27
Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset TKK @ Ilkka Mellin (2008) 1/27 Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset / Ratkaisut Aiheet: Klassinen todennäköisyys ja kombinatoriikka Kokonaistodennäköisyys ja Bayesin kaava Avainsanat: Bayesin kaava, Binomikaava, Binomikerroin, Boolen algebra, Ehdollinen todennäköisyys, Jono, Joukko, Kertolaskuperiaate, Kertoma, Klassinen todennäköisyys, Kokonaistodennäköisyyden kaava, Kolmogorovin aksioomat, Kombinaatio, Kombinatoriikka, Komponentti, Lukumääräfunktio, Osajono, Osajoukko, Otanta, Otanta palauttaen, Otanta palauttamatta, Pascalin kolmio, Permutaatio, Riippumattomuus, σ-algebra, Suotuisa alkeistapahtuma, Todennäköisyyden aksioomat, Todennäköisyyskenttä, Todennäköisyysmitta, Toisensa poissulkevuus, Tulosääntö, Variaatio, Yhteenlaskuperiaate, Yhteenlaskusääntö Klassinen todennäköisyys ja kombinatoriikka Kombinatoriikan perusperiaatteet (i) Kertolaskuperiaate Oletetaan, että operaatio M voidaan suorittaa m:llä eri tavalla ja operaatio N voidaan suorittaa n:llä eri tavalla ja oletetaan lisäksi, että operaatiot M ja N voidaan suorittaa toisistaan riippumatta. Tällöin yhdistetty operaatio ”Suoritetaan operaatio M ja operaatio Nvoidaan suorittaa m×n:llä eri tavalla. (ii) Yhteenlaskuperiaate Oletetaan, että operaatio M voidaan suorittaa m:llä eri tavalla ja operaatio N voidaan suorittaa n:llä eri tavalla ja oletetaan lisäksi, että operaatiot M ja N ovat toisensa poissulkevia. Tällöin yhdistetty operaatio ”Suoritetaan operaatio M tai operaatio Nvoidaan suorittaa (m + n):llä eri tavalla. Joukko Joukko on täysin määrätty, jos sen alkiot tunnetaan. Olkoot äärellisen joukon S (erilaiset) alkiot s 1 , s 2 , … , s n Tällöin merkitään S = {s 1 , s 2 , … , s n } Joukot A ja B ovat samat, jos niissä on samat alkiot eli A = B jos ja vain jos x A x B

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 1/27

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset / Ratkaisut Aiheet: Klassinen todennäköisyys ja kombinatoriikka Kokonaistodennäköisyys ja Bayesin kaava Avainsanat: Bayesin kaava, Binomikaava, Binomikerroin, Boolen algebra, Ehdollinen todennäköisyys, Jono, Joukko, Kertolaskuperiaate, Kertoma, Klassinen todennäköisyys, Kokonaistodennäköisyyden kaava, Kolmogorovin aksioomat, Kombinaatio, Kombinatoriikka, Komponentti, Lukumääräfunktio, Osajono, Osajoukko, Otanta, Otanta palauttaen, Otanta palauttamatta, Pascalin kolmio, Permutaatio, Riippumattomuus, σ-algebra, Suotuisa alkeistapahtuma, Todennäköisyyden aksioomat, Todennäköisyyskenttä, Todennäköisyysmitta, Toisensa poissulkevuus, Tulosääntö, Variaatio, Yhteenlaskuperiaate, Yhteenlaskusääntö

Klassinen todennäköisyys ja kombinatoriikka Kombinatoriikan perusperiaatteet

(i) Kertolaskuperiaate

Oletetaan, että operaatio M voidaan suorittaa m:llä eri tavalla ja operaatio N voidaan suorittaa n:llä eri tavalla ja oletetaan lisäksi, että operaatiot M ja N voidaan suorittaa toisistaan riippumatta. Tällöin yhdistetty operaatio

”Suoritetaan operaatio M ja operaatio N”

voidaan suorittaa m×n:llä eri tavalla.

(ii) Yhteenlaskuperiaate

Oletetaan, että operaatio M voidaan suorittaa m:llä eri tavalla ja operaatio N voidaan suorittaa n:llä eri tavalla ja oletetaan lisäksi, että operaatiot M ja N ovat toisensa poissulkevia. Tällöin yhdistetty operaatio

”Suoritetaan operaatio M tai operaatio N”

voidaan suorittaa (m + n):llä eri tavalla.

Joukko

Joukko on täysin määrätty, jos sen alkiot tunnetaan. Olkoot äärellisen joukon S (erilaiset) alkiot

s1, s2, … , sn

Tällöin merkitään

S = {s1, s2, … , sn}

Joukot A ja B ovat samat, jos niissä on samat alkiot eli

A = B

jos ja vain jos

x ∈ A ⇔ x ∈ B

Page 2: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 2/27

Lukumääräfunktio

Olkoon

nS = n(S)

funktio, joka kertoo joukon S (erilaisten) alkioiden lukumäärän. Kutsumme funktiota n(⋅) lukumääräfunktioksi. Jos siis äärellisen joukon

S = {s1, s2, … , sn}

kaikki alkiot ovat erilaisia, niin

nS = n(S) = n

Jono

Jono on täysin määrätty, jos sen alkiot ja niiden järjestys tunnetaan. Olkoon äärellisen jonon S i. alkio

si , i = 1, 2, … , n

Tällöin merkitään

s = (s1, s2, … , sn)

tai usein myös

s = s1s2 ⋅⋅⋅ sn

Jonot a = (a1, a2, … , an) ja b = (b1, b2, … , bn) ovat samat, jos niissä on samat alkiot samassa järjestyksessä eli

a = b

jos ja vain jos

ai = bi , i = 1, 2, … , n

Kombinatoriikan perusongelmat

Olkoon S äärellinen joukko, jonka (erilaisten) alkioiden lukumäärä on

n = n(S)

Kombinatoriikan perusongelmat:

(1a) Kuinka monella eri tavalla joukon S alkiot voidaan järjestää jonoon?

(1b) Kuinka monella eri tavalla joukon S alkioista voidaan muodostaa k:n alkion osajono?

(2) Kuinka monella eri tavalla joukon S alkioista voidaan muodostaa k:n alkion osajoukko?

Kombinatoriikan perusongelmien ratkaisut

Olkoon S äärellinen joukko, jonka (erilaisten) alkioiden lukumäärä on

n = n(S)

Kombinatoriikan perusongelmien ratkaisut:

(1a) Kutsumme joukon S kaikkien alkioiden jonoja joukon S alkioiden permutaatioiksi. Joukon S alkioiden kaikkien mahdollisten permutaatioiden lukumäärä on n!, jossa

n! = n×(n–1)× ⋅⋅⋅ ×2×1

Page 3: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 3/27

on n-kertoma.

