45
Mekanika Fluida II Fluida Tekompresi

Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

  • Upload
    hahanh

  • View
    255

  • Download
    11

Embed Size (px)

Citation preview

Page 1: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Mekanika Fluida II

Fluida Tekompresi

Page 2: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Referensi Definisi

1. Fluida terkompresi statis 2. Fluida terkompresi dinamis

Page 3: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Compressible Flow

Natural gas well

Tall Mountains

Page 4: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Compressible fluid

Fluida gas disebut compressible karena densitasnya bervariasi terhadap suhu dan tekanan

=P M /RT

Dalam perubahan elevasi yang kecil (contoh :

tangki, pipa, dll), kita dapat mengabaikan efek

perubahan tekanan terhadap elevasi.

Namun dalam kasus umum :

o

o

RT

zzMgPP

Tfor

)(exp

:constT

1212

gdz

dP

Page 5: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Linear Temperature Gradient

)( 00 zzTT

z

z

p

pzzT

dz

R

Mg

p

dp

00)( 00

RMg

T

zzTpzp

0

000

)()(

Page 6: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Persamaan di Atmosfer

Asumsi linear

RMg

T

zzTpzp

0

000

)()(

Asumsi konstan

0

0)(

0)(RT

zzMg

epzp

Page 7: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Contoh Kasus 1

Suhu udara di dekat permukaan bumi akan turun

sekitar 5 C setiap 1000 m elevasi. Jika suhu udara

di permukaan tanah 15 C dan tekanannya 760 mm

Hg, berapakah tekanan udara di puncak G. Ciremai

3800 m? Asusmsikan perilakunya mengikuti gas

ideal.

Page 8: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

1st

LAW OF THERMODYNAMICS

System

e (J/kg)

Boundary

Surroundings

• System (gas) composed of molecules moving in random motion

• Energy of molecular motion is internal energy per unit mass, e, of system

• Only two ways e can be increased (or decreased):

1. Heat, dq, added to (or removed from) system

2. Work, dw, is done on (or by) system

Page 9: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

THOUGHT EXPERIMENT #1

• Do not allow size of balloon to change (hold volume constant)

• Turn on a heat lamp • Heat (or q) is added to the system

• How does e (internal energy per unit mass)

inside the balloon change?

Page 10: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

THOUGHT EXPERIMENT #2

• *You* take balloon and squeeze it down to a small size

• When volume varies work is done • Who did the work on the balloon?

• How does e (internal energy per unit mass)

inside the balloon change? • Where did this increased energy come from?

Page 11: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

1st

LAW OF THERMODYNAMICS

• System (gas) composed of molecules moving in random motion • Energy of all molecular motion is called internal energy per unit mass,

e, of system

• Only two ways e can be increased (or decreased): 1. Heat, dq, added to (or removed from) system 2. Work, dw, is done on (or by) system

SYSTEM

(unit mass of gas)

Boundary

SURROUNDINGS

dq

wqde dd

e (J/kg)

Page 12: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

1st

LAW IN MORE USEFUL FORM

• 1st Law: de = dq + dw – Find more useful

expression for dw, in terms of p and (or v = 1/)

• When volume varies → work is done

• Work done on balloon, volume ↓ • Work done by balloon, volume ↑

pdvqde

wqde

pdvw

sdAppsdAw

spdA

AA

d

dd

d

d

ΔW

distanceforceΔW

Change in

Volume (-)

Page 13: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

ENTHALPY: A USEFUL QUANTITY

vdpdhq

vdpdedhdeq

pdvdeq

vdppdvdedh

RTepveh

d

d

d

Define a new quantity

called enthalpy, h:

(recall ideal gas law: pv = RT)

Differentiate

Substitute into 1st law

(from previous slide)

Another version of 1st law

that uses enthalpy, h:

Page 14: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

HEAT ADDITION AND SPECIFIC HEAT

• Addition of dq will cause a small change in temperature dT of system

• Specific heat is heat added per unit change in temperature of system

• Different materials have different specific heats

– Balloon filled with He, N2, Ar, water, lead, uranium, etc…

• ALSO, for a fixed dq, resulting dT depends on type of process…

Kkg

J

dT

qc

d

dq

dT

Page 15: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

SPECIFIC HEAT: CONSTANT PRESSURE

• Addition of dq will cause a small change in temperature dT of system

• System pressure remains constant

Tch

dTcdh

dTcq

dT

qc

p

p

p

p

d

d

pressureconstant

dq

dT

Kkg

J

dT

qc

d

Page 16: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

SPECIFIC HEAT: CONSTANT VOLUME

• Addition of dq will cause a small change in temperature dT of system

• System volume remains constant

Kkg

J

dT

qc

d

dq

dT

Tce

dTcde

dTcq

dT

qc

v

v

v

v

d

d

olumeconstant v

Page 17: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

HEAT ADDITION AND SPECIFIC HEAT

• Addition of dq will cause a small change in temperature dT of system

• Specific heat is heat added per unit change in temperature of system

Tch

dTcdh

dTcq

dT

qc

p

p

p

p

d

d

pressureconstant

• However, for a fixed dq, resulting dT depends on type of process:

Tce

dTcde

dTcq

dT

qc

v

v

v

v

d

d

olumeconstant v

Kkg

J

dT

qc

d

v

p

c

c

Specific heat ratio

For air, = 1.4

Constant Pressure Constant Volume

Page 18: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

ISENTROPIC FLOW

• Goal: Relate Thermodynamics to Compressible Flow • Adiabatic Process: No heat is added or removed from system

– dq = 0 – Note: Temperature can still change because of changing density

• Reversible Process: No friction (or other dissipative effects)

• Isentropic Process: (1) Adiabatic + (2) Reversible – (1) No heat exchange + (2) no frictional losses – Relevant for compressible flows only – Provides important relationships among thermodynamic variables

at two different points along a streamline

1

1

2

1

2

1

2

T

T

p

p = ratio of specific heats

= cp/cv

air=1.4

Page 19: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

DERIVATION: ENERGY EQUATION

022

0

0

0

0

0

2

1

2

212

2

1

2

1

VVhh

VdVdh

VdVdh

VdVvdh

VdVdp

vdpdhq

q

wqde

V

V

h

h

d

d

ddEnergy can neither be created nor destroyed

Start with 1st law

Adiabatic, dq=0

1st law in terms of enthalpy

Recall Euler’s equation

Combine

Integrate

Result: frictionless + adiabatic flow

Page 20: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

ENERGY EQUATION SUMMARY

• Energy can neither be created nor destroyed; can only change physical form – Same idea as 1st law of thermodynamics

constant2

222

2

22

2

11

Vh

Vh

Vh

constant2

222

2

22

2

11

VTc

VTc

VTc

p

pp

Energy equation for frictionless,

adiabatic flow (isentropic)

h = enthalpy = e+p/= e+RT

h = cpT for an ideal gas

Also energy equation for

frictionless, adiabatic flow

Relates T and V at two different

points along a streamline

Page 21: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

GOVERNING EQUATIONS STEADY AND INVISCID FLOW

2

22

2

11

2211

2

1

2

1VpVp

VAVA

222

111

2

22

2

11

1

2

1

2

1

2

1

222111

2

1

2

1

RTp

RTp

VTcVTc

T

T

p

p

VAVA

pp

• Incompressible flow of fluid along a

streamline or in a stream tube of

varying area

• Most important variables: p and V

• T and are constants throughout flow

• Compressible, isentropic

(adiabatic and frictionless)

flow along a streamline or in a

stream tube of varying area

• T, p, , and V are all variables

continuity

Bernoulli

continuity

isentropic

energy

equation of state

at any point

Page 22: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

EXAMPLE: SPEED OF SOUND

• Sound waves travel through air at a finite speed • Sound speed (information speed) has an important role in

aerodynamics • Combine conservation of mass, Euler’s equation and isentropic

relations:

RTp

a

a

VM

• Speed of sound, a, in a perfect gas depends only on temperature of gas

• Mach number = flow velocity normalizes by speed of sound

– If M < 1 flow is subsonic

– If M = 1 flow is sonic

– If M > flow is supersonic

• If M < 0.3 flow may be considered incompressible

d

dpa 2

Page 23: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

KEY TERMS: CAN YOU DEFINE THEM?

• Streamline • Stream tube

• Steady flow • Unsteady flow

• Viscid flow • Inviscid flow

• Compressible flow • Incompressible flow

• Laminar flow • Turbulent flow

• Constant pressure process • Constant volume process

• Adiabatic

• Reversible

• Isentropic

• Enthalpy

Page 24: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

MEASUREMENT OF AIRSPEED: SUBSONIC COMPRESSIBLE FLOW

• If M > 0.3, flow is compressible (density changes are important) • Need to introduce energy equation and isentropic relations

2

1

1

0

1

2

1

1

0

0

2

11

2

11

21

2

1

MT

T

Tc

V

T

T

TcVTc

p

pp

11

2

1

1

0

12

1

1

0

2

11

2

11

M

Mp

p

cp: specific heat at constant pressure

M1=V1/a1

air=1.4

Page 25: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

MEASUREMENT OF AIRSPEED: SUBSONIC COMRESSIBLE FLOW

• So, how do we use these results to measure airspeed

111

2

111

2

11

2

11

2

1

10

22

1

1

10

2

12

1

1

1

0

2

12

1

1

1

02

1

s

scal

p

ppaV

p

ppaV

p

paV

p

pM

p0 and p1 give

Flight Mach number

Mach meter

M1=V1/a1

Actual Flight Speed

Actual Flight Speed

using pressure difference

What is T1 and a1?

Again use sea-level conditions

Ts, as, ps (a1=340.3 m/s)

Page 26: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

EXAMPLE: TOTAL TEMPERATURE

• A rocket is flying at Mach 6 through a portion of the atmosphere where the static temperature is 200 K

• What temperature does the nose of the rocket ‘feel’?

• T0 = 200(1+ 0.2(36)) = 1,640 K!

2

1

1

0

2

11 M

T

T

Total temperature

Static temperature Vehicle flight

Mach number

Page 27: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

MEASUREMENT OF AIRSPEED:

SUPERSONIC FLOW

• What can happen in supersonic flows?

• Supersonic flows (M > 1) are qualitatively and quantitatively different from subsonic flows (M < 1)

Page 28: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

HOW AND WHY DOES A SHOCK WAVE FORM?

• Think of a as ‘information speed’ and M=V/a as ratio of flow speed to information speed

• If M < 1 information available throughout flow field

• If M > 1 information confined to some region of flow field

Page 29: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

MEASUREMENT OF AIRSPEED: SUPERSONIC FLOW

1

21

124

1 2

1

1

2

1

2

1

2

1

02

M

M

M

p

p

Notice how different this expression is from previous expressions

You will learn a lot more about shock wave in compressible flow course

Page 30: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

SUMMARY OF AIR SPEED MEASUREMENT

• Subsonic,

incompressible

• Subsonic, compressible

• Supersonic

1

21

124

1 2

1

1

2

1

2

1

2

1

02

M

M

M

p

p

111

21

10

22

s

scal

p

ppaV

s

e

ppV

02

Page 31: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

2/6/2007 BIEN 301 – Winter 2006-

2007

Compressible Flow

– Mach Regimes

• Ma < 0.3 Incompressible Flow • 0.3 < Ma < 0.8 Subsonic Flow • 0.8 < Ma < 1.2 Transonic Flow • 1.2 < Ma < 3.0 Supersonic Flow • 3.0 > Ma Hypersonic Flow

– These are only guides, the individual flow scenarios affect how shock waves might develop.

