67
Georges KOEPFLER – MAP5 – University Ren ´ eDESCARTES – Paris 5 Mathematics in Image Processing Georges KOEPFLER [email protected] MAP5, UMR CNRS 8145 UFR de Math ´ ematiques et Informatique Universit ´ e Ren ´ e Descartes - Paris 5 45 rue des Saints-P ` eres 75270 PARIS cedex 06, France Mathematics in Image Processing – p. 1/30

Mathematics in Image Processing

Embed Size (px)

Citation preview

Page 1: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Mathematics in Image Processing

Georges KOEPFLER

[email protected]

MAP5, UMR CNRS 8145

UFR de Mathematiques et Informatique

Universite Rene Descartes - Paris 5

45 rue des Saints-Peres

75270 PARIS cedex 06, France

Mathematics in Image Processing – p. 1/30

Page 2: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Outline

• Natural and Numerical Images

• Mathematical Representation

• Image Processing Tasks

• Denoising

• Segmentation

• Compression

Mathematics in Image Processing – p. 2/30

Page 3: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Natural vs. Numerical Images

50 100 150 200 250

50

100

150

200

250

Mathematics in Image Processing – p. 3/30

Page 4: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Natural vs. Numerical Images

50 100 150 200 250

50

100

150

200

250

• The human eye depends on a

finite number of cells;

Mathematics in Image Processing – p. 3/30

Page 5: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Natural vs. Numerical Images

50 100 150 200 250

50

100

150

200

250

• The human eye depends on a

finite number of cells;

• Classical camera photos have a natural grain

i.e. resolution, approached by current

numerical cameras;

Mathematics in Image Processing – p. 3/30

Page 6: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Natural vs. Numerical Images

50 100 150 200 250

50

100

150

200

250

• The human eye depends on a

finite number of cells;

• Classical camera photos have a natural grain

i.e. resolution, approached by current

numerical cameras;

natural or digital image ?we process only digital images

(correctly sampled)

Mathematics in Image Processing – p. 3/30

Page 7: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Numerical Imagesdiscrete grid

70 80 90 100 110 120 130 140 150

75

80

85

90

95

100

105

110

115

120

125

100

Mathematics in Image Processing – p. 4/30

Page 8: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Numerical Imagesdiscrete grid

70 80 90 100 110 120 130 140 150

75

80

85

90

95

100

105

110

115

120

125

80 82 84 86 88 90 92 94 96 98 100

95

100

105

110

115

126

122

117

105

85

61

52

38

39

37

26

22

35

44

32

28

25

26

29

24

132

124

107

96

100

94

89

73

61

55

30

21

44

43

43

37

29

37

43

45

118

113

102

93

70

38

32

36

56

46

27

19

44

47

54

61

56

63

65

87

114

93

88

58

17

4

6

10

13

7

12

22

44

76

87

87

105

123

135

143

104

89

58

13

8

5

8

14

20

22

28

35

45

50

68

83

97

111

115

128

105

77

46

15

11

8

15

13

31

33

53

55

55

61

56

61

80

92

97

107

89

66

33

18

11

14

24

22

39

62

73

95

102

95

74

58

70

96

107

115

71

46

34

16

13

15

30

30

38

56

64

71

101

127

98

70

85

109

121

117

70

60

42

22

10

27

42

104

128

94

78

75

68

83

86

76

103

123

125

126

64

56

47

26

13

48

66

88

95

59

64

73

76

77

71

81

108

124

121

119

68

68

61

33

18

41

139

204

144

77

78

76

70

72

73

95

122

124

118

116

65

75

78

46

24

30

42

91

104

75

84

85

93

97

95

110

125

115

108

113

65

72

89

64

34

40

72

132

147

146

120

102

128

143

116

123

127

110

104

113

65

70

76

65

44

49

59

56

77

150

172

168

171

142

119

126

121

114

107

113

73

71

91

88

61

60

96

127

143

191

232

215

203

148

128

128

125

109

112

123

79

76

99

109

88

69

101

140

167

170

194

223

195

137

121

120

110

107

115

123

88

88

90

127

123

88

64

99

128

152

194

237

221

145

120

125

115

110

121

141

77

78

92

115

144

129

90

75

100

133

152

144

121

109

121

127

120

131

139

138

85

96

82

84

103

132

117

86

90

114

128

118

120

127

139

146

154

156

153

167

76

84

96

83

84

99

122

119

95

92

116

136

146

152

157

164

169

167

161

163

Mathematics in Image Processing – p. 4/30

Page 9: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Numerical Imagesdiscrete grid