(1b) Kutsumme joukon S k:n alkion osajonoja joukon S alkioiden k-permutaatioiksi eli variaatioiksi. Joukon S alkioiden kaikkien mahdollisten k-permutaatioiden lukumäärä on

!P( , ) ( 1) ( 1)( )!

nn k n n n kn k

= = × − × × − +−

(2) Kutsumme joukon S k:n alkion osajoukkoja joukon S alkioiden k alkiota sisältäviksi kombinaatioiksi. Joukon S alkioiden kaikkien mahdollisten k alkiota sisältävien kombinaatioiden lukumäärä on

C( , )n

n kk

=

jossa

!!( )!

n nk k n k

= −

on binomikerroin.

Pascalin kolmio

Binomikertoimet saadaan ns. Pascalin kolmiosta. Alla on annettu Pascalin kolmion 8 ensimmäistä riviä.

1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen kolmion luvuista on saatu laskemalla yhteen kaksi edeltävän rivin lukua nuolten suuntaan.

Pascalin kolmio ja binomikertoimet

Pascalin kolmion (n+1). rivin luvut voidaan ilmaista binomikertoimien avulla seuraavassa muodossa:

, , , , ,0 1 2 1n n n n n

n n −

Page 4: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 4/27

Pascalin kolmion muodostamissääntö voidaan ilmaista binomikertoimien avulla seuraavassa muodossa:

1 11

n n nk k k

− − = + −

Kaavan mukaan Pascalin kolmion n. rivin k. luku saadaan laskemalla yhteen (n–1). rivin (k–1). ja k. luku. Se, että Pascalin kolmio on symmetrinen kolmion rivien keskikohdan suhteen, voidaan ilmaista binomikertoimien avulla seuraavassa muodossa:

!!( )!

n nnk n kk n k

= = −−

Binomikaava

Binomikaavan mukaan binomin

x + y

n. potenssi voidaan esittää muodossa

0

( )n

n n k k

k

nx y x y

k−

=

+ =

Äärellisen joukon osajoukkojen lukumäärä

Olkoon joukon S alkioiden lukumäärä n = n(S). Tällöin joukon S osajoukkojen lukumäärä on

20 1 2 1

n n n n n nN

n n

= = + + + + + −

Multinomikerroin

Olkoon joukon S alkioiden lukumäärä n = n(S). Oletetaan, että positiiviset kokonaisluvut

ni , i = 1, 2, … , k

toteuttavat ehdon

n1 + n2 + ⋅⋅⋅ + nk = n

Oletetaan, että joukko S ositetaan pistevieraisiin osajoukkoihin

Ai , i = 1, 2, … , k

niin, että joukossa Ai on ni = n(Ai) alkiota. Kuinka monella erilaisella tavalla yllä määritelty ositus voidaan tehdä?

Vastauksen antaa multinomikerroin

1 2 1 2

!! ! !k k

n nn n n n n n

=

jossa siis

n1 + n2 + ⋅⋅⋅ + nk = n

Page 5: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 5/27

Huomaa, että jos k = 2, saadaan binomikerroin

1 2 1 21 2

!! !

n n nnn n n nn n

= = =

jossa

n1 + n2 = n

Todennäköisyyden aksioomat Todennäköisyys äärellisissä otosavaruuksissa

Tarkastellaan ensin todennäköisyyden määrittelemistä äärellisissä otosavaruuksissa. Suuri osa todennäköisyyden peruslaskusäännöistä voidaan todistaa äärellisten otosavaruuksien aksioomista.

Boolen algebra

Olkoon S joukko ja jokin F joukon S osajoukkojen muodostama perhe eli

A A S∈ ⇒ ⊂F

Joukkoperhe F on Boolen algebra, jos

(i) ∅∈F

(ii) cA A∈ ⇒ ∈F F

(iii) ,A B A B∈ ∈ ⇒ ∪ ∈F F F

Kutsumme todennäköisyyslaskennassa perusjoukkoa S otosavaruudeksi ja Boolen algebraan F kuuluvia otosavaruuden S osajoukkoja A tapahtumiksi.

Olkoot

,A B∈ ∈F F

Boolen algebran aksioomista seuraa suoraan, että

, , ,c cA B A B∅∈ ∈ ∈ ∪ ∈F F F F

Lisäksi voidaan osoittaa, että

, ( ) , \c c c cS A B A B A B A B∈ ∩ = ∪ ∈ = ∩ ∈F F F

Todennäköisyyden aksioomat äärellisissä otosavaruuksissa

Olkoon S äärellinen joukko ja F jokin joukon S osajoukkojen muodostama Boolen algebra. Olkoon lisäksi Pr joukkofunktio, joka liittää jokaiseen Boolen algebraan F kuuluvaan joukon S osajoukkoon A reaalikuvun eli

Pr( )A A S A∈ ⇒ ⊂ ⇒ ∈F

Joukkofunktio Pr on äärellisen otosavaruuden todennäköisyysmitta, jos

(i) Pr( ) 1S =

(ii) 0 Pr( ) 1 kaikille A A≤ ≤ ∈F

(iii) , , Pr( ) Pr( ) Pr( )A B A B A B A B∈ ∈ ∩ =∅ ⇒ ∪ = +F F

Page 6: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 6/27

Äärellinen todennäköisyyskenttä

Kolmikko

( , , Pr)S F

on äärellinen todennäköisyyskenttä, jos S on äärellinen otosavaruus, F on otosavaruudessa S määritelty Boolen algebra ja Pr on Boolen algebrassa F määritelty todennäköisyysmitta.

Riippumattomuus ja riippumattomien tapahtumien tulosääntö

Tapahtumat A ja B ovat riippumattomia, jos ja vain jos riippumattomien tapahtumien tulosääntö

Pr( ) Pr( ) Pr( )A B A B∩ =

pätee.

Todennäköisyys mielivaltaisissa otosavaruuksissa

Tarkastellaan todennäköisyyden määrittelemistä mielivaltaisissa otosavaruuksissa.

σ-algebra

Olkoon S joukko ja jokin F joukon S osajoukkojen muodostama perhe eli

A A S∈ ⇒ ⊂F

Joukkoperhe F on σ-algebra, jos

(i) ∅∈F

(ii) cA A∈ ⇒ ∈F F

(iii) 1 2 3 1, , , ii

A A A A∞

=∈ ⇒ ∈… ∪F F

Kutsumme perusjoukkoa S otosavaruudeksi ja σ-algebraan F kuuluvia otosavaruuden S osajoukkoja A tapahtumiksi.