Page 32: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

MORE ON SUPERSONIC FLOWS

V

dVM

A

dA

V

dV

A

dA

a

VdV

V

dV

A

dA

dp

VdVd

VdVdp

V

dV

A

dAd

AV

1

0

0

0

constantlnlnVlnAln

constant

2

2

Isentropic flow in a streamtube

Differentiate

Euler’s Equation

Since flow is isentropic

a2=dp/d

Area-Velocity Relation

Page 33: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

CONSEQUENCES OF AREA-VELOCITY RELATION

V

dVM

A

dA12

• IF Flow is Subsonic (M < 1) – For V to increase (dV positive) area must decrease (dA negative) – Note that this is consistent with Euler’s equation for dV and dp

• IF Flow is Supersonic (M > 1)

– For V to increase (dV positive) area must increase (dA positive)

• IF Flow is Sonic (M = 1) – M = 1 occurs at a minimum area of cross-section – Minimum area is called a throat (dA/A = 0)

Page 34: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

TRENDS: CONTRACTION

M1 < 1

M1 > 1

V2 > V1

V2 < V1

1: INLET 2: OUTLET

Page 35: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

TRENDS: EXPANSION

M1 < 1

M1 > 1

V2 < V1

V2 > V1

1: INLET 2: OUTLET

Page 36: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

PUT IT TOGETHER: C-D NOZZLE

1: INLET 2: OUTLET

Page 37: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

MORE ON SUPERSONIC FLOWS

• A converging-diverging, with a minimum area throat, is necessary to produce a supersonic flow from rest

Supersonic wind tunnel section

Page 38: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

GOVERNING EQUATIONS STEADY AND INVISCID FLOW

2

22

2

11

2211

2

1

2

1VpVp

VAVA

222

111

2

22

2

11

1

2

1

2

1

2

1

222111

2

1

2

1

RTp

RTp

VTcVTc

T

T

p

p

VAVA

pp

• Incompressible flow of fluid along a

streamline or in a stream tube of

varying area

• Most important variables: p and V

• T and are constants throughout flow

• Compressible, isentropic

(adiabatic and frictionless)

flow along a streamline or in a

stream tube of varying area

• T, p, , and V are all variables

continuity

Bernoulli

continuity

isentropic

energy

equation of state

at any point

Page 39: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Kondisi Isentropic

v

p

C

C

Pconstant

P

1

1y

P

P

T

T1

11

1

12

1

1

12

11

11

RT

zgMTT

RT

zgMPP

Page 40: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Aliran Steady

Batas kompresibilitas

Pertimbangan Termodinamik

• Persamaan gas ideal

• Proses Reversibel

• Entropi

• Entalpi

• Kalor spesifik

05.0

Page 41: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Studi Kasus 1

Suatu gas di-ekspansi dari 5 bar ke 1 bar dengan mengikuti persamaan pV1.2=C. Suhu awal 200 C. Hitung perubahan entropi spesifik yang terjadi!

Jika =1.4 dan R =287 J/kg K.

Page 42: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Solusi Kasus 1

Page 43: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Studi Kasus 2

Tabung pitot dipasang untuk mengukur aliran gas dalam pipa yang bertekanan 105 kPa. Beda tekanan yang terukur 20 kPa dan suhunya 20 C. Hitung besarnya kecepatan aliran gas!

Jika =1.4 dan R =287 J/kg K.

Page 44: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Solusi Kasus 2

Page 45: Mekanika Fluida II - kuliah.ftsl.itb.ac.id · Mekanika Fluida II Fluida Tekompresi . Referensi Definisi 1. Fluida terkompresi statis 2. Fluida terkompresi dinamis . Compressible Flow

Questions?