8
En la construcción de túneles se avanza siempre con un cierto grado de indeterminación, debido a la dificultad de conocer con exactitud las características del terreno a atravesar antes de iniciar la excavación del túnel. Debido a la variabilidad del terreno, en los Proyectos siempre se incluyen varios tipos de sostenimiento, debiéndose aplicar uno u otro según las características de la roca observadas en cada punto. La auscultación desempeña un papel fundamental para comprobar en qué medida una tipología de sostenimiento es adecuada a un concreto tipo de roca, así como para evaluar el grado de estabilidad conseguida en la excavación y sostenimiento del túnel. La auscultación permite detectar posibles inestabilidades que pudieran producirse durante el proceso constructivo, e incluso controlar deformaciones diferidas, una vez terminada la ejecución del túnel, durante su etapa de explotación. La instrumentación empleada con más frecuencia en las obras subterráneas es la encaminada a medir los movimientos relativos del terreno hacia el interior de la excavación, que proporciona una información directa y, por tanto, con menor posibilidad de error. Mediante las CONVERGENCIAS se miden los desplazamientos del contorno del túnel, mientras que con los EXTENS~METROS y con los INCLINÓMETROS se miden los movimientos en el interior del macizo rocoso. Además, se emplea también una instrumentación cuyo fin es medir las tensiones en los elementos del sostenimiento: CÉLULAS DE PRESIÓN para evaluar tensiones del hormigón proyectado, CÉLULAS DE CARGA para medir tensiones en los bulones, incluso EXTENSÓMETROS adheridos a las cerchas para conocer su deformación y, por tanto, su estado tensional. De todas formas, la auscultación del sostenimiento suele ser de tipo indirecto: se miden deformaciones para luego calcular tensiones, con márgenes de error elevados por la heterogeneidad del problema. Por este motivo se debe tender siempre, en primera instancia, a auscultar los movimientos del terreno y dejar las otras medidas como información adicional que puede resultar de interés. Existen otros aparatos de instrumentación que proporcionan otras medidas generalmente de menor uso: PIEZÓMETROS para conocer la profundidad del nivel freático, TERMÓMETROS para medir las temperaturas de la roca, MEDIDOR DE ASIENTOS para medir los asientos superficiales o de edificios, etc. Muchas veces se usa también la topografía convencional para medir movimientos, aunque deben emplearse aparatos de alta precisión (+/- 1 mm). La aplicación más utilizada es la relativa al control de los asientos superficiales sobre un túnel en construcción. Menos empleada es, sin embargo, en la medición de los desplazamientos del contorno de la excavación: convergencias, asientos de clave, etc. El instrumento concreto de medición, su manejo y la forma de adquisición de datos es muy variable de unos modelos a otros. En España existen actualmente varias firmas comerciales dedicadas a distribuir aparatos de auscultación, debiéndose consultar a cada fabricante sobre las características concretas de un determinado aparato. La adquisición o lectura de datos puede ser manual o automática. La lectura manual se hace habitualmente con un reloj comparador, y tiene el problema de una menor

Medicion Convergencias Tunel

Embed Size (px)