Kaikki Boolen algebroille todistetut teoreemat pätevät myös σ-algebroille. Jos

1 2 3, , ,A A A ∈… F

σ-algebran aksioomista seuraa suoraan, että

1 2 3 1, , , , ,c c c

iiA A A A∞

=∅∈ ∈ ∈… ∪F F F

Lisäksi voidaan osoittaa, että

1

, iiS A∞

=∈ ∈∩F F

Todennäköisyyden aksioomat mielivaltaisissa otosavaruuksissa

Olkoon S jokin joukko ja F jokin joukon S osajoukkojen muodostama σ-algebra. Olkoon lisäksi Pr joukkofunktio, joka liittää jokaiseen σ-algebraan F kuuluvaan joukon S osajoukkoon A reaalikuvun eli

Pr( )A A S A∈ ⇒ ⊂ ⇒ ∈F

Page 7: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 7/27

Joukkofunktio Pr on todennäköisyysmitta, jos

(i) Pr( ) 1S =

(ii) 0 Pr( ) 1 kaikille A A≤ ≤ ∈F

(iii) ( )1 2 3 11, , , ja , Pr Pr( )i j i iii

A A A A A i j A A∞ ∞

==∈ ∩ =∅ ≠ ⇒ =∑… ∪F

Todennäköisyyskenttä

Kolmikko

( , , Pr)S F

on todennäköisyyskenttä, jos S on otosavaruus, F on otosavaruudessa S määritelty σ-algebra ja Pr on σ-algebrassa F määritelty todennäköisyysmitta.

Kaikki äärellisille todennäköisyyskentille todistetut teoreemat pätevät myös äärettömissä todennäköisyyskentissä.

Epämitalliset joukot

Jos otosavaruus S on ääretön, sen kaikille osajoukoille ei voida välttämättä määritellä toden-näköisyyttä. Niitä otosavaruuden S osajoukkoja, joille todennäköisyys voidaan määritellä sanotaan mitallisiksi ja niitä, joille todennäköisyyttä ei voida määritellä sanotaan epämitallisiksi. Voidaan osoittaa, että otosavaruuden S mitalliset osajoukot muodostavat aina σ-algebran.

Joukkojonojen todennäköisyydet

Lause 1.

Olkoon ( , ,Pr)S F todennäköisyyskenttä ja 1 2 3, , ,A A A ∈… F . Tällöin pätee:

(a) Jos 1 2 3A A A⊂ ⊂ ⊂ , niin

1

Pr lim Pr( )i iii

A A∞

→∞=

=

(b) Jos 1 2 3A A A⊃ ⊃ ⊃ , niin

1

Pr lim Pr( )i iii

A A∞

→∞=

=

Lause 2.

Olkoon ( , ,Pr)S F todennäköisyyskenttä ja 1 2 3, , ,A A A ∈… F . Tällöin pätee:

Jos 1 2 3A A A⊃ ⊃ ⊃ →∅ , niin

lim Pr( ) 0iiA

→∞=

Page 8: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 8/27

Kokonaistodennäköisyyden ja Bayesin kaavat Ositus

Joukon S osajoukot

B1, B2, … , Bn

muodostavat joukon S osituksen, jos seuraavat ehdot pätevät:

(i) , 1, 2, ,iB i n≠ ∅ = …

(ii) ,i jB B i j∩ =∅ ≠

(iii) 1 2 nS B B B= ∪ ∪ ∪

Kokonaistodennäköisyyden kaava

Olkoon A epätyhjä otosavaruuden S osajoukko:

,A S A⊂ ≠∅

Oletetaan, että joukot

B1, B2, … , Bn

muodostavat otosavaruuden S osituksen. Tällöin pätee kokonaistodennäköisyyden kaava

1

Pr( ) Pr( ) Pr( | )n

i ii

A B A B=

= ∑

Bayesin kaava

Olkoon A epätyhjä otosavaruuden S osajoukko:

,A S A⊂ ≠∅

Oletetaan, että joukot

B1, B2, … , Bn

muodostavat otosavaruuden S osituksen. Tällöin pätee Bayesin kaava

1

Pr( ) Pr( | )Pr( | ) , 1, 2, ,Pr( ) Pr( | )

i ii n

i ii

B A BB A i nB A B

=

= =

∑…

Page 9: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 9/27

Tehtävä 2.1. Alla oleva kuvio kuvaa kaupungista A kaupunkiin D vieviä reittejä. Reiteistä osa kulkee vain

kaupungin B kautta, osa vain kaupungin C kautta ja osa sekä kaupungin B että kaupungin C kautta. Oletetaan lisäksi, että jokainen reitinvalinta on riippumaton muista reitinvalinnoista.

Kuinka monella eri tavalla kaupungista A pääsee kaupunkiin D?

Tehtävä 2.1. – Mitä opimme? Tehtävässä tarkastellaan kombinatoriikan perusperiaatteiden soveltamista vaihtoehtojen

kokonaislukumäärän laskemiseen.

Tehtävä 2.1. – Ratkaisu: Tehtävän ratkaisussa sovelletaan kombinatoriikan kertolasku- ja yhteenlaskuperiaatteita.

Jaetaan reittikartta osiin, joita tarkastellaan erillisinä.

A → B → D:

A:sta pääsee B:hen 3:lla eri tavalla.

B:stä pääsee D:hen 3:lla eri tavalla.

Kertolaskuperiaate ⇒ A:sta pääsee B:n kautta D:hen 3×3 = 9:llä eri tavalla.

A → B → C:

A:sta pääsee B:hen 3:lla eri tavalla.

B:stä pääsee C:hen 2:lla eri tavalla.

Kertolaskuperiaate ⇒ A:sta pääsee B:n kautta C:hen 3×2 = 6:lla eri tavalla.

A → C:

A:sta pääsee suoraan C:hen 3:lla eri tavalla.

A → B → C tai A → C:

A:sta pääsee B:n kautta C:hen 6:lla eri tavalla.

A:sta pääsee suoraan C:hen 3:lla eri tavalla.

Yhteenlaskuperiaate ⇒ A:sta pääsee B:n kautta C:hen tai suoraan C:hen 6 + 3 = 9:llä eri tavalla.

C

A

D

B

Page 10: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 10/27

A → C → D:

A:sta pääsee C:hen 9:llä eri tavalla.

C:stä pääsee D:hen 2:lla eri tavalla.

Kertolaskuperiaate ⇒ A:sta pääsee C:n kautta D:hen 9×2 = 18:lla eri tavalla.

A → B → D tai A → C → D:

A:sta pääsee B:n kautta D:hen 9:llä eri tavalla.

A:sta pääsee C:n kautta D:hen 18:lla eri tavalla.

Yhteenlaskuperiaate ⇒ A:sta pääsee D:hen 9 + 18 = 27:llä eri tavalla.

Tehtävä 2.2. Tarkastellaan kirjainten a, e, i, k, l, m (6 kpl) muodostamaa joukkoa

S = {a, e, i, k, l, m}

(a) Kuinka monta erilaista jonoa voidaan joukon S kirjaimista muodostaa?

(b) Kuinka monta erilaista 3:n alkion osajonoa voidaan joukon S kirjaimista muodostaa?

(c) Kuinka monta erilaista 3:n alkion osajoukkoa voidaan joukon S kirjaimista muodostaa?

Tehtävä 2.2. – Mitä opimme? Tehtävässä tarkastellaan kombinatoriikan perusongelmia sekä niiden ratkaisemista

kombinatoriikan perusperiaatteiden avulla.

Tehtävä 2.2. – Ratkaisu: (a) Joukossa S = {a, e, i, k, l, m} on

n(S) = 6

erilaista alkiota. Siten joukon S alkioista voidaan muodostaa

6! = 6⋅5⋅4⋅3⋅2⋅1 = 720

erilaista jonoa eli permutaatiota.

