14
Measurement of deeply bound pionic states using the (p, 2 He) reaction at RCNP Akane Sakaue Kyoto University 1

Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

Embed Size (px)

Citation preview

Page 1: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

Measurementofdeeplyboundpionic statesusingthe(p,2He)reaction

atRCNP

Akane SakaueKyotoUniversity

1

Page 2: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

collaborators• KyotoUniversity:Akane Sakaue,Sakiko Ashikaga,Hiroyuki Fujioka,TatsuyaFuruno,Kento Inaba,TakahiroKawabata,Shota Matsumoto,TakahiroMorimoto,MotokiMurata,YuTakahashi,MihoTsumura,KenWatanabe

• UniversityofTokyo:Ryugo S.Hayano,Yuni N.Watanabe• RCNP :SatoshiAdachi,Nori Aoi,Gey Guillaume,Kichiji Hatanaka,AzusaInoue, Chihiro Iwamoto,Shumpei Noji,Hooi Jin Ong,AtsushiTamii,Tsz LeungTang

• TohokuUniversity:Yohei Matsuda• KonanUniversity:Katsuyoshi Heguri• RIKEN :TakahiroNishi,KentaItahashi• GSI :HansGeissel,Yoshiki K.Tanaka• Beihang University: SatoruTerashima• InstituteforBasicScience:TakashiHashimoto

2

Page 3: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

Deeplyboundpionic atom• Bindingenergyandwidthofpionic atom

• s-wavepion-nucleuspotential𝑈" 𝑟 = −

2𝜋𝜇

𝜀* 𝑏,𝜌 𝑟 + 𝑏* 𝜌/ 𝑟 − 𝜌0 𝑟 + 𝜀1𝐵,𝜌1(𝑟)

3

Partialrestorationofchiralsymmetry

𝜇 = 𝑚6𝑀 𝑚6+ 𝑀 ,⁄ 𝜀* = 1 + 𝑚6 𝑀⁄ , 𝜀1 = 1 + 𝑚6 2𝑀⁄

𝜌/ 𝑟 :neutrondensity,𝜌0 𝑟 :protondensity,𝜌 𝑟 = 𝜌/ 𝑟 + 𝜌0 𝑟

Gell-Mann-Oakes-Renner relationTomozawa-Weinberg relation

𝑞>𝑞 ?

𝑞>𝑞 ,≈𝑏*ABCC

𝑏*(𝜌)

Page 4: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

4

Z=45-60 Part 1 of 3

Rh89 Rh90 Rh91

Pd91

Rh92

Pd920+

Rh93(9/2+)

Pd93

Ag93

Rh94(3+)

70.6 s

ECp*

Pd940+

9.0 s

EC

Ag940+

10 ms

EC*

Rh95(9/2)+5.02 m

EC*

Pd95

EC*

Ag952.0 s

ECp

Rh966+

9.90 m

EC*

Pd960+

122 s

EC

Ag96(8+,9+)

5.1 s

ECp

Cd960+

Rh97(9/2)+30.7 m

EC*

Pd97(5/2+)3.10 m

EC

Ag97(9/2+)19 s

EC

Cd973 s

ECp

Rh98(2)+

8.7 m

EC*

Pd980+

17.7 m

EC

Ag98(5+)

46.7 s

EC

Cd980+

9.2 s

EC

In98

Rh991/2-

16.1 d

EC*

Pd99(5/2)+21.4 m

EC

Ag99(9/2)+124 s

EC*

Cd99(5/2+)16 s

ECp,ECα,...

In99

Rh1001-

20.8 h

EC*

Pd1000+

3.63 d

EC

Ag100(5)+

2.01 m

EC*

Cd1000+

49.1 s

EC

In1007.0 s

ECp

Sn1000+

0.94 s

ECp

Rh1011/2-3.3 y

EC*

Pd1015/2+

8.47 h

EC

Ag1019/2+

11.1 m

EC*

Cd101(5/2+)1.36 m

EC

In10115.1 s

ECp

Sn1013 s

ECp

Rh102(1-,2-)207 d

EC,β-*

Ag1025+

12.9 m

EC*

Cd1020+

5.5 m

EC

In102(6+)22 s

ECp

Sn1020+

4.5 s

EC

*

Pd1035/2+

16.991 d

EC

Ag1037/2+

65.7 m

EC*

Cd103(5/2+)7.3 m

EC

In103(9/2)+65 s

EC*

Sn1037 s

EC

Sb103

Rh1041+

42.3 s

EC,β-*

Ag1045+

69.2 m

*

Cd1040+

57.7 m

EC

In104(6+)

1.80 m

EC*

Sn1040+

20.8 s

EC

Sb1040.44 s

p,ECp,...

Rh1057/2+

35.36 h

β-*

Ag1051/2-

41.29 d

EC*

Cd1055/2+

55.5 m

EC

In105(9/2)+5.07 m

EC*

Sn10531 s

ECp

Sb1051.12 s

EC,p

Rh1061+

29.80 s

β-*

Ag1061+

23.96 m

EC,β-*

In1067+

6.2 m

EC*

Sn1060+

115 s

EC

Sb106(4+)

Te1060+

60 Us

α

Rh1077/2+

21.7 m

β-

Pd1075/2+

6.5E+6 y

β-*

*

Cd1075/2+

6.50 h

EC

In1079/2+

32.4 m

EC*

Sn107(5/2+)2.90 m

EC

Sb107(5/2+)

Te1073.1 ms

EC,α

Rh1081+

16.8 s

β-*

Ag1081+

2.37 m

EC,β-*

In1087+

58.0 m

EC*

Sn1080+

10.30 m

EC

Sb108(4+)7.4 s

ECp

Te1080+

2.1 s

α,ECp,...

I108(1)

36 ms

α,p

Rh1097/2+80 s

β-

Pd1095/2+

13.7012 h

β-*

*

Cd1095/2+

462.6 d

EC

In1099/2+4.2 h

EC*

Sn1095/2(+)18.0 m

EC

Sb109(5/2+)17.0 s

EC

Te1094.6 s

α,ECp,...

I109100 Us

p

Rh1101+

3.2 s

β-*

Ag1101+

24.6 s

EC,β-*

In1107+

4.9 h

EC*

Sn1100+

4.11 h

EC

Sb1103+

23.0 s

EC

Te1100+

18.6 s

EC,α

I1100.65 s

α,ECp,...

Xe1100+

0.60 Us

EC,α

Rh111(7/2+)11 s

β-

Pd1115/2+

23.4 m

β-*

Ag1111/2-

7.45 d

β-*

*

In1119/2+

2.8047 d

EC*

Sn1117/2+

35.3 m

EC

Sb111(5/2+)75 s

EC

Te111(5/2+)19.3 s

ECp

I111(5/2+)2.5 s

EC,α

Xe1110.74 s

EC,α

Rh1121+

2.1 s

β-*

Pd1120+

21.03 h

β-

Ag1122(-)

3.130 h

β-

In1121+

14.97 m

EC,β-*

Sb1123+

51.4 s

EC

Te1120+

2.0 m

EC

I1123.42 s

EC,α

Xe1120+

2.7 s

EC,α

Cs112500 Us

p

Rh113(7/2+)2.80 s

β-

Pd113(5/2+)93 s

β-*

Ag1131/2-

5.37 h

β-*

*

*

Sn1131/2+

115.09 d

EC*

Sb1135/2+

6.67 m

EC

Te113(7/2+)1.7 m

EC

I113(5/2+)6.6 s

α,ECα,...

