Một số vấn đề lý thuyết xác suất trên không gian banach

Embed Size (px)

Citation preview

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    1/83

    Mc lc

    Li m u i

    1 Kin thc chun b 11.1 Bin ngu nhin vi gi tr trong khng gian Banach . . 11.2 Bin Rademacher, nguyn l Co . . . . . . . . . . . . . . 71.3 Cc bt ng thc i vi bin ngu nhin thc v Mar-

    tingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.4 Bt ng thc ng chu ca tch o . . . . . . . . . 12

    2 Tng ca cc bin ngu nhin c lp 13

    2.1 i xng ho v mt s bt ng thc ca tng cc binngu nhin c lp . . . . . . . . . . . . . . . . . . . . . 14

    2.2 Tnh kh tch ca tng i lng ngu nhin c lp . . 232.3 S tp trung v dng iu ui . . . . . . . . . . . . . . 43

    3 Lut mnh s ln 563.1 Pht biu chung cho nh l gii hn . . . . . . . . . . . 563.2 Cc lut s ln . . . . . . . . . . . . . . . . . . . . . . . 68

    Kt lun 78

    Ti liu tham kho 80

    i

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    2/83

    Li ni u

    L thuyt xc sut ra i vo th k 17 bi cc nh ton hc Php.Tuy nhin, phi n na u th k 20 mi thc s c mt c s vng

    chc. K t mn khoa hc ny khng ngng pht trin. Ngy nay n tr thnh mt ngnh ton hc ln chim v tr quan trng, khng chc nhiu ng dng m cn l mt ngnh ton c tm l thuyt trnh cao.

    L thuyt xc sut trong khng gian Banach l mt nhnh mi caton hc, nhm m rng nghin cu vector ngu nhin v hn chiu. l mt s khi qut t nhin ca qu trnh ngu nhin, cnhiu nh ton hc nghin cu nh A. Beck, B. Maurey, G.Pisier, J-P.

    Kahane, J. Hoffmanm-Jorgensen, vi nhiu kt qu quan trng c tmthy . Do , ti chon ti "Mt s vn ca l thuyt xcsut trn khng gian Banach" lm ti lun vn tt nghipthc s ca mnh. Tm hiu vn ny, ti mong mun s nm bt cnhng kt qu c bn ca th h trc t c, v c gng rt ranhng kt lun, nhn xt ca ring mnh. T trang b cho mnh vnkin thc v phng php nghin cu c th i su vo lnh vc .Vi kh nng v thi gian c hn, nn ti ch dng li vic nghincu tng cc bin ngu nhin c lp cng lut s ln trong khng gianBanach. Vi l do , bn lun vn c chia lm ba chng.

    Chng 1: Nhng kin thc chun b ca lun vn. Trong chngny, tc gi nu nhng khi nim c bn v bin ngu nhin trong khnggian Banach, chui bin Rademacher v bt ng thc ng chu. y lnhng kt qu quan trng nht nghin cu tng cc bin ngu nhintrong khng gian Banach cc chng sau.

    Chng 2 Trnh by v tng ca cc bin ngu nhin c lp. yl mt trong hai chng chnh ca lun vn. Trong chng ny, c

    chia thnh ba phn: Phn u xem xt phng php i xng ho trong

    ii

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    3/83

    nghin cu cc tnh cht ca tng cc bin ngu nhin c lp, vi ccbt ng thc quan trng nh bt ng thc co. Phn hai nghin cutnh kh tch ca tng cc bin ngu nhin c lp vi cc nh l quan

    trng l nh l 2.11 v 2.11. Phn cui, quan trng nht vi vic sdng bt ng thc ng chu nh gi bin c ui, nh l 2.29.Chng 3 Trnh by v lut mnh s ln ca tng cc bin ngu

    nhin trong khng gian Banach. Nghin cu s hi t hu chc chn catng cc bin ngu nhin c lp. Chng ny c chia lm hai phn:Phn u nu pht biu chung ca nh l gii hn vi kt qu quantrng nht l nh l 3.5; phn hai l p dng pht biu chung a racc lut s ln c th.

    Qua y, tc gi xin c gi li cm n su sc n ngi thy, ngihng dn khoa hc ca mnh l GS. TSKH ng Hng Thng. Ngi a ra ti v hng dn tn tnh trong sut qu trnh nghin cuca tc gi. ng thi tc gi cng chn thnh cm n cc thy c trongkhoa Ton - C - Tin hc trng i hc Khoa hc T nhin, i hcQuc gia H Ni, to mi iu kin cho tc gi v kin thc, ti liuv th tc hnh chnh tc gi hon thnh bn lun vn ny.