Tämä nähdään käyttämällä ns. lokeromallia:

Koska joukossa S on 6 erilaista alkiota, muodostetaan lokerikko, jossa on 6 lokeroa. Ideana on täyttää lokerikko joukon S alkioilla vaiheittain. Kirjainten a, e, i, k, l, m muodostamien jonojen lukumäärä on sama kuin erilaisten järjestysten lukumäärä, joissa kirjaimet a, e, i, k, l, m voidaan asettaa lokeroihin.

Alla olevan taulukon varjostetut solut kuvaavat ko. lokerikkoa. Jokaiseen lokeroon on merkitty luvulla n kuinka monella tavalla lokeron täyttö voidaan tehdä.

Lokeron nro 1 2 3 4 5 6

n 6 5 4 3 2 1

1. lokero: Lokero voidaan täyttää 6:lla eri tavalla kirjaimilla a, e, i, k, l, m

Page 11: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 11/27

2. lokero: Lokero voidaan täyttää 5:llä eri tavalla jäljelle jääneillä kirjaimilla, koska 1 kirjaimista on käytetty.

3. lokero: Lokero voidaan täyttää 4:llä eri tavalla jäljelle jääneillä kirjaimilla, koska 2 kirjaimista on käytetty.

4. lokero: Lokero voidaan täyttää 3:lla eri tavalla jäljelle jääneillä kirjaimilla, koska 3 kirjaimista on käytetty.

5. lokero: Lokero voidaan täyttää 2:lla eri tavalla jäljelle jääneillä kirjaimilla, koska 4 kirjaimista on käytetty.

6. lokero: Lokero voidaan täyttää 1:llä eri tavalla jäljelle jääneellä kirjaimella, koska 5 kirjaimista on käytetty.

Koska jokainen täyttöoperaatio voidaan tehdä riippumatta aikaisemmin suoritetuista edellisistä täytöistä, niin kombinatoriikan kertolaskuperiaatteen mukaan koko lokerikko voidaan täyttää

6⋅5⋅4⋅3⋅2⋅1 = 6!

erilaisella tavalla.

(b) Joukon S = {a, e, i, k, l, m} alkioista voidaan muodostaa

6! 6! 6 5 4 3 2 1P(6,3) 6 5 4 120(6 3)! 3! 3 2 1

⋅ ⋅ ⋅ ⋅ ⋅= = = = ⋅ ⋅ =

− ⋅ ⋅

erilaista 3:n alkion osajonoa eli variaatiota.

Tulos voidaan perustella käyttämällä ns. lokeromallia:

Muodostetaan lokerikko, jossa on 3 lokeroa. Ideana on täyttää lokerikko joukon S alkioilla vaiheittain. Kirjainten a, e, i, k, l, m muodostamien 3:n alkion osajonojen luku- määrä on sama kuin erilaisten järjestysten lukumäärä, joissa 3 kirjaimista a, e, i, k, l, m voidaan asettaa lokeroihin.

Alla olevan taulukon varjostetut solut kuvaavat ko. lokerikkoa. Jokaiseen lokeroon on merkitty luvulla n kuinka monella tavalla lokeron täyttö voidaan tehdä.

Lokeron nro 1 2 3

n 6 5 4

1. lokero: Lokero voidaan täyttää 6:lla eri tavalla kirjaimilla a, e, i, k, l, m

2. lokero: Lokero voidaan täyttää 5:llä eri tavalla jäljelle jääneillä kirjaimilla, koska 1 kirjaimista on käytetty.

3. lokero: Lokero voidaan täyttää 4:llä eri tavalla jäljelle jääneillä kirjaimilla, koska 2 kirjaimista on käytetty.

Koska jokainen täyttöoperaatio voidaan tehdä riippumatta aikaisemmin suoritetuista täyttöoperaatioista, niin kombinatoriikan kertolaskuperiaatteen mukaan koko lokerikko voidaan täyttää

Page 12: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 12/27

6 5 4 3 2 1 6! 6!6 5 4 1203 2 1 3! (6 3)!

⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ = = = =

⋅ ⋅ −

erilaisella tavalla.

Tulos seuraa myös (a)-kohdassa esitetystä tarkastelusta pysäyttämällä lokeroiden täyttö sen jälkeen, kun 3. lokero on saatu täytetyksi.

(c) Joukon S = {a, e, i, k, l, m} alkioista voidaan muodostaa

6 6! 6 5 4 3 2 1C(6,3) 203 3!3! 3 2 1 3 2 1 ⋅ ⋅ ⋅ ⋅ ⋅

= = = = ⋅ ⋅ ⋅ ⋅ ⋅

erilaista 3:n alkion osajoukkoa eli kombinaatiota.

Tulos voidaan perustella seuraavalla tavalla:

Olkoon joukon S alkioiden 3:n alkion osajoukkojen lukumäärä x, jossa x on vielä toistaiseksi tuntematon luku.

(b)-kohdan mukaan joukon S alkioiden 3:n alkion osajonojen lukumäärää on

6!P(6,3)(6 3)!

=−

Joukon S alkioiden 3:n alkion osajonot voidaan muodostaa kahdessa vaiheessa:

(i) Valitaan joukon S alkioiden joukosta 3:n alkion osajoukko. Tämä voidaan tehdä x erilaisella tavalla, jossa siis x on vielä toistaiseksi tuntematon luku.

(ii) Järjestetään kohdassa (i) valitut 3 alkiota jonoksi. Tämä voidaan tehdä (a)-kohdassa esitetyn tarkastelun n mukaan 3! eri tavalla.

Koska operaatiot (i) ja (ii) voidaan suorittaa toisistaan riippumatta, niin joukon S alkioiden 3:n alkion osajonot voidaan muodostaa kombinatoriikan kertolasku- periaatteen mukaan

3!x ⋅

eri tavalla.

Olemme määränneet joukon S alkioiden 3:n alkion osajonojen lukumäärän kahdella eri tavalla ja saamme siten x:n ratkaisemiseksi yhtälön

6!P(6,3) 3!(6 3)!

x= = ⋅−

Siten

6P(6,3) 6! C(6,3)33! 3!(6 3)!

x = = = = −

Page 13: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 13/27

Tehtävä 2.3. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN, jossa X on jokin

vokaaleista a, e, i, o, u (5 kpl) ja N on jokin numeroista 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Laske erilaisten kilpien lukumäärä, kun tunnusten muodostamista rajoittavat seuraavat ehdot:

(a) Ei rajoituksia.

(b) Samaa kirjainta ja numeroa ei saa käyttää useammin kuin kerran.

(c) Kilvessä on oltava täsmälleen kaksi samaa vokaalia ja numeron on oltava pariton.

Tehtävä 2.3. – Mitä opimme? Tehtävässä tarkastellaan kombinatoriikan perusongelmia sekä niiden ratkaisemista

kombinatoriikan perusperiaatteiden avulla.