Xe1132.74 s

α,ECp,...

Cs113(5/2+)17 Us

EC,p

Rh1141+

1.85 s

β-*

Pd1140+

2.42 m

β-

Ag1141+

4.6 s

β-*

In1141+

71.9 s

EC,β-*

Sb1143+

3.49 m

EC

Te1140+

15.2 m

EC

I1141+

2.1 s

ECp*

Xe1140+

10.0 s

EC

Cs114(1+)

0.57 s

α,ECp,...

Ba1140+

0.43 s

EC,α

Rh115(7/2+)0.99 s

β-

Pd115(5/2+)25 s

β-*

Ag1151/2-

20.0 m

β-*

Cd1151/2+

53.46 h

β-*

*

Sb1155/2+

32.1 m

EC

Te1157/2+5.8 m

EC*

I115(5/2+)1.3 m

EC

Xe115(5/2+)18 s

ECp,ECα,...

Cs1151.4 s

ECp

Ba1150.4 s

EC

Rh1161+

0.68 s

β-*

Pd1160+

11.8 s

β-

Ag116(2)-

2.68 m

β-*

In1161+

14.10 s

EC,β-*

Sb1163+

15.8 m

EC*

Te1160+

2.49 h

EC

I1161+

2.91 s

EC*

Xe1160+

59 s

EC

Cs116>4+

3.84 s

ECp,ECα,...*

Ba1160+

0.3 s

EC

Rh117(7/2+)0.44 s

β-

Pd117(5/2+)4.3 s

β-*

Ag117(1/2-)72.8 s

β-*

Cd1171/2+

2.49 h

β-*

In1179/2+

43.2 m

β-*

*

Sb1175/2+

2.80 h

EC

Te1171/2+62 m

EC*

I117(5/2)+2.22 m

EC

Xe1175/2(+)61 s

ECp

Cs117(9/2+)8.4 s

EC*

Ba117(3/2)1.75 s

ECp,ECα,...

La117

Rh118

Pd1180+

1.9 s

β-

Ag118(1)-

3.76 s

β-*

Cd1180+

50.3 m

β-

In1181+

5.0 s

β-*

Sb1181+

3.6 m

EC*

Te1180+

6.00 d

EC

I1182-

13.7 m

EC*

Xe1180+

3.8 m

EC

Cs1182

14 s

ECp,ECα,...*

Ba1180+

5.5 s

EC

La118

Rh119

Pd1190.92 s

β-

Ag119(7/2+)2.1 s

β-*

Cd1193/2+

2.69 m

β-*

In1199/2+2.4 m

β-*

*

Sb1195/2+

38.19 h

EC*

Te1191/2+

16.03 h

EC*

I1195/2+

19.1 m

EC

Xe119(5/2+)5.8 m

EC

Cs1199/2+

43.0 s

EC*

Ba119(5/2+)5.4 s

ECp

La119

Ce119

Rh120

β-

Pd1200+

0.5 s

β-

Ag120(3+)

1.23 s

β-*

Cd1200+

50.80 s

β-

In1201+

3.08 s

β-*

Sb1201+

15.89 m

EC*

I1202-

81.0 m

EC*

Xe1200+

40 m

EC

Cs1202

64 s

EC*

Ba1200+

32 s

EC

La1202.8 s

EC

Ce1200+

Rh121

Pd121

Ag121(7/2+)0.78 s

β-n

Cd121(3/2+)13.5 s

β-*

In1219/2+

23.1 s

β-*

Sn1213/2+

27.06 h

β-*

Te1211/2+

16.78 d

EC*

I1215/2+

2.12 h

EC

Xe1215/2(+)40.1 m

EC

Cs1213/2(+)155 s

EC*

Ba1215/2(+)29.7 s

ECp

La1215.3 s

ECp

Ce121

Pr1211.4 s

ECp

Rh122

β-

Pd1220+

Ag122(3+)

0.48 s

β-n*

Cd1220+

5.24 s

β-

In1221+

1.5 s

β-*

Sb1222-

2.7238 d

EC,β-*

I1221+

3.63 m

EC*

Xe1220+

20.1 h

EC

Cs1221+

21.0 s

EC*

Ba1220+

1.95 m

EC

La1228.7 s

ECp

Ce122

Pr122

Pd123

Ag123(7/2+)0.309 s

β-n

Cd123(3/2)+2.10 s

β-*

In1239/2+

5.98 s

β-*

Sn12311/2-

129.2 d

β-*

*

I1235/2+

13.27 h

EC

Xe123(1/2)+2.08 h

EC

Cs1231/2+

5.94 m

EC*

Ba1235/2+2.7 m

EC

La12317 s

EC

Ce123(5/2)3.2 s

ECp

Pr123

Pd124

β-

Ag1240.172 s

β-n

Cd1240+

1.25 s

β-

In1243+

3.11 s

β-*

Sb1243-

60.20 d

β-*

I1242-

4.1760 d

EC

Cs1241+

30.8 s

EC*

Ba1240+

11.0 m

EC

La12429 s

EC*

Ce1240+6 s

EC

Pr1241.2 s

ECp

Ag125166 ms

β-n

Cd125(3/2+)0.65 s

β-*

In1259/2(+)2.36 s

β-*

Sn12511/2-9.64 d

β-*

Sb1257/2+

2.7582 y

β-

*

I1255/2+

59.408 d

EC

Xe125(1/2)+16.9 h

EC*

Cs125(1/2+)45 m

EC

Ba1251/2(+)3.5 m

EC

La125(11/2-)

76 s

EC

Ce125(5/2+)9.0 s

ECp

Pr1253.3 s

EC

Ag126107 ms

β-

Cd1260+

0.506 s

β-

In1263(+)

1.60 s

β-*

Sn1260+

1E+5 y

β-

Sb126(8)-

12.46 d

β-*

I1262-

13.11 d

EC,β-

Cs1261+

1.64 m

EC

Ba1260+

100 m

EC

La12654 s

EC

Ce1260+

50 s

EC

Pr126(3,4,5)3.14 s

ECp

Nd126

Ag127109 ms

β-

Cd127(3/2+)0.37 s

β-

In127(9/2+)1.09 s

β-n*

Sn127(11/2-)2.10 h

β-*

Sb1277/2+

3.85 d

β-

Te1273/2+

9.35 h

β-*

Xe1271/2+

36.4 d

EC*

Cs1271/2+

6.25 h

EC

Ba1271/2+

12.7 m

EC*

La127(11/2-)5.1 m

EC*

Ce127(5/2+)31 s

EC

Pr127(11/2-)4.2 s

EC

Nd1271.8 s

ECp

Ag12858 ms

β-n

Cd1280+

0.34 s

β-

In128(3+)