70 80 90 100 110 120 130 140 150

75

80

85

90

95

100

105

110

115

120

125

80 82 84 86 88 90 92 94 96 98 100

95

100

105

110

115

126

122

117

105

85

61

52

38

39

37

26

22

35

44

32

28

25

26

29

24

132

124

107

96

100

94

89

73

61

55

30

21

44

43

43

37

29

37

43

45

118

113

102

93

70

38

32

36

56

46

27

19

44

47

54

61

56

63

65

87

114

93

88

58

17

4

6

10

13

7

12

22

44

76

87

87

105

123

135

143

104

89

58

13

8

5

8

14

20

22

28

35

45

50

68

83

97

111

115

128

105

77

46

15

11

8

15

13

31

33

53

55

55

61

56

61

80

92

97

107

89

66

33

18

11

14

24

22

39

62

73

95

102

95

74

58

70

96

107

115

71

46

34

16

13

15

30

30

38

56

64

71

101

127

98

70

85

109

121

117

70

60

42

22

10

27

42

104

128

94

78

75

68

83

86

76

103

123

125

126

64

56

47

26

13

48

66

88

95

59

64

73

76

77

71

81

108

124

121

119

68

68

61

33

18

41

139

204

144

77

78

76

70

72

73

95

122

124

118

116

65

75

78

46

24

30

42

91

104

75

84

85

93

97

95

110

125

115

108

113

65

72

89

64

34

40

72

132

147

146

120

102

128

143

116

123

127

110

104

113

65

70

76

65

44

49

59

56

77

150

172

168

171

142

119

126

121

114

107

113

73

71

91

88

61

60

96

127

143

191

232

215

203

148

128

128

125

109

112

123

79

76

99

109

88

69

101

140

167

170

194

223

195

137

121

120

110

107

115

123

88

88

90

127

123

88

64

99

128

152

194

237

221

145

120

125

115

110

121

141

77

78

92

115

144

129

90

75

100

133

152

144

121

109

121

127

120

131

139

138

85

96

82

84

103

132

117

86

90

114

128

118

120

127

139

146

154

156

153

167

76

84

96

83

84

99

122

119

95

92

116

136

146

152

157

164

169

167

161

163

8085

9095

100105

95

100

105

110

115

120

0

50

100

150

200

250

grid of numbers or pixels relief or function

Mathematics in Image Processing – p. 4/30

Page 10: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Numerical Images (cont.)

image data relief topographic map

Mathematics in Image Processing – p. 5/30

Page 11: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Mathematical representation

Although discrete it is useful to represent an image with aninfinite resolution, as a function on real numbers.

2

Mathematics in Image Processing – p. 6/30

Page 12: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Mathematical representation

Although discrete it is useful to represent an image with aninfinite resolution, as a function on real numbers.Basic analysis: a real valued function of one variable

x ∈ [−2, 2] : f(x) = α

(

1 −x2

β

)

e−x2

2β .

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Mathematics in Image Processing – p. 6/30

Page 13: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Mathematical representation

Although discrete it is useful to represent an image with aninfinite resolution, as a function on real numbers.Basic analysis: a real valued function of one variable

x ∈ [−2, 2] : f(x) = α

(

1 −x2

β

)

e−x2

2β .

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

But in an image we need columns and rows:thus we use functions of two variables.

Mathematics in Image Processing – p. 6/30

Page 14: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Mathematical representation (cont.)

Consider the function of two variables x ∈ [−2, 2], y ∈ [−2, 2]thus (x, y) ∈ [−2, 2] × [−2, 2] and z = u(x, y) ∈ R .

u(x, y) = α

(

1 −x2 + y2

β

)

e−x2+y2

2β .

−2

−1

0

1

2

−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

1

xx

zz

OO

yy

(x,y)(x,y)

z=f(x,y)z=f(x,y)

Mathematics in Image Processing – p. 7/30

Page 15: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Mathematical representation (cont.)