    H Ni, nm 2009Hc vin

    T Cng Sn

    iii

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    4/83

    Chng 1

    Kin thc chun b

    Phn ny, ta s a ra mt s khi nim v kt qu cn dng trong phntip theo nh: Cc khi nim, tnh cht c bn lin quan ti bin ngunhin vi gi tr trong khng gian Banach; bt ng thc ng chu; btng thc co; v dy bin Rademacher vi cc tnh cht ca n.

    Vi mc tiu chnh ca lun vn l nghin cu v tng cc bin ngunhin trong khng gian Banach. V vy, chng ny ch chng minh hai

    bt ng thc v dy tng ring l bt ng thc Levy v bt ng thcOttavani-Kolmogorov.

    1.1 Bin ngu nhin vi gi tr trong khng

    gian Banach

    y, trnh by mt s khi nim v tnh cht lin quan ti bin ngunhin nhn gi tr trong khng gian Banach nh: Khi nim v binngu nhin vi gi tr trong khng gian Banach, cc s hi t trong cabin ngu nhin trong khng gian Banach, tnh kh tch.

    K hiu B l khng gian Banach trn R vi chun ., B l khnggian lin hp ca B.

    Gi thit khng gian xc sut (, A,P) l y , v khng gian Btho mn iu kin: tn ti tp m c D l tp con ca hnh cu

    1

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    5/83

    n v trong khng gian lin hp B sao cho :

    x = supf

    D

    |f(x)| (vi x B).

    Mt bin ngu nhin hoc vc t ngu nhin vi gi tr trong khng gianBanach B l mt nh x o c X t khng gian xc sut (, A,P)vo B, vi B c trang b trn mt i s sinh bi cc tp mca B.

    Bin ngu nhin X vi gi tr trong B c gi l Radon, nu mi > 0, tn ti tp compac K() trong B sao cho

    P

    {X

    K

    } 1

    .

    Ni cch khc, o nh ca P qua X l mt o Radon trn (B, B).Hay tng ng vi X nhn hu ht cc gi tr trong mt khng giantuyn tnh ng, tch c. Hn na, iu ny li tng ng vi tnhcht: X l gii hn hu chc chn ca dy hm n gin:

    i

    xiIAi vi xi B, Ai A.

    i vi bin ngu nhin X, khi o xc sut nh trn B = Xca P qua X c gi l phn phi xc sut ca X.

    Khi phn phi ca bin ngu nhin Radon l hon ton c xcnh bi hnh chiu ca n; chnh xc hn, nu X,Y l cc bin ngunhin Radon sao cho mi f B: f(X) v f(Y) (nh l bin ngu nhinthc) c cng phn phi th X = Y.

    Kt hp vi nh l trong trng hp thc, th ta c : cc phim hmc trng trn B:

    E exp{if(X)} = B

    exp{if(x)}d(x) f B

    xc nh hon ton phn phi ca X.Nu bin ngu nhin X c phn phi tho mn X = (X) th ta

    ni bin ngu nhin X l i xng.Ta ni, n hi t yu ti v k hiu n nu v ch nu

    limndn = d

    2

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    6/83

    vi mi lin tc v b chn trn B.Khng gian tt c cc o xc sut Radon trn (B, P(B)) cng

    vi t p yu xc nh t s hi t yu trn l khng gian metric .

    V vy kim tra dy n hi t yu ta cn ch ra (n) compac yu ngthi tt c cc gii hn c th l nh nhau.i vi iu kin u, mt tiu chun quan trng kim tra l nh

    l Prokhonov:Tp (i)iI trong P(B) l compac tng i vi t p yu khi v ch khimi > 0, tn ti tp compac K trong B

    i(K) 1 vi mi i I.

    Dy (Xn) cc bin ngu nhin Radon vi gi tr trong B gi l hit n X nu dy phn phi Xn X. kim tra (Xn) hi t yun X ta cn kin tra f(Xn) hi t yu ti f(X) vi mi f B v dy(Xn) l cht theo ngha:

    Mi > 0, tn ti tp compac K trong B vi

    P(Xn > ) 1 vi mi n hoc n ln.

    Dy (Xn) gi l hi t theo xc sut ti X nu vi mi > 0

    limnP

    {Xn X > } = 0.