Tehtävä 2.3. – Ratkaisu: Kaikki muodostettavat tunnukset ovat muotoa XXXXNN, jossa

X = a, e, i, o, u (5 kpl)

N = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (10 kpl).

Kohdat (a) – (c) eroavat toisistaan siten, että tunnusten muodostamista rajoittavat niissä erilaiset ehdot.

Sovellamme tunnusten muodostamisessa ns. lokeromallia: Rekisterikilven tunnusta asetetaan vastaamaan lokerikko, jossa on 6 lokeroa, joista 4 ensimmäistä on varattu vokaaleille ja 2 viimeistä numeroille.

(a) Tunnusten muodostamiselle ei ole asetettu mitään rajoituksia.

Täytetään lokerot XXXX vaiheittain:

1. lokero voidaan täyttää vokaaleilla 5:llä eri tavalla.

2. lokero voidaan täyttää vokaaleilla 5:llä eri tavalla.

3. lokero voidaan täyttää vokaaleilla 5:llä eri tavalla.

4. lokero voidaan täyttää vokaaleilla 5:llä eri tavalla.

Koska operaatiot voidaan tehdä toisistaan riippumatta, kombinatoriikan kertolaskuperiaatteen nojalla lokerot XXXX voidaan täyttää

5×5×5×5 = 625

eri tavalla vokaaleilla a, e, i, o, u, kun vokaalien käytölle ei ole asetettu rajoituksia.

Vastaavasti lokerot NN voidaan täyttää

10×10 = 100

eri tavalla numeroilla 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, kun numeroiden käytölle ei ole asetettu rajoituksia.

Page 14: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 14/27

Lokerot XXXX ja lokerot NN voidaan täyttää toisistaan riippumatta, joten kertolaskuperiaatteen nojalla erilaisia rekisterikilpiä on

625×100 = 62500 kpl

kun tunnusten muodostamiselle ei ole asetettu mitään rajoituksia.

(b) Samaa vokaalia tai numeroa ei saa käyttää tunnuksessa kuin kerran.

Täytetään lokerot XXXX vaiheittain:

1. lokero voidaan täyttää vokaaleilla 5:llä eri tavalla.

2. lokero voidaan täyttää jäljelle jääneillä vokaaleilla 4:llä eri tavalla, koska 1 vokaaleista on jo käytetty.

3. lokero voidaan täyttää jäljelle jääneillä vokaaleilla 3:lla eri tavalla, koska 2 vokaaleista on jo käytetty.

4. lokero voidaan täyttää jäljelle jääneillä vokaaleilla 2:lla eri tavalla, koska 3 vokaaleista on jo käytetty.

Kombinatoriikan kertolaskuperiaatteen nojalla lokerot XXXX voidaan täyttää vokaaleilla

5×4×3×2 = 120

eri tavalla vokaaleilla a, e, i, o, u, kun samaa vokaalia ei saa käyttää kuin kerran.

Vastaavasti lokerot NN voidaan täyttää numeroilla

10×9 = 90

eri tavalla numeroilla 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, kun samaa numeroa ei saa käyttää kuin kerran.

Lokerot XXXX ja lokerot NN voidaan täyttää toisistaan riippumatta, joten kertolaskuperiaatteen nojalla erilaisia rekisterikilpiä on

120×90 = 10800 kpl

kun samaa vokaalia tai numeroa ei saa käyttää tunnuksessa kuin kerran.

(c) Tunnuksessa on oltava täsmälleen kaksi samaa vokaalia ja numeron on oltava pariton.

Lokeroihin XXXX voidaan asettaa mitkä tahansa kaksi samaa vokaalia

4 4! 4 3 2 1 62 2!2! 2 1 2 1 ⋅ ⋅ ⋅

= = = ⋅ ⋅ ⋅

eri tavalla. Tämä vokaali voidaan valita vokaalien a, e, i, o, u joukosta 5:llä eri tavalla.

Koska aikaisemmin käytettyä vokaalia ei saa käyttää uudelleen, voidaan loput vokaalit valita jäljelle jääneisiin lokeroihin

4×3

eri tavalla.

Page 15: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 15/27

Siten lokerot XXXX voidaan täyttää vokaaleilla niin, että lokeroissa on täsmälleen kaksi samaa vokaalia,

42

×5×4×3 = 6×5×4×3 = 360 eri tavalla.

Koska parittomia numeroita on numeroiden 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 joukossa 5 kpl, lokerot NN voidaan täyttää

5×5 = 25

eri tavalla parittomilla numeroilla.

Lokerot XXXX ja lokerot NN voidaan täyttää toisistaan riippumatta, joten kertolaskuperiaatteen nojalla erilaisia rekisterikilpiä saadaan

360×25 = 9000 kpl

kun tunnuksessa on oltava täsmälleen kaksi samaa vokaalia ja numeron on oltava pariton.

Tehtävä 2.4. Tietokoneen salasanat ovat muotoa NNNNN, jossa N on jokin numeroista 0, 1, 2, 3, 4, 5, 6, 7,

8, 9. Laske mahdollisten salasanojen lukumäärät, kun salasanojen muodostamista rajoittavat seuraavat ehdot:

(a) Kaikkien numeroiden on oltava erilaisia.

(b) Salasanassa on oltava ”pari” eli täsmälleen kaksi samaa numeroa (esim. 23783).

(c) Salasanassa on oltava ”kolmoset” eli täsmälleen kolme samaa numeroa (esim. 11413).

(d) Salasanassa on oltava ”täyskäsi” eli ”kolmoset” ja ”pari” (esim. 73737).

Tehtävä 2.4. – Mitä opimme? Tehtävässä tarkastellaan kombinatoriikan perusongelmia sekä niiden ratkaisemista

kombinatoriikan perusperiaatteiden avulla.

Tehtävä 2.4. – Ratkaisu: Sovelletaan tehtävän ratkaisussa lokeromallia. Käytössä on 5 lokeroa.

(a) Kaikkien numeroiden on oltava erilaisia.

Täytetään lokerot vaiheittain: i. lokero voidaan täyttää

10 – i + 1 , i = 1, 2, 3, 4, 5

eri tavalla numeroilla 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, koska i. lokeroa täytettäessä käyttämättömiä numeroita on jäljellä enää (10 – i + 1) kpl.

Operaatiot voidaan tehdä toisistaan riippumatta, joten kertolaskuperiaatteen nojalla salasanojen kokonaislukumäärä on

10×9×8×7×6 = 30240

Page 16: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 16/27

kun kaikkien numeroiden on oltava erilaisia.

(b) Salasanassa on oltava ”pari” eli täsmälleen kaksi samaa numeroa.

5 lokeroa voidaan täyttää kahden saman numeron muodostamalla parilla binomikertoimen

52

ilmaisemalla lukumäärällä eri tapoja. Tämä numero voidaan valita 10:llä eri tavalla.

Koska kolmeen jäljellä olevaan lokeroon on jokaiseen valittava eri numero, voidaan muut numerot valita salasanaan

9×8×7

eri tavalla.

Kertolaskuperiaatteen nojalla salasanojen kokonaislukumäärä on

52

×10×9×8×7 = 50400

kun salasanassa on oltava ”pari” eli täsmälleen kaksi samaa numeroa.

