28
Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro Hanyu, Katsuya Miura, Naoki Kasai, Hiroyuki Yamamoto, Kotaro Mizunuma, Huadong Gan, Michihiko Yamanouchi, Hideo Sato, Ryouhei Koizumi, Jun Hayakawa, Kenchi Itoh, Fumihiro Matsukura and many others http://www.csis.tohoku.ac.jp/ 1 Center for Spintronics Integrated Systems, Tohoku University, Japan 2 Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Japan Work supported by the FIRST program of JSPS. TUTORIAL: APPLIED RESEARCH IN MAGNETISM

Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond

Hideo Ohno1,2

Shoji Ikeda, Tetsuo Endoh, Takahiro Hanyu, Katsuya Miura, Naoki Kasai, Hiroyuki Yamamoto, Kotaro Mizunuma, Huadong Gan, Michihiko Yamanouchi, Hideo Sato, Ryouhei Koizumi, Jun Hayakawa, Kenchi

Itoh, Fumihiro Matsukura and many others

http://www.csis.tohoku.ac.jp/

1Center for Spintronics Integrated Systems, Tohoku University, Japan2Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Japan

Work supported by the FIRST program of JSPS.

TUTORIAL:APPLIED RESEARCH IN MAGNETISM

Page 2: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

OUTLINE

1. Integrated circuits - needs and challenges -

2. What magnetism can offer

- current status of magnetic tunnel junction -

3. Research directions

4. Further future

Page 3: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

3

Semiconductor sales 2009

Analog ($32B)

MOS Micro ($48B)

Memory ($45B)

Logic ($65B)

TOTAL $190B WSTS 2010

Page 4: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

4

Semiconductor sales 2009

Analog ($32B)

MOS Micro ($48B)

Memory ($45B)

Logic ($65B)

TOTAL $190B

Possible area of impact

WSTS 2010

Page 5: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

Difficult to obtain enough storage capacitance (Cs), even using a cylindrical shaped capacitor structure with high aspect ratio, high-k insulator and metal electrodes in a1T1R cross-point cell (4F2).

DRAM Scaling

5

CsCs > 20-30 fF Leakage current through MOSFET

(No capacitor leakage) Refresh time Parasitic bit-line capacitance Sense amplifier margin Soft error

2F

Word-line

Plate(Vcc/2)

Bit-line(Vcc, 0)

F; minimum feature size

In 25 nm generation (F=25nm)ε of capacitor insulator > 70even if the cylinder height is 1000nm.

Insulator ε available

SiO2 3.9 yes

SiN 5-10 yes

Ta2O5 20-25 yes

BST >200 no

Relative permittivityof thin film

aspect ratio = 40 Electrode film thickness < 10nm

Plate

High resistanceFEAURE SIZE

Page 6: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

6

Processing PowerPo

wer

Den

sity

( W

/cm

2 )

Explosive increase of power consumption

Source: Intel

3fCP L∝ Multicore technology (but with global delay)POWER and DELAY

Page 7: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

7

E. Pop, Nano Res. 3, 147 (2010)

Leakage requires “power gating;” basically shuts the power off the part that is not in use. Requires cost assessment (power and delay for power gating).

High-performance transistor “leaks”

STATIC POWER

Page 8: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

8

Low voltage to counter active power

E. Pop, Nano Res. 3, 147 (2010)

DYNAMIC POWER

Page 9: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

OUTLINE

1. Integrated circuits - needs and challenges -

2. What magnetism can offer

- current status of magnetic tunnel junction -

3. Research directions

4. Further future

Page 10: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

Magnetic Tunnel Junction

Room temperature TMR: Miyazaki and Tezuka (Tohoku U.), J. Mag. Mag. Mat. 1995 and Moodera et al. Phys. Rev. Lett. 1995.

E E

2

2

12(TMR) istanceMagnetoRes Tunnel

PP

RRR

P

PAP

−=

−=

Ferromagnet 1 Ferromagnet 2Insulator

Parallel

Antiparallel

For a review on integrated circuit application, see e.g. S. Ikeda et al. IEEE Trans. ED.54, 991 (2007)

Page 11: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

11

MTJ Development (I)

Room temperature TMR:

Miyazaki and Tezuka (Tohoku U.),

J. Mag. Mag. Mat. 1995 and

Moodera et al. Phys. Rev. Lett. 1995.

M. Julliere, Phys. Lett. 1975

S. Maekawa and U. Gafvert, IEEE Trans. Mag. (1982)

Page 12: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

MTJ Development (II)

Spin-transfer torqueSwitching: •J. Slonczewski, J. Magn. Magn. Mat. 159, L1 (1996).•L. Berger, Phys. Rev. B 54, 9353 (1996).

Domain wall motion: •L. Berger, J. Appl. Phys. 55, 1954 (1984), J. Appl. Phys. 71, 2721 (1992).

MgO-MTJ•W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B 63, 054416 2001.•J. Mathon and A. Umersky, Phys. Rev. B 63, 220403R 2001.