    Dy c gi l b chn theo xc sut ( hay bi chn ngu nhin) nu vimi > 0 tn ti A > 0 sao cho

    supP{Xn > A} < .Ta c, nu (Xn) hi t theo xc sut th n hi t yu. iu ngc li

    ng nu phn phi gii han tp trung ti mt im. Do , mun kimtra (Xn) hi t theo xc sut v 0 th ch cn kim tra (Xn) l cht vtt c cc gii hn c th bng 0.

    Nu 0 < p , k hiuLp(B) = Lp(, A,P, B)

    l khng gian tt c cc bin ngu nhin X (trn (, A,P)) nhn gi trtrong B, sao choXp kh tch

    EXp = XpdP < , p < .3

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    7/83

    vX = esssupX < , p = .

    Khi Lp(B) cng vi

    Xp = (E

    X

    p)1/p l mt khng gian Banach

    vi 1 p (v l khng gian vector metric vi 0 < p < 1 ).Nu (Xn) hi t ti X trong Lp(B), th ta ni (Xn) hi t trung bnh

    ti X. V khi (Xn) hi t trung bnh ti X th n cng hi t theo xcsut ti X.

    Dy (Xn) hi t hu chc chn ti X nu

    P{ limn

    Xn = X} = 1.

    Dy (Xn) l b chn hu chc chn nu

    P{supn

    Xn < } = 1.

    Khc vi s hi t theo xc sut, hi t hu chc chn khng metric hoc, v r rng hi t hu chc chn ko theo hi t theo xc sut.

    phn tip theo, ta nu mt s nh ngha v tnh cht lin quann tnh kh tch.

    Mt bin ngu nhin Radon X vi gi tr trong B gi l kh tchmnh nu X kh tch (tc thuc L1(B)).By gi, ta nh ngha mt loi kh tch khc l kh tch yu (kh

    tch Pettis):Gi s, bin ngu nhin Radon X tho mn: vi mi f B, bin

    ngu nhin thc f(X) kh tch. Nu ta xt ton t

    T : B L1(, A,P)

    nh ngha bi T(f) = f(X) th T l ton t b chn, v vy xc nhmt phim hm tuyn tnh lin tc trn B, n l mt phn t trongB. Nu phn t ny thc s thuc B th ta k hiu phn t l EXv khi ta ni X l kh tch yu (hay kh tch Pettis). Ni cch khc,nu tn ti a B sao cho vi mi f B, ta c Ef(X) = f(a) th X lkh tch yu, v vit EX = a.

    Nu bin ngu nhin Radon X kh tch mnh th kh tch yu. ngthi ta c

    EX EX

    4

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    8/83

    y ta cng nhc li mt tnh cht quan trng c thit lp tbt ng thc Jensen v tnh c lp. Nu X l bin ngu nhin Radonvi gi tri trong B m EX = 0 ( tc Ef(X) = 0 vi mi f

    D) ta ni

    X c k vng khng hay X l quy tm.Vi F l mt hm li trong R+, X, Y l 2 bin ngu nhin c lp

    ly gi tr trong B sao cho EF(X) < v nu Y c k vng 0.Ta c:

    EF(X + Y) EF(X). (1.1)Tip theo ta s chng minh hai bt ng thc quan trng ca dy

    tng ring ca dy bin ngu nhin c lp (c th tham kho cc chngminh ny trong [1])

    nh l 1.1. (Bt ng thc Levy) Cho(Xi) l bin ngu nhin i xng

    nhn gi tr trong B. Vi mik, tSk =k

    i=1

    Xi. Th vi mi s nguyn

    N v t > 0 ta c:

    P{maxkN

    Sk > t} 2P{SN > t}

    vP{max

    iNXi > t} 2P{SN > t}.

    Nu(Sk) hi t theo xc sut ti S, th ta c bt ng thc m rng sau

    P{maxk

    Sk > t} 2P{S > t}

    v tng t, khi thaySi biXi.Hn na, nu tnh kh tch c m bo th vi mi p: 0 < p <

    EmaxkN

    Skp 2ESNp

    v tng t, khi thaySk biXk.

    Chng minh. Ta ch chng minh khng nh u, cc khng nh khcchng minh tng t.

    t = inf

    {k

    N :

    Sk

    > t

    }

    5

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    9/83

    Khi N

    k=1{ = k} = {max

    kNSk > t}.