(c) Salasanassa on oltava ”kolmoset” eli täsmälleen kolme samaa numeroa.

5 lokeroa voidaan täyttää kolmen saman numeron muodostamilla kolmosilla binomikertoimen

53

ilmaisemalla lukumäärällä eri tapoja. Tämä numero voidaan valita 10:llä eri tavalla.

Koska kahteen jäljellä olevaan lokeroon on molempiin valittava eri numero, voidaan muut numerot valita salasanaan

9×8

eri tavalla.

Kertolaskuperiaatteen nojalla salasanojen kokonaislukumäärä on

53

×10×9×8 = 7200

kun salasanassa on oltava ”kolmoset” eli täsmälleen kolme samaa numeroa.

(d) Salasanassa on oltava ”täyskäsi” eli ”kolmoset” ja ”pari” .

5 lokeroa voidaan täyttää kahden saman numeron muodostamalla parilla binomikertoimen

Page 17: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 17/27

52

ilmaisemalla lukumäärällä eri tapoja. Sen jälkeen paikat kolmosille on määrätty.

Numero voidaan valita pariin 10:llä eri tavalla ja sen jälkeen numero voidaan valita kolmosiin voidaan 9:llä eri tavalla, koska 1 numeroista on jo käytetty pariin.

Kertolaskuperiaatteen nojalla salasanojen lukumäärä on

52

×10×9 = 900

kun salasanassa on oltava ”täyskäsi” eli ”kolmoset” ja ”pari” .

Tehtävä 2.5. Kuinka monella eri tavalla voidaan m ykköstä ja n nollaa järjestää jonoon?

Sovellus: Suorakulmaiseen koordinaatistoon on piirretty suorakulmainen katuverkko, joka kulkee kokonaislukupisteiden kautta. Kuinka monta erilaista lyhintä reittiä on pisteestä (0,0) pisteeseen (6,5)?

Tehtävä 2.5. – Mitä opimme? Tehtävässä tarkastellaan kombinatoriikan perusongelmia sekä niiden ratkaisemista

kombinatoriikan perusperiaatteiden avulla.

Tehtävä 2.5. – Ratkaisu: Sovelletaan tehtävän ratkaisussa lokeromallia.

Käytössä on (m + n) lokeroa, jotka on täytettävä m ykkösellä. Sen jälkeen nollien paikat on määrätty. Erilaisten tapojen lukumäärän täyttää (m + n) lokeroa m ykkösellä antaa binomi-kerroin

m n

m+

Sama tulos saadaan täyttämällä (m + n) lokeroa ensin n nollalla. Tämä seuraa siitä, että

( )!! !

m n m nm nm nm n+ + +

= =

Huomaa, että tämä binomikertoimien ominaisuus tulee esiin Pascalin kolmion symmetrisyytenä.

Sovellus: Pisteestä (0,0) voidaan siirtyä pisteeseen (6,5) useaa erilaista lyhintä reittiä pitkin. Kaikilla

lyhimmillä reiteillä on se ominaisuus, että niissä on 6 siirtymistä (askelta) x-akselin suuntaan ja 5 siirtymistä (askelta) y-akselin suuntaan. Siten lyhimmän reitin pituus on 6 + 5 = 11 askelta.

Page 18: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 18/27

Jokaista lyhintä reittiä voidaan asettaa vastaamaan numeroiden 0 ja 1 muodostama yhdentoista numeron jono, jossa on 6 kpl numeroa 0 ja 5 kpl numeroa 1, kun 0 vastaa siirtymistä x-akselin suuntaan ja 1 vastaa siirtymistä y-akselin suuntaan.

Page 19: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 19/27

Kuviossa:

vastaa numeroa 0

vastaa numeroa 1

Siten kuvioon nuolilla merkitty siirtyminen pisteestä (0,0) pisteeseen (6,5) vastaa jonoa

01010011100

Edellä esitetyn nojalla kysymys lyhimpien reittien lukumäärästä voidaan pukea seuraavaan muotoon: Kuinka monella tavalla 6 kpl nollia ja 5 kpl ykkösiä voidaan asettaa yhdentoista numeron jonoon?

Tehtävän alkuosan perusteella vastauksen antaa binomikerroin

11

4626

=

Yleistys: Tarkastellaan tasossa kokonaislukupisteiden muodostamaa hilaa, jossa voidaan liikkua vain

hilapisteiden koordinaattiakseleiden suuntaisia välijanoja pitkin.

Tämä merkitsee sitä, että kahden hilapisteen välinen etäisyys on mitattava ns. Manhattan-metriikalla. Pisteestä (0,0) on siis pisteeseen (m, n)

m n m n

m n+ +

=

erilaista lyhintä reittiä, joista jokaisen pituus on m + n.

Tehtävä 2.6. Pokeripeli. Laske todennäköisyydet seuraaville 5:n kortin käsille:

(a) Kuningasvärisuora: ässä, kuningas, rouva, sotilas, 10 samaa maata.

(b) Värisuora: 5 peräkkäistä korttia samaa maata.

(c) Väri: 5 korttia samaa maata.

Oletamme, että korttipakassa on 52 korttia, jotka jakautuvat 4:ään maahan: hertta, pata, ruutu, risti. Jokaisessa maassa on 13 korttia: ässä (A), kuningas (K), rouva (Q), sotilas (J), 10, 9, 8, 7, 6, 5, 4, 3, 2.

Tehtävä 2.6. – Mitä opimme? Tehtävässä tarkastellaan kombinatoriikan soveltamista tapahtumien klassisen

todennäköisyyden määräämiseen.

(6,5)

(0,0)

Page 20: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 20/27

Tehtävä 2.6. – Ratkaisu: 5 korttia voidaan valita 52 kortin joukosta binomikertoimen

525

ilmaisemalla lukumäärällä eri tapoja.

(a) Kuningasvärisuoria on 4 kpl.

Todennäköisyys saada kuningasvärisuora on siten

4/525

= 1/649740

(b) Värisuoria on 4×10 kpl, sillä ässä voidaan liittää kahteen eri värisuoraan, mikä nähdään tutkimalla seuraavaa kaaviota:

5:n kortin käsi

A K Q J 10 9 8 7 6 5 4 3 2 A

Todennäköisyys saada värisuora on siten

4×10/525

= 1/64974

(c) Värejä on 4×135

kpl.

Todennäköisyys saada väri on siten

4×135

/525

= 33/16660

Tehtävä 2.7. Paikkakuntien X ja Y välillä on kolmet liikennevalot K, L, M. Valojen jaksona on 1 minuutti,

jona aikana liikennevalo K näyttää punaista 15 sekuntia, L näyttää punaista 20 sekuntia ja M näyttää punaista 30 sekuntia. Laske todennäköisyys, että matkalla on pysähdyttävä täsmälleen yhden kerran.

Tehtävä 2.7. – Mitä opimme? Tehtävässä havainnollistetaan toisensa poissulkevuuden ja riippumattomuuden käsitteitä

todennäköisyyslaskennassa.