Page 13: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

TMR ratio of MgO-MTJs

0

100

200

300

400

500

600

700

1994 1996 1998 2000 2002 2004 2006 2008 2010

トンネル

磁気抵抗比

(%)

AlOx-barrier

CanonANELVA & AIST

MgO-barrier

AIST

Tohoku-Hitachi

604%(1144%@5K)

IBMAIST

AIST

@ RT

TMR

ratio

(%)

year

S. Ikeda et al.Appl. Phys. Lett. 93,

082508 (2008)

Page 14: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

S. Matsunaga, … H. Ohno, T. Hanyu, APEX, 1, 091301 (2008)

Full adder block (for image processing)

Nonvolatile Logic-in-Memory

Nonvolatile: ultimate power gating (no static power)Memory in the back end + part of logic (reduced # of tr. = suppression of delay and dynamic power)

P : Prechargephase

E : Evaluatephase

CLK

S(=A B Ci)

S’(=A B Ci)

VDD

P EP EP EP E “Power-off”“Power-off”“Power-

off”“Power-

off”

Inputs(A,B and Ci)

1mS/div

780mV/div

Standby Standby Standby Standby

Sbefore=0 Safter=0

Sbefore=1 Safter=1

S’before=1 S’after=1

S’before=0 S’after=0

A=0, B=0,Ci=1A=0,B=0,Ci=0

Active ActiveActive

10.7 µm

15.5

µm

13.9

µm

SUM

CARRY

0.18 µm CMOS/MTJ Process

MTJ: 100 x 200 nm2

Page 15: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

MTJ for VLSI: A wish list

1. Small footprint (F nm)2. High output (TMR ratio > 100%) 3. Nonvolatility (E/kBT >40)4. Low switching current (IC < F µA)

5. Back-end-of-the-line compatibility (350 oC)6. Endurance 7. Fast read & write8. Low resistance for low voltage operation9. Low error rate10. Low cost

Page 16: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

perpendicular

E

VHMgeI

VHME

KSB

C

KS

αµαγ

=

=

212

21

0

E

Parallel Antiparallel

Thermal fluctuationkBT

E

Parallel Antiparallel

Thermal fluctuationkBT

Ic0 and ∆=E/kBT

Page 17: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

Perpendicular MgO-CoFeB MTJ

SiO2/Si sub.

Ta(5)Ru(10)Ta(5)

CoFeB(1.0)MgO(0.85)CoFeB(1.7)

Ta(5)Ru (5)Cr/Au

Al2O3

V-

V+

(nm)

S. Ikeda et al., Nat. Mat. 9, 721 (2010)

JC0 = 3.9 MA/cm2 (IC0 = 49 μA) , E/kBT = 43, TMR ratio 124%

40 nm

interface perpendicularanisotropy

Page 18: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

DP-13. (Poster session)H. Yamamoto et al.

MMM 2010DT-05 . (Poster session)

M. Yamanouchi et al.

Comparison of MTJs

Type Stack structure(nm)

Size(nm)

MR (%)

RA(Ωμm2)

JC0(MA/cm2)

IC0(μA) Δ=E/kBT IC0/Δ Ta (oC) Ref.

i-MTJ CoFeB(2)/Ru(0.65)/CoFeB(1.8) SyF 100x200 >130 ~10 2 ~400 65 ~6.2 300-

350J. Hayakawa et al., IEEE

T-Magn., 44, 1962 (2008)

p-MTJL10-

FePt(10)/Fe(t)/Mg(0.4)/ MgO(1.5)/L10-FePt(t)

Blanket 120(CIPT)

11.8k - - - - 500M. Yoshizawa et al.,

IEEE T-Magn., 44, 2573 (2008)

p-MTJL10-

FePt/CoFeB/MgO(1.5)/ CoFeB/Co based

superlattice

Blanket 202(CIPT)

- - - - - -H. Yoda et al.,

Magnetics Jpn. 5, 184 (2010) [in Japanese].

p-MTJ [Co/Pt]CoFeB/CoFe/MgOCoFe/CoFeB/TbFeCo Blanket 85-97

(CIPT)4.4-10 - - - - 225 K. Yakushiji et al., APEX

3, 053033 (2010)

p-MTJ [CoFe/Pd]/CoFeB/MgO/CoFeB/[CoFe/Pd]

800x800N

100(113)

18.7k(20.2k) - - - - 350

(325)K. Mizunuma et al.,

MMM&INTERMAG2010

p-MTJ CoFeB (1)/ TbCoFe (3) 130 φ ~15 4.7 650 107 6.08 - M. Nakayama et al., APL 103, 07A710 (2008)

p-MTJ L10-alloy 50-55 φ - - - 49 56 0.88 - T. Kishi et al., IEDM 2008

p-MTJ Fe based L10 (2)/CoFeB (0.5) - - - - 9 - - -

H.Yoda et al., Magnetics Jpn. 5, 184 (2010) [in

Japanese].

p-MTJ CoFeB(~1.7) 40 φ >110 <18 <4 <50 >≈40 ≈1.2 350S. Ikeda et al., Nat. Mat. 9 (2010) 721.