    Vy

    P{SN > t} =N

    k=1

    P{Sn > t, = k}. ()

    Li do, vi mi k th (X1, ...,Xk, Xk+1,...,XN) cng phn phi vi(X1,...,XN) v { = k} ch ph thuc vo X1,...,Xk nn ta cng c:

    P{SN > t} =N

    k=1

    P{Sk Rk > t, = k} ()

    y Rk = SN Sk. Cng v vi v (*) v (**) v dng bt ng thctam gic, ta c:

    2P{SN > t} =N

    k=1

    P{ = k} = P{maxkN

    Sk > t}.

    c iu phi chng minh.Bt ng thc tip theo c cp ti l bt ng thc Ottavani-

    Kolmogorov. Chng minh ca n c suy ra theo kiu chng minh cabt ng thc Levy.

    nh l 1.2. Cho {Xi}iN l dy bin ngu nhin Borel c lp vi ccgi tr trong khng gian Banach tch c B. XtSk =

    k

    i=1Xi (k N)

    th vi mis, t > 0

    P{maxkN

    Sk > s + t} P{SN > t}1 max

    kNP(SN Sk > s)

    Chng minh. Xt

    = inf{k N : Sk > s + t} nu tn ti k nh th+ nu khng tn ti k nh vy

    6

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    10/83

    Khi { = k} ch ph thuc vo X1, X2, . . . , X k vN

    k=1{ = k} = {maxkN Sk > s + t}nn

    Nk=1

    P{ = k} = P{maxkN

    Sk > s + t}.

    Ta thy, khi

    Sk

    > s + t

    SN

    Sk

    SN

    Sk

    > t.

    Vy nn, khi = k v SN Sk s th SN > t.Cng vi tnh c lp ca { = k} v SN Sk nn:

    P{SN > t} = P({SN > t} N

    k=1

    { = k})

    =

    N

    k=1 P{ = k, SN > t} N

    k=1 P{ = k, SN Sk > s}=

    Nk=1

    P{SN Sk > s}P{ = k} infP{SNSk s}N

    k=1

    P{ = k}

    = (1 maxP{SN Sk > s})P{max SN > s + t} pcm

    1.2 Bin Rademacher, nguyn l Co

    Vic nghin cu trc tip chui ngu nhin trong khng gian Banach lkh khn. V vy, nh mt bc trung gian ta s nghin cu cc kt qucho trng hp chui c bit dng

    i

    xii, vi i l cc bin ngu nhin

    thc no . Nh l mt php nhng bin ngu nhin thc vo khnggian cc bin ngu nhin nhn gi tr trong khng gian Banach. Di

    y, ta xem xt cc tnh cht ca chui dng trn.

    7

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    11/83

    Ta gi dy (i) cc bin ngu nhin Bernulli c lp nhn gi tr1vi xc sut bng nhau v bng 1/2 l dy Rademacher, v chuidng ii (vi i B) l chui Rademacher.Cho (Xi) l mt dy cc bin ngu nhin trong B, gi (i) l dyRademacher c lp ca (Xi), khi : (Xi) l i xng nu v ch nu(Xi) cng phn phi vi (iXi).

    y, ta nu mt s tnh cht (chng minh c trnh by [5] v[7]) ca chui Rademacher.

    nh l 1.3. Vi 0 < p < khi tn ti cc hng s dng Ap vBp ph thuc vo p sao cho vi mi dy s thc hu hn(i) Ta c

    Ap(2i )1/2 iip Bp(2i )1/2.c bit, p = 1 th

    (

    2i )1/2

    2

    ii1.

    nh l 1.4. (Bt ng thc Co) Cho F : R+ R+ l li, khng gim.Mi dy hu hn (xi) trong khng gian Banach B v mi dy s thc

    (i) sao cho vi mii, i 1 vi mii. Ta c:EF(

    i

    iixi) EF(

    i

    ixi) (1.2)

    P(

    i

    iixi > t) 2P(

    i

    ixi > t). (1.3)

    Cho nh x : R R l nh x co khi |(s) (t)| |s t| vimi s, t R. Nu h l mt nh trn tp T, chng ta t:

    h(t)T = hT = suptT

    h(t).