Page 21: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 21/27

Tehtävä 2.7. – Ratkaisu: Olkoon

Ai = ”Liikennevalo i näyttää punaista”, i = 1, 2, 3

Tehtävän asettelun mukaan

Pr(A1) = 1/4

Pr(A2) = 1/3

Pr(A3) = 1/2

Oletetaan, että tapahtumat A1, A2 ja A3 ovat riippumattomia.

Tällöin kysytyksi todennäköisyydeksi saadaan toisensa poissulkevien tapahtumien yhteenlaskusäännön ja riippumattomien tapahtumien tulosäännön mukaan:

( )1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

Pr ( ) ( ) ( )

Pr( ) Pr( ) Pr( )

Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( )1 2 1 3 1 1 3 2 14 3 2 4 3 2 4 3 211 0.458324

c c c c c c

c c c c c c

c c c c c c

A A A A A A A A A

A A A A A A A A AA A A A A A A A A

∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩

= ∩ ∩ + ∩ ∩ + ∩ ∩

= + +

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

= =

Tehtävä 2.8 Tarkastellaan kahta uurnaa, joissa kummassakin on 3 mustaa ja 5 valkoista kuulaa.

(a) Poimitaan kummastakin uurnasta yksi kuula. Mikä on todennäköisyys, että molemmat kuulat ovat mustia?

(b) Poimitaan toisesta uurnasta kaksi kuulaa. Mikä on todennäköisyys, että molemmat kuulat ovat mustia?

Tehtävä 2.8. – Mitä opimme? Tehtävässä havainnollistetaan riippumattomuuden ja ehdollisen todennäköisyyden

käsitteitä todennäköisyyslaskennassa.

Tehtävä 2.8. – Ratkaisu: (a) Olkoon

A = ”1. kuula on musta”

B = ”2. kuula on musta”

Tällöin

Pr(A) = 3/8

Pr(B ) = 3/8

Koska tapahtumat A ja B voidaan olettaa riippumattomiksi, niin riippumattomien tapahtumien tulosäännön mukaan

Page 22: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 22/27

3 3 9Pr( ) Pr( ) Pr( )8 8 64

A B A B∩ = = ⋅ =

(b) Olkoon

A = ”1. kuula on musta”

B = ”2. kuula on musta”,

Tällöin

Pr(A) = 3/8

Pr(B|A) = 2/7

Nyt tapahtumat A ja B eivät ole riippumattomia, joten yleisen tulosäännön mukaan

3 2 3Pr( ) Pr( ) Pr( | )8 7 28

A B A B A∩ = = ⋅ =

Huomaa, että tässä

3 3 9Pr( ) Pr( ) Pr( )8 8 64

A B A B= ⋅ = ≠ ∩

Tehtävä 2.9 Erässä CD-soittimia on 20 soitinta, joista 3 on viallista.

(a) Kuinka monella eri tavalla soitinten joukosta voidaan poimia 4 soitinta niin, että mukaan tulee täsmälleen 1 viallinen soitin, jos poiminta tehdään palauttamatta?

(b) Mikä on todennäköisyys, että poimittaessa soitinten joukosta umpimähkään 4 soitinta mukaan tulee täsmälleen 1 viallinen, jos poiminta tehdään palauttamatta?

Tehtävä 2.9. – Mitä opimme? Tehtävässä tarkastellaan kombinatoriikan soveltamista tapahtumien klassisen

todennäköisyyden määräämiseen otannassa palauttaen ja otannassa palauttamatta.

Ks. myös tehtäviä 2.1. ja 1.8.

Tehtävä 2.9. – Ratkaisu: (a) Tehtävänä on valita 3 soitinta 17:n ehjän soittimen joukosta ja 1 soitin 3:n viallisen

soittimen joukosta ja laskea niiden tapojen lukumäärä, jolla tämä voidaan tehdä.

3 soitinta voidaan valita 17:n ehjän joukosta binomikertoimen

173

ilmaisemalla lukumäärällä eri tapoja.

1 soitin voidaan valita 3:n viallisen joukosta binomikertoimen

31

Page 23: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 23/27

ilmaisemalla lukumäärällä eri tapoja.

Nämä valinnat voidaan tehdä toisistaan riippumatta, joten kombinatoriikan kertolaskuperiaatteen mukaan valintojen kokonaislukumääräksi saadaan

17 3 17! 3! 17 16 15 3 2 20403 1 3!14! 1!2! 3 2 2

⋅ ⋅ ⋅= ⋅ = ⋅ = ⋅

(b) Käytetään klassisen todennäköisyyden määritelmää:

Tapahtuman A klassinen todennäköisyys on

Pr(A) = k / n

jossa

k = tapahtumalle A suotuisien tulosvaihtoehtojen lukumäärä

n = kaikkien mahdollisten tulosvaihtoehtojen lukumäärä

ja kaikki tulosvaihtoehdot ovat yhtä todennäköisiä.

Kaikkien tapausten lukumäärä:

4 soitinta voidaan poimia 20 soittimen joukosta binomikertoimen

20 20! 20 19 18 17 48454 4!16! 4 3 2

⋅ ⋅ ⋅= = = ⋅ ⋅

ilmaisemalla lukumäärällä eri tapoja.

Suotuisien tapausten lukumäärä:

(a)-kohdan mukaan 3 soitinta voidaan valita 17:n ehjän soittimen joukosta ja 1 soitin 3:n viallisen soittimen joukosta tulon

17 3

20403 1

=

ilmaisemalla lukumäärällä eri tapoja.

Siten todennäköisyys valita 4 soitinta satunnaisesti 20:n soittimen joukosta ja saada 3 soitinta 17:n ehjän soittimen joukosta ja 1 soitin 3:n viallisen soittimen joukosta on

17 33 1 8 0.421

20 194

= ≈

Tehtävä 2.10. Eräässä tehtaassa on 3 valmistuslinjaa, joilla tehdään samanlaisia CD-soittimia. Linja A

valmistaa soittimista 30 %, linja B 25 % ja linja C 45 %. A:n valmistamista soittimista keski-

Page 24: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 24/27

määrin 2 %, B:n valmistamista soittimista 3 % ja C:n valmistamista soittimista 4 % on osoittautunut viallisiksi.

Valitaan satunnaisesti yksi soitin tarkistusta varten.

(a) Mikä on todennäköisyys, että soitin on viallinen?

(b) Mikä on todennäköisyys, että soitin on tehty linjalla A, jos se on viallinen?

Tehtävä 2.10. – Mitä opimme? Tehtävässä tarkastellaan kokonaistodennäköisyyden ja Bayesin kaavojen soveltamista.

