constant kineticconstantspeedandthuswithconstantkineticenergy.

    2. Nomatterhowmuchkineticenergytheparticlehas,itsturningpointsareatx =0andx =L.

    3. Theregionsx L areforbidden.Theparticlecannot leave the boxcannotleavethebox.

    Apotentialenergyfunctionthatdescribestheparticleinthissituationis

  • Zeropointenergy:evenatT=0K,aconfinedparticlewillhaveanonzeroenergy of E1; it is movingenergyofE1;itismoving

  • TheCorrespondencePrincipleTheCorrespondencePrincipleWhenwavelengthbecomessmallcomparedtothesizeofthebox(thatis,wheneitherLbecomeslargeorwhentheenergyoftheparticlebecomeslarge),theparticlemustbehaveclassically.

    For particle in a box:Forparticleinabox:

    Classically:

  • TheCorrespondencePrincipleTheCorrespondencePrincipleWhenwavelengthbecomessmallcomparedtothesizeofthebox(thatis,wheneitherLbecomeslargeorwhentheenergyoftheparticlebecomeslarge),theparticlemustbehaveclassically.

    For particle in a box: Classically:Forparticleinabox: Classically:

  • FinitePotentialwell:FinitePotentialwell:1 Solve Schrodingers equation in the1. SolveSchrodinger sequationinthe

    threeregions(wealreadydidthis!)2. Connectthethreeregionsbyusingthe

    followingboundaryconditions:

    1. ThiswillgivequantizedksandEs2. Normalizewavefunction

  • FinitePotentialwell:FinitePotentialwell:

    Finitenumberofboundstates,energyspacingsmallersincewavefunctionmorespreadout(likebiggerL),wavefunctionsextendintoclassicallyforbiddenregion

  • ClassicallyforbiddenregionClassicallyforbiddenregion penetrationdepthpenetrationdepth

  • FinitePotentialwellexampleFinitePotentialwellexample QuantumwelllasersQuantumwelllasers

  • FinitePotentialwellexampleFinitePotentialwellexample 11DmodelofnucleusDmodelofnucleus

  • QualitativewavefunctionshapesQualitativewavefunctionshapesExponentialdecayifU>E,oscillatoryifE>Ui.e.positiveKE,KE~p2 ~1/2,p y , y p , p / ,Amplitude~1/v~1/Sqrt[KE](particlemovingslowermeansmorelikelytobeinthatplace)

  • 1 Solve Schrodingers equation in the

    HarmonicOscillatorHarmonicOscillator1. SolveSchrodinger sequationinthe

    threeregions(wealreadydidthis!)2. Connectthethreeregionsbyusingthe

    followingboundaryconditions:

    3. ThiswillgivequantizedksandEsg q4. Normalizewavefunction

  • MolecularvibrationsMolecularvibrations HarmonicOscillatorHarmonicOscillator

    E=totalenergyofthetwointeractingatoms,NOTofasingleparticleU=potentialenergybetweenthetwotatoms

    ThepotentialU(x)isshownfortwoatoms.Thereexistanequilibriumseparation.

    Atlowenergies,thisdiplookslikeaparabola Harmonic oscillatorparabola Harmonicoscillatorsolution.

    Allowed(total)vibrationalenergies:

  • ParticleinacapacitorParticleinacapacitor

  • ParticleinacapacitorParticleinacapacitor

  • CovalentBond:H2+(singleelectron)CovalentBond:H2+(singleelectron)

  • CovalentBond:H2+(singleelectron)CovalentBond:H2+(singleelectron)

  • QuantumTunnelingQuantumTunneling

  • QuantumTunnelingQuantumTunneling

  • QuantumTunnelingQuantumTunneling

  • QuantumTunnelingQuantumTunneling ResonanttunnelingResonanttunneling