0.84 s

β-n*

Sn1280+

59.07 m

β-*

Sb1288-

9.01 h

β-*

I1281+

24.99 m

EC,β-

Cs1281+

3.66 m

EC

Ba1280+

2.43 d

EC

La128(5+)

5.0 m

EC*

Ce1280+

4.1 s

EC

Pr1284,5,63.1 s

ECp

Nd1280+4 s

ECp

Ag129

β-n

Cd129(3/2+)0.27 s

β-

In129(9/2+)0.61 s

β-n*

Sn129(3/2+)2.23 m

β-*

Sb1297/2+

4.40 h

β-*

Te1293/2+

69.6 m

β-*

I1297/2+

1.57E7 y

β-

*

Cs1291/2+

32.06 h

EC

Ba1291/2+

2.23 h

EC*

La1293/2+

11.6 m

EC*

Ce1295/2+3.5 m

EC

Pr129(3/2+)30 s

EC

Nd129(5/2+)

7 s

ECp

Cd1300+

0.20 s

β-n

In1301(-)

0.32 s

β-n*

Sn1300+

3.72 m

β-*

Sb130(8-)

39.5 m

β-*

I1305+

12.36 h

β-*

Cs1301+

29.21 m

EC,β-*

*

La1303(+)

8.7 m

EC

Ce1300+

25 m

EC

Pr13040.0 s

EC

Nd1300+

28 s

EC

In131(9/2+)0.282 s

β-n*

Sn131(3/2+)56.0 s

β-*

Sb131(7/2+)

23.03 m

β-

Te1313/2+

25.0 m

β-*

I1317/2+

8.02070 d

β-

*

Cs1315/2+

9.689 d

EC

Ba1311/2+

11.50 d

EC*

La1313/2+59 m

EC

Ce131(7/2+)10.2 m

EC*

Pr131(3/2+)1.53 m

EC*

Nd131(5/2)27 s

ECp

In132(7-)

0.201 s

β-n

Sn1320+

39.7 s

β-

Sb132(4+)

2.79 m

β-*

Te1320+

3.204 d

β-

I1324+

2.295 h

β-*

*

Cs1322+

6.479 d

EC,β-

La1322-

4.8 h

EC*

Ce1320+

3.51 h

EC*

Pr1321.6 m

EC

Nd1320+

1.75 m

EC

In133(9/2+)180 ms

β-n

Sn133(7/2-)1.45 s

β-n

Sb133(7/2+)2.5 m

β-

Te133(3/2+)12.5 m

β-*

I1337/2+

20.8 h

β-*

Xe1333/2+

5.243 d

β-*

Ba1331/2+

10.51 y

EC*

La1335/2+

3.912 h

EC

Ce1331/2+97 m

EC*

Pr133(3/2+)6.5 m

EC

Nd133(7/2+)70 s

EC*

In134138 ms

β-n

Sn1340+

1.12 s

β-n

Sb134(0-)

0.78 s

β-*

Te1340+

41.8 m

β-

I134(4)+

52.5 m

β-*

*

Cs1344+

2.0648 y

EC,β-*

*

La1341+

6.45 m

EC

Ce1340+

3.16 d

EC

Pr1342-

17 m

EC*

Nd1340+

8.5 m

EC*

Sn135

Sb135(7/2+)1.71 s

β-n

Te135(7/2-)19.0 s

β-

I1357/2+

6.57 h

β-

Xe1353/2+

9.14 h

β-*

Cs1357/2+

2.3E+6 y

β-*

*

La1355/2+

19.5 h

EC

Ce1351/2(+)17.7 h

EC*

Pr1353/2(+)24 m

EC

Nd1359/2(-)

12.4 m

EC*

Sn1360+

Sb1360.82 s

β-n,β-2n,...

Te1360+

17.5 s

β-n

I136(1-)

83.4 s

β-*

Cs1365+

13.16 d

β-*

*

La1361+

9.87 m

EC*

Pr1362+

13.1 m

EC

Nd1360+

50.65 m

EC

Sn137

Sb137

Te137(7/2-)2.49 s

β-n

I137(7/2+)24.5 s

β-n

Xe1377/2-

3.818 m

β-

Cs1377/2+

30.07 y

β-

*

La1377/2+

6E4 y

EC

Ce1373/2+9.0 h

EC*

Pr1375/2+

1.28 h

EC

Nd1371/2+

38.5 m

EC*

Sb138

Te1380+

1.4 s

β-n

I138(2-)

6.49 s

β-n

Xe1380+

14.08 m

β-

Cs1383-

33.41 m

β-*

*

Pr1381+

1.45 m

EC*

Nd1380+

5.04 h

EC

Sb139

Te139

I139(7/2+)2.29 s

β-n

Xe1393/2-

39.68 s

β-

Cs1397/2+

9.27 m

β-

Ba1397/2-

83.06 m

β-

Ce1393/2+

137.640 d

EC*

Pr1395/2+

4.41 h

EC

Nd1393/2+

29.7 m

EC*

Te1400+

I140(4)

0.86 s

β-n

Xe1400+

13.60 s

β-

Cs1401-

63.7 s

β-

Ba1400+

12.752 d

β-

La1403-

1.6781 d

β-

Pr1401+

3.39 m

EC

Nd1400+

3.37 d

EC

Te141

I1410.43 s

β-n

Xe1415/2(-)1.73 s

β-n

Cs1417/2+

24.94 s

β-n

Ba1413/2-

18.27 m

β-

La141(7/2+)3.92 h

β-

Ce1417/2-

32.501 d

β-

Nd1413/2+

2.49 h

EC*

Te1420+

I142

Xe1420+

1.22 s

β-n

Cs1420-

1.70 s

β-n

Ba1420+

10.6 m

β-

La1422-

91.1 m

β-

Pr1422-

19.12 h

EC,β-*

I143

Xe1435/2-

0.30 s

β-

Cs1433/2+

1.78 s

β-n

Ba1435/2-

14.33 s

β-

La143(7/2)+14.2 m

β-

Ce1433/2-

33.039 h

β-

Pr1437/2+

13.57 d

β-

I144

Xe1440+

1.15 s

β-

Cs1441

1.01 s

β-n*

Ba1440+

11.5 s

β-n

La144(3-)

40.8 s

β-

Ce1440+

284.893 d

β-

Pr1440-

17.28 m

β-*

Xe1450.9 s

β-n

Cs1453/2+

0.594 s

β-n

Ba1455/2-

4.31 s

β-

La145(5/2+)24.8 s

β-

Ce145(3/2)-

3.01 m

β-

Pr1457/2+

5.984 h

β-

Xe1460+

β-

Cs1461-

0.321 s

β-n

Ba1460+

2.22 s

β-

La1462-

6.27 s

β-*

Ce1460+

13.52 m

β-

Pr146(2)-

24.15 m

β-

Xe147

Cs147(3/2+)0.225 s

β-n

Ba147(3/2+)0.893 s

β-n

La147(5/2+)4.015 s

β-n

Ce147(5/2-)56.4 s

β-

Pr147(3/2+)13.4 m

β-

Nd1475/2-

10.98 d

β-

Cs148158 ms

β-n

Ba1480+

0.607 s

β-n

La148(2-)