K. Miura, et. al.HC-02, MMM 2010

Page 19: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

OUTLINE

1. Integrated circuits - needs and challenges -

2. What magnetism can offer

- current status of magnetic tunnel junction -

3. Research directions

4. Further future

Page 20: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

perpendicular

Scaling

TkEI BC 60for A][ 104.3 30 =×= µα

E

VHMgeI

VHME

KSB

C

KS

αµαγ

=

=

212

21

0

0

10

20

30

40

50

60

70

80

90

100

0 0.01 0.02 0.03 0.04 0.05

α = 0.015 α = 0.029

α = 0.009

α = 0.006

IC0 = 100 µAIC0 = 50 µAIC0 = 30 µAIC0 = 20 µA

E/k

BT

α

High and low αKSu HMK21

=

Page 21: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

In-planeCoFeB

α versus Ku

Ref. [1] E. P. Sajitha, et. al., IEEE Transactions on Magnetics, 46, 2056 (2010)[2] S. Mizukami, et. al., App. Phys. Lett., 96, 152502 (2010) [3] A. Barman, et. al., J. App. Phys., 101, 09D102 (2007) [4] J.-M. Beaujour, et. al., Phys. Rev. B., 80, 180415R (2009)[5] N. Fujita, et. al., J. Magn. Magn. Mater., 320, 3019 (2008)[6] S. Ikeda, et. al., Nat. Mat., 9, 721 (2010)

10-31E-3

0.01

0.1

1 CoFeB/Pd/[Co/Pd]x6 [1] Pt/Co/Pt [2] [Co/Pt]xn [3] Pd/Co/Pd/[Co/Ni]x3/Pd/Co/Pd [4] [Co/Pt]x12 [5] Ta/CoFeB/MgO [6]

10010-1 101

Dam

ping

par

amet

er, α

Ku (x105 J/m3)10-2

Page 22: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

OUTLINE

1. Integrated circuits - needs and challenges -

2. What magnetism can offer

- current status of magnetic tunnel junction -

3. Research directions

4. Further future

Page 23: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

Magnetic field

Spin current

Electric field

J. Slonczewski, J. Magn. Magn. Mat. 159, L1 (1996).L. Berger, Phys. Rev. B 54, 9353 (1996).

L. Berger, J. Appl. Phys. 55, 1954 (1984).

write/read heads for HDD1st generation MRAM

Spin torque MRAMSpin torque oscillatorRace-track memory

Magnetization manipulation by

http://www.everspin.com/http://www.hitachigst.com/

R. Takemura et al., VLSI Circ. Dig. p.84 (2009)

Page 24: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

24

Spin-transfer switching

Electric field switching

0.5 (V) 30 ( A) 1 (ns) 15 (fJ)VIt µ= × × =

2 2

2 20

S d E30 (nm)( ) 5 (nm) 9.8 (5 (MV/cm))

20.08 (fJ)

CV ε

π ε

= × × ×

= × × ×

=

22 EdSCV ×××= ε

Page 25: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

kx,y,z [107cm-1]

Spin-split valence band of (Ga,Mn)As

Ferromagnetic semiconductor (Ga,Mn)As: Mn gives rise to localized spin and hole

Material, Ferromagnetism and Functionalities; SeeH. Ohno, Science, 1998, T. Dietl et al. Science 2000, H. Ohno et al. Nature 2000,

D. Chiba et al. Science 2003, M. Yamanouchi et al. Nature 2004, D. Chiba, Nature 2008

T. Dietl et al. Science 2000

Page 26: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

Electric-field control of magnetization direction

-4 -2 0 2 4-10

-5

0

5

10

Gate electric Field E (MV/cm)

H = 0

M A

ngle

ϕ (d

eg.)

[100] axis

D. Chiba et al. Nature (2008)

Ferromagnetic Semiconductor(Ga,Mn)As

2K

Page 27: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

FePt, FePd: M. Weisheit et al., Science (2007).

Multiferroics: T. Arima et al., PASPS13 (2009/1/27).

Fe/Au: T. Maruyama et al., Nature Nanotechnology (2009).

CoFe: M. Endoh, S. Kanai, S. Ikeda, F. Matsukura, and H, Ohno, Appl. Phys. Lett. 96, 212503 (2010).

Electric-field effects on metals

All at room temperature

Page 28: Magnetic Tunnel Junction for Integrated Circuits: Scaling ... · Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 Shoji Ikeda, Tetsuo Endoh, Takahiro

MTJ is much better positioned now than before with 30 nm dimension in sight. Once ready this could trigger a major paradigm shift. Material science determines the scaling, requiring understanding of involved physics. Eg. KU, α, high speed switchingProcessing (and related fields) requires further development.One of the future directions is electric field switching (session AA). This may further reduce the power for switching drastically.

Summary