Consider the function of two variables x ∈ [−2, 2], y ∈ [−2, 2]thus (x, y) ∈ [−2, 2] × [−2, 2] and z = u(x, y) ∈ R .

u(x, y) = α

(

1 −x2 + y2

β

)

e−x2+y2

2β .

−2

−1

0

1

2

−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

1

xx

zz

OO

yy

(x,y)(x,y)

z=f(x,y)z=f(x,y)

−2−1.5

−1−0.5

00.5

11.5

2

−2

−1

0

1

2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Mathematics in Image Processing – p. 7/30

Page 16: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Mathematical representation (cont.)

Consider the function of two variables x ∈ [−2, 2], y ∈ [−2, 2]thus (x, y) ∈ [−2, 2] × [−2, 2] and z = u(x, y) ∈ R .

u(x, y) = α

(

1 −x2 + y2

β

)

e−x2+y2

2β .

−2

−1

0

1

2

−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

1

xx

zz

OO

yy

(x,y)(x,y)

z=f(x,y)z=f(x,y)

−2−1.5

−1−0.5

00.5

11.5

2

−2

−1

0

1

2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200 250

50

100

150

200

250

Mathematics in Image Processing – p. 7/30

Page 17: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Image processing

D : digital, A : analogic

LL.......................................... ..........

- - -

@@

@@@R

OBJECT

m

PROCESSINGDIGITALIZATIONACQUISITION

camera

scanner

sampling+quantification

A/D

computer

DSP

digital

output

D/A

analogic

output

A A D

D

D

• Satellite images give information about natural resources, meteorological data, . . .

• Medical images help detect anatomical pathologies, give quantitative data and

functional informations. . .

• Video surveillance is an important issue for security in public transportation. . .

• Images and videos have to be stored/transmitted efficiently. . .

Mathematics in Image Processing – p. 8/30

Page 18: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Image processing

D : digital, A : analogic

LL.......................................... ..........

- - -

@@

@@@R

OBJECT

m

PROCESSINGDIGITALIZATIONACQUISITION

camera

scanner

sampling+quantification

A/D

computer

DSP

digital

output

D/A

analogic

output

A A D

D

D

• Satellite images give information about natural resources, meteorological data, . . .

• Medical images help detect anatomical pathologies, give quantitative data and

functional informations. . .

• Video surveillance is an important issue for security in public transportation. . .

• Images and videos have to be stored/transmitted efficiently. . .

Process images as a discrete grid of numbers or a function but take

into account the visual content!

Mathematics in Image Processing – p. 8/30

Page 19: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Edge/contour detection

Idea: Detect an object thanks to its boundaryand characterize boundaries by change of luminosity.

JJL

LSS

SSCCLL

BBAASS

Mathematics in Image Processing – p. 9/30

Page 20: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Edge/contour detection

Idea: Detect an object thanks to its boundaryand characterize boundaries by change of luminosity.

JJL

LSS

SSCCLL

BBAASS

A discrete rectangular grid :

directions or (line,column)

NW N NE

W E

SW S SE

j − 1 j j + 1

i − 1

Mathematics in Image Processing – p. 9/30

Page 21: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Edge/contour detection

Idea: Detect an object thanks to its boundaryand characterize boundaries by change of luminosity.

JJL

LSS

SSCCLL

BBAASS

A discrete rectangular grid :

directions or (line,column)

NW N NE

W E

SW S SE

j − 1 j j + 1

i − 1 •

i • •

i + 1 •

Finite difference operators are used, for example:

‖∇u(i, j)‖ =√

(u(i + 1, j) − u(i − 1, j))2 + (u(i, j + 1) − u(i, j − 1))2

Mathematics in Image Processing – p. 9/30

Page 22: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Edge/contour detection (cont.)

50 100 150 200 250

50

100

150

200

250

u(l, c)

Mathematics in Image Processing – p. 10/30

Page 23: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Edge/contour detection (cont.)

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

u(l, c) ‖∇u‖

(inverse colormap: 0=white, 255=black)

Mathematics in Image Processing – p. 10/30

Page 24: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Edge/contour detection (cont.)

50 100 150 200 250

50

100

150

200

250

Mathematics in Image Processing – p. 11/30

Page 25: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Edge/contour detection (cont.)