1.05 s

β-n

Ce1480+

56 s

β-

Pr1481-

2.27 m

β-*

Cs149

Ba1490.344 s

β-n

La1491.05 s

β-n

Ce149(3/2-)5.3 s

β-

Pr149(5/2+)2.26 m

β-

Nd1495/2-

1.728 h

β-

Cs150

Ba1500+

0.3 s

β-n

La1500.86 s

β-n

Ce1500+

4.0 s

β-

Pr150(1)-

6.19 s

β-

Cs151

Ba151

La151

Ce1511.02 s

β-

Pr151(3/2-)

18.90 s

β-

Nd1513/2+

12.44 m

β-

Ba1520+

La152

Ce1520+

1.4 s

β-

Pr152(4-)

3.63 s

β-

Nd1520+

11.4 m

β-

Ba153

La153

Ce153

Pr1534.28 s

β-

Nd153(3/2)-31.6 s

β-

La154

Ce1540+

Pr154(3+,2+)

2.3 s

β-

Nd1540+

25.9 s

β-

La155

Ce155

Pr155

Nd1558.9 s

β-

Ce1560+

Pr156

Nd1560+

5.47 s

β-

Ce157

Pr157

Nd157

Pr158

Nd1580+

Pr159

Nd159 Nd1600+

Nd161

Pd1020+

1.02Rh103

1/2-

100

Pd1040+

11.14

Pd1055/2+

22.33

Pd1060+

27.33

Cd1060+

1.25Ag107

1/2-

51.839Pd108

0+

26.46

Cd1080+

0.89Ag109

1/2-

48.161Pd110

0+

11.72

Cd1100+

12.49

Cd1111/2+

12.80

Cd1120+

24.13

Sn1120+

0.97

Cd1131/2+

7.7E+15 y

β-12.22

In1139/2+

4.3Cd114

0+

28.73

Sn1140+

0.65In115

9/2+4.41E+14 y

β-95.7

Sn1151/2+

0.34

Cd1160+

7.49

Sn1160+

14.53

Sn1171/2+

7.68

Sn1180+

24.23

Sn1191/2+

8.59

Sn1200+

32.59

Te1200+

0.096Sb121

5/2+

57.36Sn122

0+

4.63

Te1220+

2.603Sb123

7/2+

42.64

Te1231/2+

1E+13 y

EC0.908

Sn1240+

5.79

Te1240+

4.816

Xe1240+

1.6E+14 y

ECEC0.10

Te1251/2+

7.139

Te1260+

18.95

Xe1260+

0.09I1275/2+

100Te128

0+2.2E24 y

β-β-31.69

Xe1280+

1.91

Xe1291/2+

26.4

Te1300+

7.9E20 y

β-33.80

Xe1300+

4.1

Ba1300+

0.106

Xe1313/2+

21.2

Xe1320+

26.9

Ba1320+

0.101Cs133

7/2+

100Xe134

0+

10.4

Ba1340+

2.417

Ba1353/2+

6.592

Xe1360+

2.36E21 y

8.9

Ba1360+

7.854

Ce1360+

0.19

Ba1373/2+

11.23

Ba1380+

71.70

La1385+

1.05E+11 y

EC,β-0.0902

Ce1380+

0.25La139

7/2+

99.9098

Ce1400+

88.48

Pr1415/2+

100Ce142

0+5E+16 y

11.08

Nd1420+

27.13

Nd1437/2-

12.18

Nd1440+

2.29E+15 y

α23.80

Nd1457/2-

8.30

Nd1460+

17.19

Nd1480+

5.76

Nd1500+

1.1E19 y

β-5.64

45Rh

1.12×10 -9%102.90550

28

1816

1

1964°3695°

+3

46Pd

4.5×10 -9%106.42

28

1818

0

1554.9°2963°

+2+4

47Ag

1.58×10 -9%107.8682

28

18181

961.78°2162°

+1

48Cd

5.3×10 -9%112.411

28

18182

321.07°767°

+2

49In

6.0×10-10%114.818

28

1818

3

156.60°2072°

+3

50Sn

1.25×10 -8%118.710

28

1818

4

231.93°2602°

+2+4

51Sb

1.01×10 -9%121.760

28

1818

5

630.63°1587°

+3+5-3

52Te

1.57×10 -8%127.60

28

1818

6

449.51°988°

+4+6-2

53I

2.9×10 -9%126.90447

28

1818

7

113.7°184.4°

546°+1+5+7-1

54Xe

1.5×10 -8%131.29

28

1818

8

-111.75°-108.04°

16.58°0

55Cs

1.21×10 -9%132.90545

28

1818

81

28.44°671°

+1

56Ba

1.46×10 -8%137.327

28

181882

727°1897°

+2

57La

1.45×10 -9%138.9055

28

1818

92

918°3464°

+3

58Ce

3.70×10 -9%140.116

28

1819

92

798°3443°

+3+4

59Pr

5.44×10-10%140.90765

28

1821

82

931°3520°

+3

60Nd

2.70×10 -9%144.24

28

1822

82

1021°3074°

+3

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82

84 86

88 90

92 94 96

98

100

Decay Q-value RangeQ(??)Q(β−)>0Q(β−)-SN>0Q(β−)>0 + Q(EC)>0Stable to Beta DecayQ(EC)>0Q(EC)-SP>0Q(P)>0Naturally Abundant

GSI,RIKEN

DensitydependenceNeedtostudyisotope/isotonedependence

Snisotope

𝑈" 𝑟 = −2𝜋𝜇 𝜀* 𝑏,𝜌 𝑟 + 𝑏* 𝜌/ 𝑟 − 𝜌0 𝑟 + 𝜀1𝐵,𝜌1(𝑟)

Page 5: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

5

Z=45-60 Part 1 of 3

Rh89 Rh90 Rh91

Pd91

Rh92

Pd920+

Rh93(9/2+)

Pd93

Ag93

Rh94(3+)

70.6 s

ECp*

Pd940+

9.0 s

EC

Ag940+

10 ms

EC*

Rh95(9/2)+5.02 m

EC*

Pd95

EC*

Ag952.0 s

ECp

Rh966+

9.90 m

EC*

Pd960+

122 s

EC

Ag96(8+,9+)

5.1 s

ECp

Cd960+

Rh97(9/2)+30.7 m

EC*

Pd97(5/2+)3.10 m

EC

Ag97(9/2+)19 s

EC

Cd973 s

ECp

Rh98(2)+

8.7 m

EC*

Pd980+

17.7 m

EC

Ag98(5+)

46.7 s

EC

Cd980+

9.2 s

EC

In98

Rh991/2-

16.1 d

EC*

Pd99(5/2)+21.4 m

EC

Ag99(9/2)+124 s

EC*

Cd99(5/2+)16 s

ECp,ECα,...