Citation preview

En la construcción de túneles se avanza siempre con un cierto grado de indeterminación, debido a la dificultad de conocer con exactitud las características del terreno a atravesar antes de iniciar la excavación del túnel. Debido a la variabilidad del terreno, en los Proyectos siempre se incluyen varios tipos de sostenimiento, debiéndose aplicar uno u otro según las características de la roca observadas en cada punto. La auscultación desempeña un papel fundamental para comprobar en qué medida una tipología de sostenimiento es adecuada a un concreto tipo de roca, así como para evaluar el grado de estabilidad conseguida en la excavación y sostenimiento del túnel. La auscultación permite detectar posibles inestabilidades que pudieran producirse durante el proceso constructivo, e incluso controlar deformaciones diferidas, una vez terminada la ejecución del túnel, durante su etapa de explotación. La instrumentación empleada con más frecuencia en las obras subterráneas es la encaminada a medir los movimientos relativos del terreno hacia el interior de la excavación, que proporciona una información directa y, por tanto, con menor posibilidad de error. Mediante las CONVERGENCIAS se miden los desplazamientos del contorno del túnel, mientras que con los EXTENS~METROS y con los INCLINÓMETROS se miden los movimientos en el interior del macizo rocoso. Además, se emplea también una instrumentación cuyo fin es medir las tensiones en los elementos del sostenimiento: CÉLULAS DE PRESIÓN para evaluar tensiones del hormigón proyectado, CÉLULAS DE CARGA para medir tensiones en los bulones, incluso EXTENSÓMETROS adheridos a las cerchas para conocer su deformación y, por tanto, su estado tensional. De todas formas, la auscultación del sostenimiento suele ser de tipo indirecto: se miden deformaciones para luego calcular tensiones, con márgenes de error elevados por la heterogeneidad del problema. Por este motivo se debe tender siempre, en primera instancia, a auscultar los movimientos del terreno y dejar las otras medidas como información adicional que puede resultar de interés. Existen otros aparatos de instrumentación que proporcionan otras medidas generalmente de menor uso: PIEZÓMETROS para conocer la profundidad del nivel freático, TERMÓMETROS para medir las temperaturas de la roca, MEDIDOR DE ASIENTOS para medir los asientos superficiales o de edificios, etc. Muchas veces se usa también la topografía convencional para medir movimientos, aunque deben emplearse aparatos de alta precisión (+/- 1 mm). La aplicación más utilizada es la relativa al control de los asientos superficiales sobre un túnel en construcción. Menos empleada es, sin embargo, en la medición de los desplazamientos del contorno de la excavación: convergencias, asientos de clave, etc. El instrumento concreto de medición, su manejo y la forma de adquisición de datos es muy variable de unos modelos a otros. En España existen actualmente varias firmas comerciales dedicadas a distribuir aparatos de auscultación, debiéndose consultar a cada fabricante sobre las características concretas de un determinado aparato. La adquisición o lectura de datos puede ser manual o automática. La lectura manual se hace habitualmente con un reloj comparador, y tiene el problema de una menor

precisión y la posibilidad de que el operario cometa errores de lectura. La lectura automática se hace mediante cuerda vibrante o potenciómetros, según el tipo de aparato, y se lee de forma digital mediante una centralita de lectura. Incluso es posible hoy en día transmitir los datos directamente en tiempo real a un ordenador central. Este método evita los errores de lectura y transcripción de datos, que de otra forma suelen ser bastante frecuentes. En la tabla 8.1 se han resumido las mediciones de auscultación más frecuentes hoy en día dentro del campo de las obras subterráneas. En los apartados posteriores se incide más en profundidad en los principales sistemas de instrumentación.

La medición de convergencias es la instrumentación más rápida, económica y más utilizada para el control de la excavación de un túnel. En la figura 8.1 puede verse una sección típica de medida de convergencias mediante cinta extensométrica. La medición se hace entre unos puntos que se anclan a la roca o al hormigón proyectado en el contorno del túnel. Según los diversos sistemas, estos puntos poseen en su extremo una rosca o un gancho donde se aplica el aparato de medición. El punto de medida debe ir protegido con un tapón a fin de aislarlo del polvo del ambiente, que suele ser muy abundante en los túneles en construcción. La cinta extensométrica es una cinta métrica metálica junto con un sistema que permite ponerla a una cierta tensión constante y un reloj comparador que aprecia, como mínimo, la décima de milímetro. La cinta debe tensarse para que se aproxime lo más posible a la línea recta entre los puntos de medida. En una sección generalmente se colocan entre tres y cinco puntos o clavos de convergencia. Lo más habitual es un punto en clave y otros dos, uno en cada hastial. La sección de medida debe colocarse y empezarse a medir lo más rápidamente posible tras la excavación, ya que de otro modo se pierden gran parte de las deformaciones producidas. De todas formas, hay un porcentaje importante del movimiento que se produce por delante del frente (un 30% aprox.), y otro porcentaje que se produce antes de

Medida de con vergeencim

empezar a medir (un 20% aprox.), por lo que con las convergencias únicamente se mide un 50% del movimiento total, o incluso menos. Las medidas deben hacerse diariamente hasta que se haya alcanzado la estabilización de los movimientos, e incluso dos lecturas diarias si la variación es muy brusca. Es conveniente realizar además medidas posteriores de comprobación con periodicidad mensual.

