Download pdf - LectureChapters41v3-2kk

Transcript
  • Chapter41.OneDimensionalQuantumMechanicsMechanics

    Quantumeffectsareimportant in nanostructuresimportantinnanostructuressuchasthistinysignbuiltbyscientistsatIBMsresearchlaboratorybymovingxenonatomsaroundonametal

    fsurface.

    ChapterGoal:Tounderstandand apply the essential ideasandapplytheessentialideasofquantummechanics.

  • Chapter41.OneDimensionalQuantumMechanics

    Topics:

    S h di E ti Th L f P i

    QuantumMechanics

    SchrdingersEquation:TheLawofPsiSolvingtheSchrdingerEquation

    A Particle in a Rigid Box: Energies and WaveAParticleinaRigidBox:EnergiesandWaveFunctions

    AParticleinaRigidBox:InterpretingtheSolutionTheCorrespondencePrinciple

    FinitePotentialWellsWaveFunctionShapes

    TheQuantumHarmonicOscillatorMore Quantum ModelsMoreQuantumModels

    QuantumMechanicalTunneling

  • TheSchrdingerEquationTheSchrdingerEquationConsideranatomicparticlewithmassmandmechanicalenergyEinanenvironmentcharacterizedbyapotentialenergyfunctionU(x).TheSchrdingerequationfortheparticleswavefunctionisis

    Conditionsthewavefunctionmustobeyare1. (x)and(x)arecontinuousfunctions.2. (x)=0ifxisinaregionwhereitisphysically

    impossiblefortheparticletobe.3 (x) 0 as x + and x 3. (x)0asx+andx.4. (x)isanormalizedfunction.

  • SolvingtheSchrdingerEquationSolvingtheSchrdingerEquation

    Ifasecondorderdifferentialequationhastwoindependentsolutions1(x)and2(x),thenageneralp 1( ) 2( ) gsolutionoftheequationcanbewrittenas

    whereAandBareconstantswhosevaluesaredeterminedbytheboundaryconditions.

  • ThereisamoregeneralformoftheSchrodingerequationwhichincludestimedependenceandx,y,zcoordinates;

    Wewilllimitdiscussionto1Dsolutions

    MustknowU(x),thepotentialenergyfunctiontheparticleexperiencesasitmoves.

    Objectiveistosolvefor(x)andthetotalenergyE=KE+Uoftheparticle.In bound state problems where the particle is trapped (localized in space)In boundstate problemswheretheparticleistrapped(localizedinspace),theenergieswillbefoundtobequantizeduponsolvingtheSchrodingerequation.

    Inunboundstateswheretheparticleisnottrapped,theparticlewilltravelasatravelingwavewithanamplitudegivenby(x)

  • E,KE,andPEE,KE,andPE

  • E,KE,andPEE,KE,andPE

  • TheSchrdingerEquationwithConstantpotentialTheSchrdingerEquationwithConstantpotential

  • AParticleinaRigidBoxAParticleinaRigidBox

  • AParticleinaRigidBoxAParticleinaRigidBox

    Consideraparticleofmassmconfinedinarigid,onedimensionalbox.Theboundariesoftheboxareatx =0andx =L.

    1. Theparticlecanmovefreelybetween0andLatconstant speed and thus with constant kineticconstantspeedandthuswithconstantkineticenergy.

    2. Nomatterhowmuchkineticenergytheparticlehas,itsturningpointsareatx =0andx =L.

    3. Theregionsx L areforbidden.Theparticlecannot leave the boxcannotleavethebox.

    Apotentialenergyfunctionthatdescribestheparticleinthissituationis

  • Zeropointenergy:evenatT=0K,aconfinedparticlewillhaveanonzeroenergy of E1; it is movingenergyofE1;itismoving

  • TheCorrespondencePrincipleTheCorrespondencePrincipleWhenwavelengthbecomessmallcomparedtothesizeofthebox(thatis,wheneitherLbecomeslargeorwhentheenergyoftheparticlebecomeslarge),theparticlemustbehaveclassically.

    For particle in a box:Forparticleinabox:

    Classically:

  • TheCorrespondencePrincipleTheCorrespondencePrincipleWhenwavelengthbecomessmallcomparedtothesizeofthebox(thatis,wheneitherLbecomeslargeorwhentheenergyoftheparticlebecomeslarge),theparticlemustbehaveclassically.

    For particle in a box: Classically:Forparticleinabox: Classically:

  • FinitePotentialwell:FinitePotentialwell:1 Solve Schrodingers equation in the1. SolveSchrodinger sequationinthe

    threeregions(wealreadydidthis!)2. Connectthethreeregionsbyusingthe

    followingboundaryconditions:

    1. ThiswillgivequantizedksandEs2. Normalizewavefunction

  • FinitePotentialwell:FinitePotentialwell:

    Finitenumberofboundstates,energyspacingsmallersincewavefunctionmorespreadout(likebiggerL),wavefunctionsextendintoclassicallyforbiddenregion

  • ClassicallyforbiddenregionClassicallyforbiddenregion penetrationdepthpenetrationdepth

  • FinitePotentialwellexampleFinitePotentialwellexample QuantumwelllasersQuantumwelllasers

  • FinitePotentialwellexampleFinitePotentialwellexample 11DmodelofnucleusDmodelofnucleus

  • QualitativewavefunctionshapesQualitativewavefunctionshapesExponentialdecayifU>E,oscillatoryifE>Ui.e.positiveKE,KE~p2 ~1/2,p y , y p , p / ,Amplitude~1/v~1/Sqrt[KE](particlemovingslowermeansmorelikelytobeinthatplace)

  • 1 Solve Schrodingers equation in the

    HarmonicOscillatorHarmonicOscillator1. SolveSchrodinger sequationinthe

    threeregions(wealreadydidthis!)2. Connectthethreeregionsbyusingthe

    followingboundaryconditions:

    3. ThiswillgivequantizedksandEsg q4. Normalizewavefunction

  • MolecularvibrationsMolecularvibrations HarmonicOscillatorHarmonicOscillator

    E=totalenergyofthetwointeractingatoms,NOTofasingleparticleU=potentialenergybetweenthetwotatoms

    ThepotentialU(x)isshownfortwoatoms.Thereexistanequilibriumseparation.

    Atlowenergies,thisdiplookslikeaparabola Harmonic oscillatorparabola Harmonicoscillatorsolution.

    Allowed(total)vibrationalenergies:

  • ParticleinacapacitorParticleinacapacitor

  • ParticleinacapacitorParticleinacapacitor

  • CovalentBond:H2+(singleelectron)CovalentBond:H2+(singleelectron)

  • CovalentBond:H2+(singleelectron)CovalentBond:H2+(singleelectron)

  • QuantumTunnelingQuantumTunneling

  • QuantumTunnelingQuantumTunneling

  • QuantumTunnelingQuantumTunneling

  • QuantumTunnelingQuantumTunneling ResonanttunnelingResonanttunneling


Recommended