In99

Rh1001-

20.8 h

EC*

Pd1000+

3.63 d

EC

Ag100(5)+

2.01 m

EC*

Cd1000+

49.1 s

EC

In1007.0 s

ECp

Sn1000+

0.94 s

ECp

Rh1011/2-3.3 y

EC*

Pd1015/2+

8.47 h

EC

Ag1019/2+

11.1 m

EC*

Cd101(5/2+)1.36 m

EC

In10115.1 s

ECp

Sn1013 s

ECp

Rh102(1-,2-)207 d

EC,β-*

Ag1025+

12.9 m

EC*

Cd1020+

5.5 m

EC

In102(6+)22 s

ECp

Sn1020+

4.5 s

EC

*

Pd1035/2+

16.991 d

EC

Ag1037/2+

65.7 m

EC*

Cd103(5/2+)7.3 m

EC

In103(9/2)+65 s

EC*

Sn1037 s

EC

Sb103

Rh1041+

42.3 s

EC,β-*

Ag1045+

69.2 m

*

Cd1040+

57.7 m

EC

In104(6+)

1.80 m

EC*

Sn1040+

20.8 s

EC

Sb1040.44 s

p,ECp,...

Rh1057/2+

35.36 h

β-*

Ag1051/2-

41.29 d

EC*

Cd1055/2+

55.5 m

EC

In105(9/2)+5.07 m

EC*

Sn10531 s

ECp

Sb1051.12 s

EC,p

Rh1061+

29.80 s

β-*

Ag1061+

23.96 m

EC,β-*

In1067+

6.2 m

EC*

Sn1060+

115 s

EC

Sb106(4+)

Te1060+

60 Us

α

Rh1077/2+

21.7 m

β-

Pd1075/2+

6.5E+6 y

β-*

*

Cd1075/2+

6.50 h

EC

In1079/2+

32.4 m

EC*

Sn107(5/2+)2.90 m

EC

Sb107(5/2+)

Te1073.1 ms

EC,α

Rh1081+

16.8 s

β-*

Ag1081+

2.37 m

EC,β-*

In1087+

58.0 m

EC*

Sn1080+

10.30 m

EC

Sb108(4+)7.4 s

ECp

Te1080+

2.1 s

α,ECp,...

I108(1)

36 ms

α,p

Rh1097/2+80 s

β-

Pd1095/2+

13.7012 h

β-*

*

Cd1095/2+

462.6 d

EC

In1099/2+4.2 h

EC*

Sn1095/2(+)18.0 m

EC

Sb109(5/2+)17.0 s

EC

Te1094.6 s

α,ECp,...

I109100 Us

p

Rh1101+

3.2 s

β-*

Ag1101+

24.6 s

EC,β-*

In1107+

4.9 h

EC*

Sn1100+

4.11 h

EC

Sb1103+

23.0 s

EC

Te1100+

18.6 s

EC,α

I1100.65 s

α,ECp,...

Xe1100+

0.60 Us

EC,α

Rh111(7/2+)11 s

β-

Pd1115/2+

23.4 m

β-*

Ag1111/2-

7.45 d

β-*

*

In1119/2+

2.8047 d

EC*

Sn1117/2+

35.3 m

EC

Sb111(5/2+)75 s

EC

Te111(5/2+)19.3 s

ECp

I111(5/2+)2.5 s

EC,α

Xe1110.74 s

EC,α

Rh1121+

2.1 s

β-*

Pd1120+

21.03 h

β-

Ag1122(-)

3.130 h

β-

In1121+

14.97 m

EC,β-*

Sb1123+

51.4 s

EC

Te1120+

2.0 m

EC

I1123.42 s

EC,α

Xe1120+

2.7 s

EC,α

Cs112500 Us

p

Rh113(7/2+)2.80 s

β-

Pd113(5/2+)93 s

β-*

Ag1131/2-

5.37 h

β-*

*

*

Sn1131/2+

115.09 d

EC*

Sb1135/2+

6.67 m

EC

Te113(7/2+)1.7 m

EC

I113(5/2+)6.6 s

α,ECα,...

Xe1132.74 s

α,ECp,...

Cs113(5/2+)17 Us

EC,p

Rh1141+

1.85 s

β-*

Pd1140+

2.42 m

β-

Ag1141+

4.6 s

β-*

In1141+

71.9 s

EC,β-*

Sb1143+

3.49 m

EC

Te1140+

15.2 m

EC

I1141+

2.1 s

ECp*

Xe1140+

10.0 s

EC

Cs114(1+)

0.57 s

α,ECp,...

Ba1140+

0.43 s

EC,α

Rh115(7/2+)0.99 s

β-

Pd115(5/2+)25 s

β-*

Ag1151/2-

20.0 m

β-*

Cd1151/2+

53.46 h

β-*

*

Sb1155/2+

32.1 m

EC

Te1157/2+5.8 m

EC*

I115(5/2+)1.3 m

EC

Xe115(5/2+)18 s

ECp,ECα,...

Cs1151.4 s

ECp

Ba1150.4 s

EC

Rh1161+

0.68 s

β-*

Pd1160+

11.8 s

β-

Ag116(2)-

2.68 m

β-*

In1161+

14.10 s

EC,β-*

Sb1163+

15.8 m

EC*

Te1160+

2.49 h

EC

I1161+

2.91 s

EC*

Xe1160+

59 s

EC

Cs116>4+

3.84 s

ECp,ECα,...*

Ba1160+

0.3 s

EC

Rh117(7/2+)0.44 s

β-

Pd117(5/2+)4.3 s

β-*

Ag117(1/2-)72.8 s

β-*

Cd1171/2+

2.49 h

β-*

In1179/2+

43.2 m

β-*

*

Sb1175/2+

2.80 h

EC

Te1171/2+62 m

EC*

I117(5/2)+2.22 m

EC

Xe1175/2(+)61 s

ECp

Cs117(9/2+)8.4 s

EC*

Ba117(3/2)1.75 s

ECp,ECα,...

La117

Rh118

Pd1180+

1.9 s

β-

Ag118(1)-

3.76 s

β-*

Cd1180+

50.3 m

β-

In1181+

5.0 s

β-*

Sb1181+

3.6 m

EC*

Te1180+

6.00 d

EC

I1182-

13.7 m

EC*

Xe1180+

3.8 m

EC

Cs1182

14 s

ECp,ECα,...*

Ba1180+

5.5 s

EC

La118

Rh119

Pd1190.92 s

β-

Ag119(7/2+)2.1 s

β-*

Cd1193/2+

2.69 m

β-*

In1199/2+2.4 m

β-*

*

Sb1195/2+

38.19 h

EC*

Te1191/2+

16.03 h

EC*

I1195/2+

19.1 m

EC

Xe119(5/2+)5.8 m

EC

Cs1199/2+

43.0 s

EC*

Ba119(5/2+)5.4 s

ECp

La119

Ce119

Rh120

β-

Pd1200+

0.5 s

β-

Ag120(3+)

1.23 s

β-*

Cd1200+

50.80 s

β-

In1201+

3.08 s

β-*

Sb1201+

15.89 m

EC*

I1202-

81.0 m

EC*

Xe1200+

40 m

EC

Cs1202

64 s

EC*

Ba1200+

32 s

EC

La1202.8 s

EC

Ce1200+

Rh121

Pd121

Ag121(7/2+)0.78 s

β-n

Cd121(3/2+)13.5 s

β-*

In1219/2+

23.1 s

β-*

Sn1213/2+

27.06 h

β-*

Te1211/2+

16.78 d

EC*

I1215/2+

2.12 h

EC

Xe1215/2(+)40.1 m

EC

Cs1213/2(+)155 s

EC*

Ba1215/2(+)29.7 s

ECp

La1215.3 s

ECp

Ce121

Pr1211.4 s

ECp

Rh122

β-

Pd1220+

Ag122(3+)