SECCION DE CONVERGENCIA

/////\\\\\

CINTA EXTENSOMETRICA

La medida de conver- gencias es una medida relativa, es decir, sólo se conoce la variación de distancias entre los puntos de medida, pero no su movimiento real. Todas estas características hacen que las conver- gencias se usen más bien de forma cualitativa que cuantitativa. Lo que interesa es conocer si la deforma- ción se estabiliza y cuánto tarda en estabilizarse, así como comparar unas secciones con otras, lo que nos da una idea de la calidad de la roca y de si el sostenimiento es adecuado para cada tipo de roca. Al

ser una medida rápida de leer y económica, se puede colocar en muchas secciones. Normalmente se coloca una sección cada 25 metros en túneles normales de carretera, y cada 10 ó 15 metros en zonas de especial problemática o en grandes cavernas. Modernamente se utilizan también estaciones totales topográficas de precisión para la medida de convergencias. En este caso se colocan unas dianas reflectantes pegadas al hormigón en lugar de los clavos anclados. Otra posibilidad es estacionar el aparato en una base fija y durante la medida ajustar el prisma sucesivamente en cada punto de lectura. El primer sistema es más rápido de leer, pero tiene el inconveniente de la suciedad que se deposita sobre las dianas, que imposibilita su lectura, y también la oscuridad del túnel, que dificulta la puntería del topógrafo hacia la misma. El segundo sistema resulta más caro al tener que colocar una base fija para el aparato y otra en cada punto de control y necesitar un operario adicional.

En ciertas ocasiones resulta muy conveniente controlar los asientos superficiales por encima del túnel. Esto es especialmente evidente en túneles urbanos, donde existen edificaciones próximas y la cobertera sobre la excavación es pequeña. En túneles de montaña no se suele hacer, salvo circunstancias especiales. El método habitual de medida es topográfico, utilizando un nivel de precisión, que permite apreciar el medio milímetro. Los hitos o puntos de nivelación se distribuyen sobre la traza del túnel, situando uno o varios lo suficientemente alejados del mismo para que sirvan de referencia. De este modo el nivel puede estacionarse dentro de la zona de influencia de la excavación.

Los puntos se deben proteger del tráfico y de los transeúntes mediante arquetas con

Sec de medida 1

tapa. El clavo de medida irá bien anclado en el terreno. Las medidas deben comenzarse antes de que la excavación del túnel alcance la sección de medida, y prolongarse por lo menos hasta que el frente se aleje dos o tres diámetros. Las lecturas suelen tener bastante dispersión por causas meteorológicas, ya que el volumen del terreno superficial resulta ser bastante sensible al contenido de humedad, que varía estacionalmente.

Existen aparatos más espe- cíficos que controlan un edificio en concreto que se halle próximo al túnel. Pueden instalarse medidores de asientos con mecanismo hidráulico, mucho más sensibles; también clinó- metros para control de la inclinación de las fachadas, fisurómetros o testigos de yeso para controlar la apertura de grietas exis- tentes, etc.

Los extensómetros de varillas y los inclinómetros son los aparatos más usados para medir los movimientos del interior del macizo rocoso. Son caros de instalación, por lo que únicamente se colocan en puntos de especial problemática, que requieran un análisis más detallado. En los túneles conviene normalmente concentrar todos los aparatos de medida en una misma sección completa de auscultación (véase figura 8.3), situada en una zona que pueda considerarse a priori más complicada que el resto. Las secciones completas necesariamente han de ser pocas en número debido a su alto coste, pero a lo largo del túnel tendremos gran número de secciones de convergencia,

con lo que podremos extra- polar los resultados de las secciones completas a toda la excavación. E l funcionamiento del extensómetro de varillas puede observarse en esque- ma en la figura 8.4. Está formado por un taladro en el que van alojadas una o varias varillas. Las varillas están protegidas por una vaina de plástico excepto en su parte final. Al rellenar el taladro con una inyección de mortero se consigue anclar cada varilla a profundidades distintas.