Tehtävä 2.10. – Ratkaisu: Määritellään seuraavat tapahtumat:

A = {Soittimen on valmistanut linja A}

B = {Soittimen on valmistanut linja B}

C = {Soittimen on valmistanut linja C}

Tehtävän asettelun mukaan seuraavat todennäköisyydet tunnetaan:

Pr(A) = 0.30

Pr(B) = 0.25

Pr(C) = 0.45

Määritellään tapahtuma

V = {Soitin on viallinen}

Tehtävän asettelun mukaan myös seuraavat ehdolliset todennäköisyydet tunnetaan:

Pr(V|A) = 0.02

Pr(V|B) = 0.03

Pr(V|C) = 0.04

(a) Tehtävänä on määrätä Pr(V).

Kokonaistodennäköisyyden kaavan mukaan:

Pr(V) = Pr(A)Pr(V|A) + Pr(B)Pr(V|B) + Pr(C)Pr(V|C)

= 0.30×0.02 + 0.25×0.03 + 0.45×0.04 = 0.0315

(b) Tehtävänä on määrätä Pr(A|V).

Bayesin kaavan mukaan:

Pr( ) Pr( )Pr( )Pr( )Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( )

0.30 0.02 0.1900.0315

A V AA VA VV A V A B V B C V C∩

= =+ +

×= ≈

Page 25: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 25/27

Tehtävä 2.11. Valheenpaljastuskoneen luotettavuudesta on käytettävissä seuraavat tiedot:

Henkilö, joka valehtelee tulee oikein luokitelluksi valehtelijaksi todennäköisyydellä 0.9. Toisaalta henkilö, joka ei valehtele tulee virheellisesti luokitelluksi valehtelijaksi todennäköisyydellä 0.05.

Oletetaan, että valheenpaljastuskonetta käytetään ihmisjoukkoon, jossa 1 % valehtelee. Mikä on todennäköisyys, että valehtelijaksi luokiteltu henkilö onkin rehellinen?

Tehtävä 2.11. – Mitä opimme? Tehtävässä tarkastellaan Bayesin kaavan soveltamista.

Ks. myös tehtävää 2.10.

Tehtävä 2.11. – Ratkaisu: Määritellään seuraavat tapahtumat:

D = “Valheenpaljastuskone luokittelee henkilön valehtelijaksi”

V = “Henkilö valehtelee”

R = “Henkilö ei valehtele”

Tehtävän asettelun mukaan seuraavat todennäköisyydet tunnetaan:

Pr(D|V) = 0.9

Pr(D|R) = 0.05

Pr(V) = 0.01

Komplementtitapahtuman todennäköisyyden kaavan mukaan

Pr(R) = 1 – Pr(V) = 0.99

Tehtävässä kysytään todennäköisyyttä

Pr(R|D)

Bayesin kaavan mukaan:

Pr( )Pr( )Pr( )

Pr( )Pr( ) Pr( )Pr( )0.99 0.05 0.846

0.99 0.05 0.01 0.9

R D RR D

R D R V D V=

+

×= ≈

× + ×

Huomaa, että todennäköisyys sille, että valheenpaljastuskoneen valehtelijaksi luokittelema henkilö on todellisuudessa rehellinen, on erittäin korkea!

Tehtävä 2.12. Valehtelijoiden maassa asuu kaksi yhtä suurta heimoa lierot ja kierot. Lierot vastaavat

kaikkiin kysymyksiin oikein todennäköisyydellä 2/3, kun taas kierot vastaavat kaikkiin kysymyksiin oikein todennäköisyydellä 3/4.

Tapaat maan asukkaan, jolta kysyt onko hän kiero vai liero ja hän vastaa olevansa kiero. Mikä on todennäköisyys, että hän todellakin on kiero?

Page 26: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 26/27

Tehtävä 2.12. – Mitä opimme? Tehtävässä tarkastellaan Bayesin kaavan soveltamista.

Ks. myös tehtävää 2.11.

Tehtävä 2.12. – Ratkaisu: Tehtävän asettelun mukaan seuraavat todennäköisyydet tunnetaan:

Pr(Liero) = Pr(Kiero) = 1/2

Pr(Vastaa liero|Liero) = 2/3

Pr(Vastaa kiero|Kiero) = 3/4

Tehtävässä kysytään todennäköisyyttä

Pr(Kiero|Vastaa kiero)

Bayesin kaavan mukaan

Pr(Kiero Vastaa kiero)

Pr(Vastaa kiero Kiero) Pr(Kiero)Pr(Vastaa kiero Kiero) Pr(Kiero) Pr(Vastaa kiero Liero) Pr(Liero)

3 194 2 Pr(Kiero)3 1 1 1 13.

4 2 3 2

=+

⋅= = ≠

⋅ +

Siten valehtelijoiden maan asukkaan antama vastaus kysymykseesi sisältää informaatiota, jota voidaan käyttää hyväksi, kun arvioidaan todennäköisyyttä, että hän on puhunut totta.

Tehtävä 2.13. Tiedonsiirtojärjestelmä siirtää binäärilukuja 0 ja 1. Siirrettävistä binääriluvuista on nollia

70 % ja ykkösiä 30 %. Järjestelmässä esiintyy kuitenkin satunnaisia häiriöitä, jotka muuttavat siirron aikana osan nollista ykkösiksi ja osan ykkösistä nolliksi. Nolla tulee perille oikeassa muodossa todennäköisyydellä 0.8 ja ykkönen todennäköisyydellä 0.9.

Laske todennäköisyydet seuraaville tapahtumille:

(a) ”On lähetetty 1, kun on vastaanotettu 1”

(b) ”On lähetetty 0, kun on vastaanotettu 0”

Tehtävä 2.13. – Mitä opimme? Tehtävässä tarkastellaan Bayesin kaavan soveltamista.

Ks. myös tehtäviä 2.11. ja 2.12.

Tehtävä 2.13. – Ratkaisu: Merkitään tehtävän tapahtumavaihtoehtoja seuraavalla tavalla:

A = ”On lähetetty 0”

Ac = ”On lähetetty 1”

Page 27: Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2 ... · 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 Lukuun ottamatta kolmion reunoilla olevia ykkösiä jokainen

Mat-1.2620 Sovellettu todennäköisyyslaskenta B 2. harjoitukset

TKK @ Ilkka Mellin (2008) 27/27

B = ”On vastaanotettu 0”

Bc = ”On vastaanotettu 1”

Tehtävän asettelun mukaan seuraavat todennäköisyydet tunnetaan:

Pr(A) = 0.7

Pr(Ac) = 1 – Pr(A) = 0.3

Pr(B|A) = 0.8

Pr(Bc|Ac) = 0.9

(a) Kysytty todennäköisyys on Pr(Ac|Bc).

Bayesin kaavan mukaan:

Pr( ) Pr( )Pr( )

Pr( ) Pr( ) Pr( ) Pr( )

0.9 0.30.9 0.3 0.2 0.727 0.6641

cc ccc

c c c c

B A AA B

B A A B A A=

+

×=

× + ×

= =

(b) Kysytty todennäköisyys on Pr(A|B).

Bayesin kaavan mukaan:

Pr( ) Pr( )Pr( )

Pr( ) Pr( ) Pr( ) Pr( )0.8 0.7

0.8 0.7 0.1 0.356 0.9559

c c

B A AA B

B A A B A A=

+

×=

× + ×

= =