0.48 s

β-n*

Cd1220+

5.24 s

β-

In1221+

1.5 s

β-*

Sb1222-

2.7238 d

EC,β-*

I1221+

3.63 m

EC*

Xe1220+

20.1 h

EC

Cs1221+

21.0 s

EC*

Ba1220+

1.95 m

EC

La1228.7 s

ECp

Ce122

Pr122

Pd123

Ag123(7/2+)0.309 s

β-n

Cd123(3/2)+2.10 s

β-*

In1239/2+

5.98 s

β-*

Sn12311/2-

129.2 d

β-*

*

I1235/2+

13.27 h

EC

Xe123(1/2)+2.08 h

EC

Cs1231/2+

5.94 m

EC*

Ba1235/2+2.7 m

EC

La12317 s

EC

Ce123(5/2)3.2 s

ECp

Pr123

Pd124

β-

Ag1240.172 s

β-n

Cd1240+

1.25 s

β-

In1243+

3.11 s

β-*

Sb1243-

60.20 d

β-*

I1242-

4.1760 d

EC

Cs1241+

30.8 s

EC*

Ba1240+

11.0 m

EC

La12429 s

EC*

Ce1240+6 s

EC

Pr1241.2 s

ECp

Ag125166 ms

β-n

Cd125(3/2+)0.65 s

β-*

In1259/2(+)2.36 s

β-*

Sn12511/2-9.64 d

β-*

Sb1257/2+

2.7582 y

β-

*

I1255/2+

59.408 d

EC

Xe125(1/2)+16.9 h

EC*

Cs125(1/2+)45 m

EC

Ba1251/2(+)3.5 m

EC

La125(11/2-)

76 s

EC

Ce125(5/2+)9.0 s

ECp

Pr1253.3 s

EC

Ag126107 ms

β-

Cd1260+

0.506 s

β-

In1263(+)

1.60 s

β-*

Sn1260+

1E+5 y

β-

Sb126(8)-

12.46 d

β-*

I1262-

13.11 d

EC,β-

Cs1261+

1.64 m

EC

Ba1260+

100 m

EC

La12654 s

EC

Ce1260+

50 s

EC

Pr126(3,4,5)3.14 s

ECp

Nd126

Ag127109 ms

β-

Cd127(3/2+)0.37 s

β-

In127(9/2+)1.09 s

β-n*

Sn127(11/2-)2.10 h

β-*

Sb1277/2+

3.85 d

β-

Te1273/2+

9.35 h

β-*

Xe1271/2+

36.4 d

EC*

Cs1271/2+

6.25 h

EC

Ba1271/2+

12.7 m

EC*

La127(11/2-)5.1 m

EC*

Ce127(5/2+)31 s

EC

Pr127(11/2-)4.2 s

EC

Nd1271.8 s

ECp

Ag12858 ms

β-n

Cd1280+

0.34 s

β-

In128(3+)

0.84 s

β-n*

Sn1280+

59.07 m

β-*

Sb1288-

9.01 h

β-*

I1281+

24.99 m

EC,β-

Cs1281+

3.66 m

EC

Ba1280+

2.43 d

EC

La128(5+)

5.0 m

EC*

Ce1280+

4.1 s

EC

Pr1284,5,63.1 s

ECp

Nd1280+4 s

ECp

Ag129

β-n

Cd129(3/2+)0.27 s

β-

In129(9/2+)0.61 s

β-n*

Sn129(3/2+)2.23 m

β-*

Sb1297/2+

4.40 h

β-*

Te1293/2+

69.6 m

β-*

I1297/2+

1.57E7 y

β-

*

Cs1291/2+

32.06 h

EC

Ba1291/2+

2.23 h

EC*

La1293/2+

11.6 m

EC*

Ce1295/2+3.5 m

EC

Pr129(3/2+)30 s

EC

Nd129(5/2+)

7 s

ECp

Cd1300+

0.20 s

β-n

In1301(-)

0.32 s

β-n*

Sn1300+

3.72 m

β-*

Sb130(8-)

39.5 m

β-*

I1305+

12.36 h

β-*

Cs1301+

29.21 m

EC,β-*

*

La1303(+)

8.7 m

EC

Ce1300+

25 m

EC

Pr13040.0 s

EC

Nd1300+

28 s

EC

In131(9/2+)0.282 s

β-n*

Sn131(3/2+)56.0 s

β-*

Sb131(7/2+)

23.03 m

β-

Te1313/2+

25.0 m

β-*

I1317/2+

8.02070 d

β-

*

Cs1315/2+

9.689 d

EC

Ba1311/2+

11.50 d

EC*

La1313/2+59 m

EC

Ce131(7/2+)10.2 m

EC*

Pr131(3/2+)1.53 m

EC*

Nd131(5/2)27 s

ECp

In132(7-)

0.201 s

β-n

Sn1320+

39.7 s

β-

Sb132(4+)

2.79 m

β-*

Te1320+

3.204 d

β-

I1324+

2.295 h

β-*

*

Cs1322+

6.479 d

EC,β-

La1322-

4.8 h

EC*

Ce1320+

3.51 h

EC*

Pr1321.6 m

EC

Nd1320+

1.75 m

EC

In133(9/2+)180 ms

β-n

Sn133(7/2-)1.45 s

β-n

Sb133(7/2+)2.5 m

β-

Te133(3/2+)12.5 m

β-*

I1337/2+

20.8 h

β-*

Xe1333/2+

5.243 d

β-*

Ba1331/2+

10.51 y

EC*

La1335/2+

3.912 h

EC

Ce1331/2+97 m

EC*

Pr133(3/2+)6.5 m

EC

Nd133(7/2+)70 s

EC*

In134138 ms

β-n

Sn1340+

1.12 s

β-n

Sb134(0-)

0.78 s

β-*

Te1340+

41.8 m

β-

I134(4)+

52.5 m

β-*

*

Cs1344+

2.0648 y

EC,β-*

*

La1341+

6.45 m

EC

Ce1340+

3.16 d

EC

Pr1342-

17 m

EC*

Nd1340+

8.5 m

EC*

Sn135

Sb135(7/2+)1.71 s

β-n

Te135(7/2-)19.0 s

β-

I1357/2+

6.57 h

β-

Xe1353/2+

9.14 h

β-*

Cs1357/2+

2.3E+6 y

β-*

*

La1355/2+

19.5 h

EC

Ce1351/2(+)17.7 h

EC*

Pr1353/2(+)24 m

EC

Nd1359/2(-)

12.4 m

EC*

Sn1360+

Sb1360.82 s

β-n,β-2n,...