En la cabeza se coloca una pieza especial que permite leer la posición de cada varilla, bien mediante un reloj comparador, bien de forma automática mediante un potenciómetro. El extensómetro, pues, proporciona la variación de la distancia relativa entre la cabeza y cada punto de anclaje. No se trata de una medida absoluta, y si queremos conocer los movimientos absolutos debemos controlar topográficamente la cabeza o bien suponer que la varilla más profunda no sufre desplazamientos. Las lecturas son de gran precisión

(hasta la centésima de milímetro) y con poca dispersión en los resultados. Los extensómetros suelen ser de una a cinco varillas, que normalmente van alojadas en el mismo taladro, aunque puede resultar conveniente en ocasiones efectuar un taladro distinto para cada varilla. El extensómetro puede colocarse desde el interior o desde el exterior del túnel (figura 8.3). En general será preferible desde el exterior, pues puede comenzar a medirse antes del paso del frente por la sección, y además la lectura es mucho más cómoda. Desde el interior tendremos el mismo problema que con las convergencias: gran parte del movimiento ya habrá ocurrido cuando empiecen las lecturas. E l problema de los extensómetros de exterior es que únicamente pueden instalarse en el caso de túneles relativamente someros. Por otra parte, el esquema del funcionamiento de un inclinómetro se muestra en la figura 8.5. Este aparato de medida permite medir movimientos del terreno en dos direcciones perpendiculares, pero contenidas en un mismo plano horizontal. En un taladro, realizado desde el exterior, se introduce y se fija, mediante inyección de mortero, un tubo provisto de ranuras que sirven de guía. En el tubo se introduce una sonda que se desplaza por el tubo siguiendo las guías. Esta sonda es capaz de medir su desviación con respecto a la vertical, con lo que podemos calcular el desplazamiento

horizontal entre ambos extremos de la sonda, que normalmente distan un metro. La sonda se introduce hasta el fondo y se va extrayendo, efectuando una lectura a

profundidades dadas. De este modo se obtiene la deformación horizontal del terreno en función de la profundidad. Es una curva relativa, y para hacerla absoluta hemos de suponer que el fondo del inclinómetro tiene movi- miento nulo, o bien controlar topográficamente la cabeza. La precisión conseguida con un inclinómetro llega a la centésima de milímetro, pero, al tratarse de una lectura manual, está sujeta a posibles errores de lectura. Sólo puede colocarse desde el ex- terior, por lo que en túneles profundos no puede utilizarse.

Para medir las tensiones a las que trabaja el hormigón proyectado, o el anillo de hormigón encofrado de un túnel, se utilizan las células de presión. Su funcionamiento es hidráulico y constan de una placa hueca elástica rellena de un Iíquido a presión. Midiendo las variaciones de presión de dicho Iíquido conoceremos los incrementos de presión del material que rodea a la placa, que es el hormigón. Las células pueden colocarse de forma radial o tangencia1 (figura 8.6). Las radiales miden la presión que el terreno ejerce sobre el revestimiento, mientras que las tangenciales miden las compresiones dentro del anillo de hormigón. Con los espesores habituales de hormigón proyectado (5-20 cm) no hay espacio suficiente para colocar células tangenciales, por lo que su uso se limita a los revestimientos de hormigón encofrado. Estas medidas tienen una probabilidad alta de contener errores debido a defectos en la colocación de las células: el apoyo entre placa y terreno no es perfectamente liso, el hormigón no envuelve perfectamente a la placa, el mecanismo hidráulico de la célula pierde presión, etc. Por otra parte, sólo se miden las tensiones diferidas, pues la mayor parte de las deformaciones han ocurrido antes de colocar la célula. Por todo ello las células de presión no se utilizan nada más que en ocasiones especiales en que puedan tener interés, fundamentalmente para controlar las cargas diferidas sobre los revestimientos de hormigón del túnel. Mediante pequeños extensómetros de cuerda vibrante colocados dentro del hormigón, pueden medirse, con relativa precisión, las deformaciones de éste, y pasar a tensiones

