Mfh-04 Aliran Melalui Pelimpah

Embed Size (px)

Citation preview

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    1/27

    NOTCHES WEIRS

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    2/27

    DEFINITIONSA notch may defined as an opening provided in the side of atank (or vessel) such that the liquid surface in the tank isbelow the top edge of the opening. Notches made of metallicplates, and are provided in narrow channels (laboratory) tomeasure the rate of flow.

    A weir is the name given to a concrete or massonry structurebuilt across a river or stream in order to raise the level of thewater on the upstream side and to allow the excess water toflow over its entire length to the downstream side. Weirs mayalso be used for measuring the rate of flow water in rivers or

    streams.

    2

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    3/27

    CLASSIFICATION OF NOTCHES

    Based on the shape of the opening:Rectangular notchTriangular (V-notch)Trapezoidal notch

    Parabolic notch, andStepped notch.

    According to the effect of the sides onthe nappe emerging from notch:

    Notch with and contractionNotch without end contraction or suppressednotch.

    3

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    4/27

    CLASSIFICATION OF WEIRS (1/2)

    Based on the shape of the opening of:Rectangular notch,Triangular notch, andTrapezoidal notch

    Based on the shape of the crest:Sharp crested weirs,Narrow crested weirs,

    Broad crested weirs, andOgee shaped weirs

    4

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    5/27

    CLASSIFICATION OF WEIRS (2/2)

    According to the effect of the sides on thenappe emerging from notch:

    Notch with and contraction

    Notch without end contraction or suppressednotch.

    According to the discharge conditions:Freely discharging weirs, andSubmerged (or downed) weirs

    5

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    6/27

    FLOW OVER A RECTANGULAR SHARP CRESTEDWEIR OR NOTCH

    Consider a rectangular sharp crested weir asshown below: L crest length, and H is the heightof the water surface above the crest.

    6

    Head above the crest, H

    Height of the weir or notch, p

    Nappe

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    7/27

    CLASSIFICATION OF THE SHARP CRESTEDWEIR

    Sharp crested weir can be classified as follows:1. Based on the shape of the weir

    1) Rectangular 2) Triangular 3) Trapezoidal

    7

    rectangular triangular trapezoidal

    2. Based on the elevation of tail water (down stream water):

    1) Free flow weir, when the downstream water surface is below the crest of the weir.

    2) Submerged weir, when the downstream water surface is above the crestof the weir.

    Free flow weir submerged weir

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    8/27

    RECTANGULAR SHARP CRESTED WEIR

    Rectangular sharp crested weir: crest width b, overflow hight H,discharge coefficient Cd, and velocity approach can be neglected.

    g2V

    0z00z22

    21

    gh2)zz(g2V 212

    8

    Consider to water segment of dh at the depth h from water surface .Bernoulli equation between point 1 and 2 is,

    g2

    V

    g

    pz

    g2

    V

    g

    pz

    222

    2

    211

    1 hdh

    b

    V1

    1

    H 2 v2

    As V 1 ≈ 0, and both points are at atmospheric pressure, then the equationbecome:

    or

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    9/27

    H

    0

    H

    0d

    H

    0

    21

    21

    h32

    g2Cdbdhhb.g2CdqQ 23

    H.g2bC32

    Q d

    9

    Segment area : dA = b.dh

    The discharge through the segment is : dAVdq 2

    dh.b.gh2dA.Vdq 2

    By considering the discharge coefficient Cd, then the discharge is :

    dh.b.h.g2Cdq 21

    d

    Integration of the equation produces:

    RECTANGULAR SHARP CRESTED WEIR(continued)

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    10/27

    dAVdq 2 )g2

    vh(g2dh.b.Cdq

    2a

    d

    H

    ad

    H

    dhg

    vhbgC dqQ

    0

    2

    0

    21

    )2

    (.2

    2

    32a

    2

    32a

    d g2

    v

    g2

    vh.g2b.C

    3

    2Q

    10

    When the velocity approache is considered , V a , the energy headat the upstream of the weir is:

    g2v

    h2a

    Velocity through the segment of dh is then :

    )g2

    vh(g2V

    2a

    2 The discharge through the segment is :

    Intergration of the equation produces :

    RECTANGULAR SHARP CRESTED WEIR(continued)

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    11/27

    TRIANGULAR SHARP CRESTED WEIR

    11

    Discharge through the triangular sharp crested weir: water depth abovecrest H, discharge coefficient C d, and overflow angle α.

    dh2

    tg)hH(2dh.bda

    gh2v

    Consider to segment dh at the water depth h from the water surface. Segmentarea is

    Velocity through the segment is

    The discharge through the segment is :

    gh2.dh2

    tg)hH(2Cgh2daCdq dd

    Bb

    αhdh

    V1

    1

    H 2

    v2

    V2 /2g

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    12/27

    12

    Integration the equation produces the discharge through thewhole weir:

    H

    0d

    H

    0

    dhh)hH(g22

    tgC2dqQ 21

    H

    0d dh)hHh(g22tgC2Q

    23

    21

    H05232d32 2523 hHhg22tg.CQ )HH(g2

    2tg.CQ 2

    525

    52

    32

    d32

    25

    Hg22

    tg.C158Q d

    TRIANGULAR SHARP CRESTED WEIR(continued)

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    13/27

    13

    When the velocity approache is considered, the the equationbecome:

    2/522/52

    d g2v

    g2vHg2

    2tg.C

    158Q

    TRIANGULAR SHARP CRESTED WEIR(continued)

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    14/27

    TRAPEZOIDAL SHARP CRESTED WEIR

    14

    25

    23

    Hg22

    tg.C158

    Hg2bC32

    Q 2d1d

    where: C d1 = discharge coefficient of rectangular weir C d2 = discharge coefficient of triangular weir

    As the trapezoidal is the combination of rectangular and triangular, sothe discharge through the trapezoidal weir is the summation of discharge through the rectangular weir and triangular weir.

    b

    hdh

    V1

    1

    H 2

    v2

    V2 /2g

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    15/27

    BROAD CRESTED WEIR

    15

    Weir is called wide crested weir when the crest width iswider than 0.66 of the overflow depth ( t > 0,66H) , and thepresent of the straight flow-lines (horizontal) on the top of the crest.

    The pressure on the overflow above the wide crest ishydrostatic pressure. Application of Bernoulli equation on thepoints before and on the top of the weir crest can be used tofind out the flow velocity above the crest.

    By measuring the water depth at the upstream, H, thedischarge over the weir can be determined.

    When the water level at the downstream of the weir is abovethe crest, the weir is called imperfect weir or submergedweir.

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    16/27

    g2V

    gp

    zg2

    Vg

    pz

    222

    2

    211

    1

    g2

    Vh00H0

    22

    g2

    V

    hH

    22

    )hH(g2v

    16

    Aplication of Bernoulli equation on wide crested weir results:

    hH

    21

    BROAD CRESTED WEIR (continued)

    V. A.CQ d

    21

    )hHh(g2bC)hH(g2h.bCQ 32dd

    or

    Discharge of the weir is then:

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    17/27

    Maximum discharge is occurred when (Hh 2-h 3) is maxsimum. The value of (Hh 2-h 3) is maximum when the value of dQ/dh = 0

    2132

    2 )hHh(gbCdhd

    dhdQ

    d

    17

    02 2132 )hHh(

    dhd

    gbCdhdQ

    d

    0

    2

    3221

    32

    2

    )hHh(

    hHh

    2 Hh – 3h 2 = 0 atau Hh 32

    BROAD CRESTED WEIR (continued)

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    18/27

    Substitute the value of h into the equation of Q, produces :

    18

    213322322 )H()H(HgbCQ d

    32743

    2783

    94 22 HgbCHHgbCQ dd

    2

    3

    233

    2 HgbCQ d

    The discharge over the weir can be calculated by measuring the water lever at the upstream of the weir, H.

    BROAD CRESTED WEIR (continued)

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    19/27

    EXAMPLE1. Air mengalir melalui ambang lebar dengan bentang 20 m. Perbedaan

    tinggi air akibat ambang adalah 0,4 m. Hitung besarnya aliran maksimummelalui ambang dengan koefisien debit 0,8

    19

    Perbedaan tinggi muka air, H - h = 0,4 m

    Jadi, h = H – 0,4m

    Aliran maksimum bila Hh 32

    Maka, 4,0HH32 3H - 1,2 = 2H

    H = 1,2 mDebit maksimum melalui pelimpah,

    23

    23

    23840233 2 HgbC.HgbCQ dd

    Untuk percepatan gravitasi g=9,81 m/det

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    20/27

    EXAMPLE

    20

    2. Hitung besarnya debit melalui peluap terendam dengan panjang ambang, b

    dan koefisien debit Cd23

    bHC71,1Q d

    det/m95,352,1.20.8,0.71,1Q 323

    H1 H2

    Debit aliran melalui peluap terendam adalah jumlah aliran setinggi luapanH1-H2 dengan aliran terendam setinggi H2

    Q = Q1 + Q2

    )HH(g2bHC)HH(g2bCQ 212d21d32 23

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    21/27

    RECTANGULAR CRESTED WEIR

    21

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    22/27

    CIPOLETTI WEIR

    22

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    23/27

    V-NOTCH WEIR

    23

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    24/27

    TIPE AMBANG

    24

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    25/27

    SLUICE GATE

    25

    Figure 9. Free outflow followedby a shooting tailwater flow

    Figure 10. Free outflow followed by anundulating hydraulic jump in thetailwater

    figure 11. free outflow followed by aperfect hydraulic jump with surfaceroller in the tailwater

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    26/27

    LABYRINTH WEIR

    26

  • 8/17/2019 Mfh-04 Aliran Melalui Pelimpah

    27/27

    SPILLWAY

    27