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

(inverse video)

Mathematics in Image Processing – p. 11/30

Page 26: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Edge/contour detection (cont.)

un(l, c) = u(l, c) + n(l, c)

Mathematics in Image Processing – p. 12/30

Page 27: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Edge/contour detection (cont.)

un(l, c) = u(l, c) + n(l, c) ‖∇un‖

Mathematics in Image Processing – p. 12/30

Page 28: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Edge/contour detection (cont.)

un(l, c) = u(l, c) + n(l, c) ‖∇un‖

Need to smooth / regularize / denoise the data!

Mathematics in Image Processing – p. 12/30

Page 29: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Denoising

Additive noise: a noisy pixel is very different from its neighbors.

Data Mean Filter

0 5 5

7 150 5

1 10 2

0 5 5

7 20 5

1 10 2

Mathematics in Image Processing – p. 13/30

Page 30: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Denoising

Additive noise: a noisy pixel is very different from its neighbors.

Data Mean Filter

0 5 5

7 150 5

1 10 2

0 5 5

7 20 5

1 10 2

Median Filter

0 5 5

7 5 5

1 10 2

0 ≤ 1 ≤ 2 ≤ 5 ≤ 5 ≤ 5 ≤ 7 ≤ 10 ≤ 150 =⇒ median=5

Mathematics in Image Processing – p. 13/30

Page 31: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Median Filter

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

The Median Filter is non linear, gives quite good resultsbut needs a sorting algorithm.

Mathematics in Image Processing – p. 14/30

Page 32: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Denoising: a zoo of equations

• The Mean Filter is replaced by weighted local means, thiscan be written

∂u

∂t= ∆u

Mathematics in Image Processing – p. 15/30

Page 33: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Denoising: a zoo of equations

• The Mean Filter is replaced by weighted local means, thiscan be written

∂u

∂t= ∆u

• Non linear Partial Differential Equations:

∂u

∂t= |∇u|div

(

∇u

|∇u|

)

Mathematics in Image Processing – p. 15/30

Page 34: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Denoising: a zoo of equations

• The Mean Filter is replaced by weighted local means, thiscan be written

∂u

∂t= ∆u

• Non linear Partial Differential Equations:

∂u

∂t= |∇u|div

(

∇u

|∇u|

)

• Total Variation Minimization:

∂u

∂t= div

(

∇u

|∇u|

)

Mathematics in Image Processing – p. 15/30

Page 35: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Heat Equation

1

1

0

−1

1.0

0.5

0.51.0

00 xy

u(x, y, 0)

t = 0

1

0

−1

1.0

1.0

0.33

0.67

00

0.5

0.5

xy

u(x, y, 0.1)

t = 0.1

1

0

−1

0.5

1.0

1.0

0.5

0.2

0.4 0.6

00

xy

u(x, y, 0.5)

t = 0.5

1

0

−1

1.0

0.5

0.5

1.00.461

0.1150.230

0.346

00 x

y

u(x, y, 1)

t = 1

Mathematics in Image Processing – p. 16/30

Page 36: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Heat Equation

1

1

0

−1

1.0

0.5

0.51.0

00 xy

u(x, y, 0)

t = 0

1

0

−1

1.0

1.0

0.33

0.67

00

0.5

0.5

xy

u(x, y, 0.1)

t = 0.1

1

0

−1

0.5

1.0

1.0

0.5

0.2

0.4 0.6

00

xy

u(x, y, 0.5)

t = 0.5

1

0

−1

1.0

0.5

0.5

1.00.461

0.1150.230

0.346

00 x

y

u(x, y, 1)

t = 1

Mathematics in Image Processing – p. 16/30

Page 37: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Heat Equation: evolution

Mathematics in Image Processing – p. 17/30

Page 38: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Heat Equation: evolution

Mathematics in Image Processing – p. 17/30

Page 39: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Heat Equation: evolution

Mathematics in Image Processing – p. 17/30

Page 40: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Heat Equation: evolution

Mathematics in Image Processing – p. 17/30

Page 41: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Heat Equation: evolution

Mathematics in Image Processing – p. 17/30

Page 42: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Heat Equation: evolution

Mathematics in Image Processing – p. 17/30

Page 43: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Heat Equation (cont.)

Mathematics in Image Processing – p. 18/30

Page 44: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Heat Equation (cont.)