    Ta c nh l sau:

    nh l 1.5. Cho hm sF : R+ R+ l li v tng. Hn na

    i : R

    R, i

    N

    8

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    12/83

    l nh x co, sao cho i(0) = 0. Th vi mi tp T trongRN

    EF(1

    2

    N

    i=1 ii(ti)T) EF(N

    i=1 itiT).Nu(xi)iN l cc im trong khng gian Banach, th

    E( supf1

    |N

    i=1

    if2(xi)|) 4E

    N

    i=1

    ixixi

    . (1.4)

    Gi X l mt chui Rademacher trong B ta c mt bt ng thc

    ui sau: P{X M + t} 2exp(t/82). (1.5) y M = M(X) l k hiu median ca X , = sup

    f1(Ef2(X))1/2.

    Ta cng c nh gi:

    M 2EX v 2 EX2.(nh gi u tin l t bt ng thc Markov

    P{X 2EX} EX2EX =

    1

    2.

    nh gi th hai l hin nhin).

    1.3 Cc bt ng thc i vi bin ngu

    nhin thc v MartingaleMc tiu ca ta l nghin cu cc tnh cht ca tng cc bin ngu nhinvi gi tr trong khng gian Banach. Tuy nhin, hu ht u dn nvic nh gi cc bin c ui dng:

    {|SN ESN| > t}.Mt khc, nu t

    di = E(SN|Ai)9

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    13/83

    th di l hiu martingale thc, v

    N

    i=1 di = SN ESN.V vy, vn li chnh l vic nghin cu bin c ui ca cc martingalethc.

    Phn ny, ta s xem xt nhng nh gi ui ca cc martingalethc (chng minh c trong [5]) phc v cho chng sau, c th:

    Cho L1 = L1(, A,P) l khng gian tt c cc hm o c f trong sao cho E|f| < gi s ta xt h cc i s:

    {, } = Ao A1 ... AN = Av E(f|Ai) l k vong c iu kin i vi Ai cho f trong L1 t

    di = E(f|Ai) E(f|Ai1)gi l hiu martingale (v E(di|Ai1) = 0) ta c:

    f

    Ef =

    N

    i=1 di.Khi , ta c mt s bt ng thc v c lng ui cho martingalethc sau:

    nh l 1.6. Cho f L1, f Ef =N

    i=1

    di l tng ca hiu martingale

    tng ng i vi (Ai)iN. Gi sdi < t a = (N

    i=1di2)

    1

    2 th

    vi mit > 0:P{|f Ef| > t} 2exp{t2/2a2}.

    nh l 1.7. Cho f trong L1 v f Ef =N

    i=1di l tng ca hiu

    martingale tng ng i vi (Ai)iN, ta = maxiN

    di v

    b (N

    i=1E(d

    2i |Ai1))

    1/2

    10

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    14/83

    tht > 0:

    P

    {|f

    Ef

    |> t

    } 2exp

    {

    t2

    2b

    2(1

    exp(at/b2))

    }.

    nh l 1.8. Cho 1 < p < 2 vq =p

    p 1, ly f sao cho

    f Ef =N

    i=1

    di

    v t

    a = maxiN i1/p

    di.Tht > 0

    P{|f Ef| > t} 2exp{t2/Cqa2}Cp > 0 ch ph thuc vo q.

    nh l 1.9. Cho (Xi) l dy hu hn ca cc bin ngu nhin thc clp c k vng khng, sao cho Xi a i. Th mi > 0 , tn ti sthc dng K()( ln), v ()sao cho mi t tho mn: t

    K()b,

    ta ()b2 vib = (iEX2i )1/2 ta c:P{

    i

    Xi > t} exp{(1 + )t2/2b2}.

    nh l 1.10. Cho (Zi)i N l bin ngu nhin thc dng tht > 0

    P{maxk

    N

    Zi > t} N

    i=1(Zi > t)/(1 +

    N

    i=1(Zi > t)).

    c bit, viP{maxkN

    Zi > t} 1/2 th:

    Ni=1

    (Zi > t) 2P{maxiN

    Zi > t}.

    11

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    15/83

    1.4 Bt ng thc ng chu ca tch o

    Phn cui ca chng ny, ta cp n mt bt ng thc rt quan

    trng nghin cu tng i lng ngu nhin. l bt ng thcng chu cho tch o.