Te1360+

17.5 s

β-n

I136(1-)

83.4 s

β-*

Cs1365+

13.16 d

β-*

*

La1361+

9.87 m

EC*

Pr1362+

13.1 m

EC

Nd1360+

50.65 m

EC

Sn137

Sb137

Te137(7/2-)2.49 s

β-n

I137(7/2+)24.5 s

β-n

Xe1377/2-

3.818 m

β-

Cs1377/2+

30.07 y

β-

*

La1377/2+

6E4 y

EC

Ce1373/2+9.0 h

EC*

Pr1375/2+

1.28 h

EC

Nd1371/2+

38.5 m

EC*

Sb138

Te1380+

1.4 s

β-n

I138(2-)

6.49 s

β-n

Xe1380+

14.08 m

β-

Cs1383-

33.41 m

β-*

*

Pr1381+

1.45 m

EC*

Nd1380+

5.04 h

EC

Sb139

Te139

I139(7/2+)2.29 s

β-n

Xe1393/2-

39.68 s

β-

Cs1397/2+

9.27 m

β-

Ba1397/2-

83.06 m

β-

Ce1393/2+

137.640 d

EC*

Pr1395/2+

4.41 h

EC

Nd1393/2+

29.7 m

EC*

Te1400+

I140(4)

0.86 s

β-n

Xe1400+

13.60 s

β-

Cs1401-

63.7 s

β-

Ba1400+

12.752 d

β-

La1403-

1.6781 d

β-

Pr1401+

3.39 m

EC

Nd1400+

3.37 d

EC

Te141

I1410.43 s

β-n

Xe1415/2(-)1.73 s

β-n

Cs1417/2+

24.94 s

β-n

Ba1413/2-

18.27 m

β-

La141(7/2+)3.92 h

β-

Ce1417/2-

32.501 d

β-

Nd1413/2+

2.49 h

EC*

Te1420+

I142

Xe1420+

1.22 s

β-n

Cs1420-

1.70 s

β-n

Ba1420+

10.6 m

β-

La1422-

91.1 m

β-

Pr1422-

19.12 h

EC,β-*

I143

Xe1435/2-

0.30 s

β-

Cs1433/2+

1.78 s

β-n

Ba1435/2-

14.33 s

β-

La143(7/2)+14.2 m

β-

Ce1433/2-

33.039 h

β-

Pr1437/2+

13.57 d

β-

I144

Xe1440+

1.15 s

β-

Cs1441

1.01 s

β-n*

Ba1440+

11.5 s

β-n

La144(3-)

40.8 s

β-

Ce1440+

284.893 d

β-

Pr1440-

17.28 m

β-*

Xe1450.9 s

β-n

Cs1453/2+

0.594 s

β-n

Ba1455/2-

4.31 s

β-

La145(5/2+)24.8 s

β-

Ce145(3/2)-

3.01 m

β-

Pr1457/2+

5.984 h

β-

Xe1460+

β-

Cs1461-

0.321 s

β-n

Ba1460+

2.22 s

β-

La1462-

6.27 s

β-*

Ce1460+

13.52 m

β-

Pr146(2)-

24.15 m

β-

Xe147

Cs147(3/2+)0.225 s

β-n

Ba147(3/2+)0.893 s

β-n

La147(5/2+)4.015 s

β-n

Ce147(5/2-)56.4 s

β-

Pr147(3/2+)13.4 m

β-

Nd1475/2-

10.98 d

β-

Cs148158 ms

β-n

Ba1480+

0.607 s

β-n

La148(2-)

1.05 s

β-n

Ce1480+

56 s

β-

Pr1481-

2.27 m

β-*

Cs149

Ba1490.344 s

β-n

La1491.05 s

β-n

Ce149(3/2-)5.3 s

β-

Pr149(5/2+)2.26 m

β-

Nd1495/2-

1.728 h

β-

Cs150

Ba1500+

0.3 s

β-n

La1500.86 s

β-n

Ce1500+

4.0 s

β-

Pr150(1)-

6.19 s

β-

Cs151

Ba151

La151

Ce1511.02 s

β-

Pr151(3/2-)

18.90 s

β-

Nd1513/2+

12.44 m

β-

Ba1520+

La152

Ce1520+

1.4 s

β-

Pr152(4-)

3.63 s

β-

Nd1520+

11.4 m

β-

Ba153

La153

Ce153

Pr1534.28 s

β-

Nd153(3/2)-31.6 s

β-

La154

Ce1540+

Pr154(3+,2+)