Disposiciórz radial y tramvei"sal de las

céhlas de pesión

Células de m g a mecázica 1

supuesto conocido el módulo de defor- mación del material. Este es un método indirecto que no se utiliza habitualmente por su poca precisión. Las células de carga (figura 8.7) miden de forma mecánica o hidráulica la fuerza que la placa de cabeza de un anclaje ejerce sobre la roca. En los anclajes es de mucha utilidad para su control, pero la aplicación a los bulones de un túnel no es inmediata. En efecto, los bulones usados como sostenimiento de excavaciones subte- rráneas son generalmente pasivos y de anclaje repartido en toda su longitud, por lo que teóricamente su placa no ejerce presión sobre la roca. Si en un bulón normal colocamos una célula de carga no mediremos nada. Por tanto, para controlar el bulón lo que se suele hacer es instrumentar un anclaje de barra en lugar de un bulón. Es decir, el bulón con célula deberá ser activo y anclado sólo en la punta, dejando el fuste libre. De este modo podremos medir la evolución de la carga del bulón a lo largo del tiempo. Como se puede apreciar, la instrumentación no se corresponde directamente con el elemento de sostenimiento empleado, por lo que su interés es escaso.

&- -' & I ?<'; epresentación tos e interpretación La utilidad principal de la instrumentación es poder disponer a diario, durante la ejecución del túnel, de gráficos con curvas donde se representen las lecturas actualizadas para cada día. Esto permite observar rápidamente la tendencia a la estabilización, o no, de cada sección, con lo que los técnicos a pie de obra pueden tomar decisiones en lo relativo a sostenimientos a aplicar, refuerzos, medidas especiales, longitud y velocidad de avance, etc. Esto exige, lógicamente, que los técnicos de la obra tengan cierta experiencia en construcción de túneles. La auscultación exige un tratamiento informático de no demasiada envergadura. Se necesita un ordenador personal con un programa de hoja de cálculo y una impresora. En la hoja de cálculo se prepara una tabla de introducción de datos y otra tabla de resultados. Los cálculos para pasar de una a otra son muy sencillos: en general será suficiente con restar a cada lectura la lectura origen. Se preparan también unos gráficos XY y basta cada día con introducir la nueva medida e imprimir la gráfica actualizada. Las casas que comercializan los aparatos de medida, suministran también programas específicos y el hardware necesario para que los datos puedan introducirse directamente al ordenador, desde la centralita de lectura sin necesidad de teclearlos, pero en general suele ser suficiente el primer método. En la figura 8.8 y sucesivas se observan ejemplos de gráficas de auscultación. Normalmente se representa el movimiento medido con las convergencias o extensómetros en función del tiempo en días, ó de la distancia al frente en metros. En el inclinómetro se representa el movimiento horizontal en función de la cota para varios días. En cada caso concreto podrá ser de interés una cierta representación, que siempre será fácil de obtener con la hoja de cálculo. Otra utilidad interesante de la auscultación, es comprobar si los cálculos efectuados durante la fase de proyecto proporcionan valores similares a los reales en cuanto a las deformaciones del terreno, o bien, visto de forma inversa, calcular qué parámetros

debemos dar en el modelo de cálculo al terreno para obtener los movimientos reales medidos. Para este retro-análisis es necesario utilizar datos muy precisos y lo más completos posible. Esto sólo se consigue con la instrumentación colocada desde el exterior y comenzada a medir con suficiente antelación al paso del frente, en concreto con los resultados de extensómetros e inclinómetros. No es válida la instrumentación de interior ya que las lecturas empiezan cuando ya se ha producido una parte importante de la deformación. En este caso puede suponerse, como hipótesis, el porcentaje de deformación ocurrido antes del inicio de las medidas.

Resultados de medidas con

inclinómetros

(1) Dutro, Howard D.: "Underground Structures: Design and Instrumentation. Chapter 11 - Instrumentation ", Elsevier, 1989.

(2) Wittke W.: " Rock Mechanics", Springer-Verlag, 1990.

(3) Catálogos de fabricantes: GEODATA, INTERFELS, SOIL-EXPERTS, SOIL-INSTRUMENTS, etc