Gσ ⋆ u0 = u(., σ2/2) ‖∇u(., σ2/2)‖

Mathematics in Image Processing – p. 18/30

Page 45: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Mean Curvature Motion

∂u

∂t= |∇u|div

(

∇u

|∇u|

)

original

Mathematics in Image Processing – p. 19/30

Page 46: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Mean Curvature Motion

∂u

∂t= |∇u|div

(

∇u

|∇u|

)

‖∇u‖

Mathematics in Image Processing – p. 19/30

Page 47: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Total Variation Minimization

∂u

∂t= div

(

∇u

|∇u|

)

original

Mathematics in Image Processing – p. 20/30

Page 48: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Total Variation Minimization

∂u

∂t= div

(

∇u

|∇u|

)

‖∇u‖

Mathematics in Image Processing – p. 20/30

Page 49: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Total Variation Minimization (cont.)

noisy image denoised image

Mathematics in Image Processing – p. 21/30

Page 50: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Total Variation Minimization (cont.)

original image denoised image

Mathematics in Image Processing – p. 22/30

Page 51: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Inpainting

Idea: Complete the level lines. . .

occlusions level lines (each 20)

Mathematics in Image Processing – p. 23/30

Page 52: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Inpainting

Idea: Complete the level lines. . .

partial restoration level lines (each 20)

Mathematics in Image Processing – p. 23/30

Page 53: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Inpainting

Idea: Complete the level lines. . .

initial level lines level lines (each 20)

Mathematics in Image Processing – p. 23/30

Page 54: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Segmentation

Idea: Analyze original image g and get a simple image u.Thus to segment an image is:

• replace the original by a cartoon;

• partition the image in homogeneous regions;

Mathematics in Image Processing – p. 24/30

Page 55: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Segmentation

Idea: Analyze original image g and get a simple image u.Thus to segment an image is:

• replace the original by a cartoon;

• partition the image in homogeneous regions;

MUMFORD-SHAH functional:

E(K) =

Ω\K(u − g)2 + λℓ(K)

Ω =⋃

O , O regions s.t. O ∩ O′ = ∅

K =⋃

∂O, set of boundaries

Mathematics in Image Processing – p. 24/30

Page 56: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Segmentation

Idea: Analyze original image g and get a simple image u.Thus to segment an image is:

• replace the original by a cartoon;

• partition the image in homogeneous regions;

MUMFORD-SHAH functional:

E(K) =

Ω\K(u − g)2 + λℓ(K)

Ω =⋃

O , O regions s.t. O ∩ O′ = ∅

K =⋃

∂O, set of boundaries

Merge two regions O,O′ iff E(K \ (∂O ∩ ∂O′)) < E(K) .

Mathematics in Image Processing – p. 24/30

Page 57: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Segmentation

Mathematics in Image Processing – p. 25/30

Page 58: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Segmentation: medical application

Mathematics in Image Processing – p. 26/30

Page 59: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Segmentation: medical application

Mathematics in Image Processing – p. 26/30

Page 60: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Texture Segmentation

Mathematics in Image Processing – p. 27/30

Page 61: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Texture Segmentation

Mathematics in Image Processing – p. 27/30

Page 62: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Texture Segmentation

Original data gray level wavelet coefficient

segmentation segmentation

Mathematics in Image Processing – p. 27/30

Page 63: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Color Segmentation

Mathematics in Image Processing – p. 28/30

Page 64: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Color Segmentation

original 100 regions

Mathematics in Image Processing – p. 28/30

Page 65: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Compression

Idea: In an image objects of different scale/size are present.

Get a pyramidal or multiscale representation of an image.

Mathematics in Image Processing – p. 29/30

Page 66: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Compression

Idea: In an image objects of different scale/size are present.

Get a pyramidal or multiscale representation of an image.

(Images & Idea: Basarab MATEI, University Paris 6)

Mathematics in Image Processing – p. 29/30

Page 67: Mathematics in Image Processing

Georges KOEPFLER – MAP5 – University Rene DESCARTES – Paris 5

Compression with wavelets

u(x, y) =∑

λ

cλΨλ(x, y)

(Images & Idea: Basarab MATEI, University Paris 6)

Mathematics in Image Processing – p. 30/30