2.3 s

β-

Nd1540+

25.9 s

β-

La155

Ce155

Pr155

Nd1558.9 s

β-

Ce1560+

Pr156

Nd1560+

5.47 s

β-

Ce157

Pr157

Nd157

Pr158

Nd1580+

Pr159

Nd159 Nd1600+

Nd161

Pd1020+

1.02Rh103

1/2-

100

Pd1040+

11.14

Pd1055/2+

22.33

Pd1060+

27.33

Cd1060+

1.25Ag107

1/2-

51.839Pd108

0+

26.46

Cd1080+

0.89Ag109

1/2-

48.161Pd110

0+

11.72

Cd1100+

12.49

Cd1111/2+

12.80

Cd1120+

24.13

Sn1120+

0.97

Cd1131/2+

7.7E+15 y

β-12.22

In1139/2+

4.3Cd114

0+

28.73

Sn1140+

0.65In115

9/2+4.41E+14 y

β-95.7

Sn1151/2+

0.34

Cd1160+

7.49

Sn1160+

14.53

Sn1171/2+

7.68

Sn1180+

24.23

Sn1191/2+

8.59

Sn1200+

32.59

Te1200+

0.096Sb121

5/2+

57.36Sn122

0+

4.63

Te1220+

2.603Sb123

7/2+

42.64

Te1231/2+

1E+13 y

EC0.908

Sn1240+

5.79

Te1240+

4.816

Xe1240+

1.6E+14 y

ECEC0.10

Te1251/2+

7.139

Te1260+

18.95

Xe1260+

0.09I1275/2+

100Te128

0+2.2E24 y

β-β-31.69

Xe1280+

1.91

Xe1291/2+

26.4

Te1300+

7.9E20 y

β-33.80

Xe1300+

4.1

Ba1300+

0.106

Xe1313/2+

21.2

Xe1320+

26.9

Ba1320+

0.101Cs133

7/2+

100Xe134

0+

10.4

Ba1340+

2.417

Ba1353/2+

6.592

Xe1360+

2.36E21 y

8.9

Ba1360+

7.854

Ce1360+

0.19

Ba1373/2+

11.23

Ba1380+

71.70

La1385+

1.05E+11 y

EC,β-0.0902

Ce1380+

0.25La139

7/2+

99.9098

Ce1400+

88.48

Pr1415/2+

100Ce142

0+5E+16 y

11.08

Nd1420+

27.13

Nd1437/2-

12.18

Nd1440+

2.29E+15 y

α23.80

Nd1457/2-

8.30

Nd1460+

17.19

Nd1480+

5.76

Nd1500+

1.1E19 y

β-5.64

45Rh

1.12×10 -9%102.90550

28

1816

1

1964°3695°

+3

46Pd

4.5×10 -9%106.42

28

1818

0

1554.9°2963°

+2+4

47Ag

1.58×10 -9%107.8682

28

18181

961.78°2162°

+1

48Cd

5.3×10 -9%112.411

28

18182

321.07°767°

+2

49In

6.0×10-10%114.818

28

1818

3

156.60°2072°

+3

50Sn

1.25×10 -8%118.710

28

1818

4

231.93°2602°

+2+4

51Sb

1.01×10 -9%121.760

28

1818

5

630.63°1587°

+3+5-3

52Te

1.57×10 -8%127.60

28

1818

6

449.51°988°

+4+6-2

53I

2.9×10 -9%126.90447

28

1818

7

113.7°184.4°

546°+1+5+7-1

54Xe

1.5×10 -8%131.29

28

1818

8

-111.75°-108.04°

16.58°0

55Cs

1.21×10 -9%132.90545

28

1818

81

28.44°671°

+1

56Ba

1.46×10 -8%137.327

28

181882

727°1897°

+2

57La

1.45×10 -9%138.9055

28

1818

92

918°3464°

+3

58Ce

3.70×10 -9%140.116

28

1819

92

798°3443°

+3+4

59Pr

5.44×10-10%140.90765

28

1821

82

931°3520°

+3

60Nd

2.70×10 -9%144.24

28

1822

82

1021°3074°

+3

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

80 82

84 86

88 90

92 94 96

98

100

Decay Q-value RangeQ(??)Q(β−)>0Q(β−)-SN>0Q(β−)>0 + Q(EC)>0Stable to Beta DecayQ(EC)>0Q(EC)-SP>0Q(P)>0Naturally Abundant

GSI,RIKEN Snisotope

• Xe :gastarget- hardtouseatGSIorRIKEN

RCNP Xe isotope

Isotope/isotonestudy N=82:magicnumber

RCNP(ResearchCenterforNuclearPhysics)

Page 6: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

250 300 350 400 4500

50

100

150

200momentum transfer

200 250 300 350 4000

50

100

150

200momentum transferChoiceofthereaction

• recoillessconditionBeamenergy• (d,3He)~250MeV/u• (p,2He)~330MeV

6

(p,2He)@4.5°

(p,2He)@0°

(d,3He)@0°

AvailableatRCNP

mom

entumtransfer[M

eV/c

2 ]mom

entumtransfer[M

eV/c

2 ]

injectionenergy[MeV/u]

injectionenergy[MeV/u]

pionic atomswith(p,2He)@RCNP

Page 7: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

RCNP(ResearchCenterforNuclearPhysics)

• AVFcyclotron+ringcyclotron• Thetwo-armspectrometer:

GrandRaiden/LAS(LargeAcceptanceSpectrometer)

7

LASGrandRaiden

Protonenergy :upto400MeV

Page 8: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

Pionic atomatRCNP:(p,2He)• 1990s

• Boundstateswasformed• Energylevelcouldn’tbedetermined- resolution :700keV (FWHM)

8

N.Matsuokaetal.,Phys.Lett.B359(1995)39.

π- bindingenergy [MeV]

determinationofthebindingenergyandthewidth

Improvementoftheresolution

Boundregion

Page 9: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

(p,2He)reactionatRCNP

• LAS:• resolution700keV (FWHM)• acceptance:2.4msr

• Beamintensity:0.5~1nA

• GrandRaiden• resolution~250keV (FWHM)• acceptance:0.04msr

• Beamintensity:~30nA

9

N.Matsuokaetal.,Phys.Lett.B359(1995)39.

π-bindingenergy[MeV]

Previousexperiment

Newexperiment LASGrandRaiden

Page 10: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

Experimentalsetup• GrandRaiden Resolution:200~250keV (FWHM)

- uncertaintyofreactionvertex- beamresolution

• Intensebeam:30nA

10

2He

beam

[email protected]°

LAS

driftchamber&scintillator

target

beamdump

Page 11: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

Schedule/Futureplan

• Testexperiment– feasibilitystudy

• Pilotexperiment- target:124Sn

• Proposalwassubmitted

• Target:Xe11

Phase1

Phase0(2015– 2016)

Phase2

Page 12: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

(a)

(b)

(c)

Figure 5: Simulated raw spectra (left) and acceptance corrected and accidental back-ground subtracted spectra (right) with different conditions of beam intensity and du-ration of beamtime. See the text for details.

11

Phase1experiment– expectedspectrum• [email protected]°• 124Sntarget

(30mg/cm2)• 350MeVprotonbeam• Beamintensity:

30nA,10days

12

0

1

2

3

4

-148 -146 -144 -142 -140

d2σ

dΩdE

[µb/

sr M

eV]

-Q [MeV]

124Sn(p,2p)

1s 2s1/2

1s 1d3/2

1s 1d5/2

2p 2s1/2

2p 1d3/2

2p 1d5/2

Theoreticalcalculation

Simulatedspectrum

J.Yamagata-Sekihara,N.Ikeno,andS.Hirenzaki,privatecommunication.

πB=0[MeV]

Observe3peaks(1s)π

(2p)π(2p)π 124Sn(p,2He)@4.5°

Page 13: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

Feasibilitystudy• Detectionof2HeatGrandRaiden

- Observed12C(p,2He)11B

• Testforintensebeam• Backgroundmeasurement• Howtocheckthebeamstability• Opticsstudy

13

beamline was more than 90%.

• The background of the measurement was studied. The trigger rate was about 10

kHz for a 30 nA proton beam on a 50 mg/cm2 target.

• There were two sources of background protons irrelevant to 2He production: one

is from the (p,p’) reaction and the other is the instrumental background. The

latter can be removed by measuring the RF timing, which is almost equivalent

to the time of flight between the target and the focal plane. The instrumental

background was about 4 times larger than the (p,p’) reaction with the GRAF

setup. Only the (p,p’) reaction contaminates the spectrum of 2He.

• The cross section of 120Sn(p,p’) reaction at the momentum region of pionic atom

measurement was evaluated to be 1.5 mb/sr/MeV.

• We investigated the 12C(p,2He)11B reaction, which can be used for a calibration

(Fig. 2). We observed about 350 events of the transition to the grand state of11B in a 20-minutes measurement for a 30 nA proton beam on a 50 mg/cm2 CH2

target.

• We observed monochromatic pions due to the p(p,π+)d reaction with LAS at

61 degrees. This reaction will be used for an in-situ measurement of the beam

energy as described in Section 2.3.

4− 2− 0 2 4 6 8 100

10

20

30

40

50

60

70

11B Excitation Energy [MeV]

coun

ts/1

00 k

eV

Figure 2: 11B excitation energy spectrum in the 12C(p,2He)11B reaction.

6

excitedstate

groundstate

12C(p,2He)11B

Page 14: Measurement of deeply bound pionicstates using the (p, · PDF fileMeasurement of deeply bound pionicstates using the (p,2He) reaction at RCNP Akane Sakaue Kyoto University 1. collaborators

Summary• (d,3He)– GSI,RIKEN• (p,2He)– RCNP• PossibletouseGastarget• highprecisionmeasurement

- GrandRaiden– highresolution

• TestexperimentatRCNP• Proposalwassubmitted• Target:124Sn Xe isotopes(futureplan)

14