    Cho mt khng gian xc sut (E, , ) v mt s nguyn N > 1.K hiu P l tch o N trn EN mt im x trong EN c h sx = (x1,...,xN) vi xi E, A l mt tp con ca EN. Chng ta t:

    H(A,q,k) =

    {x

    E

    N :

    x1,...,xq

    A sao cho card

    {i

    N : xi /

    {x1i ,...,x

    qi

    }} k

    }Khi , ta c bt ng thc ng chu c lng c ca H(A,q,k) vi o P (Chng minh c trong [6]).

    nh l 1.11. ViA l tp o c vi o tch trong khng gianEN.Khi , c hng sK :

    P(H(A,q,k)) 1 [K(ln( 1

    P(A))

    k+

    1

    q)]k.

    viP l o xc sut ngoi.

    c bit, viP(A) 12

    vk q ta c:

    P(H(A,q,k)) 1 (Koq

    )k. (1.6)

    Khi , vi dy bin ngu nhin (Xn)nN c lp nhn gi tr trongkhng gian o c E, th tn ti khng gian xc sut tch N sao chovi = (n)nN trong N, Xn() ch ph thuc vo n. Vy (1.6) suyra:

    Khi P(X A) 12

    v k q ta c:

    P(X H(A,q,k)) 1 (Koq

    )k. (1.7)

    chng sau, ta s p dng nhn xt quan trng ny nh gi bin

    c ui ca tng bin ngu nhin c lp.

    12

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    16/83

    Chng 2

    Tng ca cc bin ngu

    nhin c lp

    Chng ny, ta tm cch m rng cc kt qu ca tng cc bin ngunhin thc, cho trng hp bin ngu nhin nhn gi tr trong khnggian Banach. Chng hn v s hi t, v tnh kh tch, v cc nh gi

    ca bin c ui.Tuy nhin, chng ta cn nhn mnh rng trong khng gian Banach

    tng qut, thiu hn gi thit trc giao E(

    Xi)2 =EX2i ; vi (Xi) l

    dy cc bin ngu nhin c lp c k vng khng. V vy vic m rngny s l cng vic tng i kh khn. Do ta cn c nhng phngphp khc nghin cu. Phng php u tin c ni n l phngphp i xng ho, c trnh by trong phn mt; phng php thhai l phng php dng dy Rademacher cng c trnh by phn

    mt v phn ba; phng php th ba l phng php nghin cu thngqua dy martigale thc phn ba; v cui cng v cng l quan trngnht l s dng bt ng thc ng chu, c ch r phn ba.

    Vi tng nh trn, chng ny c chia lm ba phn: Phn mtnghin cu phng php i xng ho, v p dng n chng minhnh l Lvy- It-Nisio, bt ng thc co. Phn hai nghin cu tnh khtch ca tng cc i lng ngu nhin, bt u bng bt ng thcHoffmana-Jorgensen, sau l bt ng thc momen ca tng cc bin

    ngu nhin c lp, v nhng kt lun v tnh kh tch. Phn ba vi p

    13

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    17/83

    dng ca bt ng thc ng chu, nh gi c lng ui ca tngcc bin ngu nhin c lp v nh l m rng v tnh kh tch.

    Cc kt qu chng ny dng nghin cu chng sau v cc

    nh l gii hn.

    2.1 i xng ho v mt s bt ng thc

    ca tng cc bin ngu nhin c lp

    tng c bn trong nghin cu tng cc bin ngu nhin c lp l

    khi nim i xng ho. Nu X l bin ngu nhin bt k xc nh trn(, A,P); ta c th xy dng mt bin ngu nhin i xng theo nghaX = X X, xc nh trn ( , A A,P P) v c gi l ixng ho ca X. Vi X l bn sao c lp vi X (xy dng trn khnggian xc sut khc (, A,P)). Phn phi ca X v X-X l thc s linquan; chng hn, ta c mt s bt ng thc sau:

    nh l 2.1. Vi mi t; a > 0; ta c

    P{X a}P{X > t + a} P{ X > t}.Chng minh. T X X X X suy ra

    {X a}{X > t + a} { X X > t}

    cng vi tnh c lp, v cng phn phi ca X v X ta c pcm.

    c bit, khi ta chon a sao cho P(

    X

    a)

    1

    2

    th ta c

    P{X > t + a} 2P{ X > t}.iu ny cng suy ra mt kt lun quan trng v mi lin h ca

    tnh kh tch gia X v X rng:H qu 2.2.

    EXp < E

    Xp < (2.1)

    vi mip > 0.

    14

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    18/83

    Chng minh. p dng bt ng thc:

    EX Xp E | X + X |p Cp(EXp + EXp)

    ta c ngayEXp < EX Xp < .

    Ngc li, t EX Xp < +0

    pxp1P(X X x)dx <

    +0

    xp1P(X x)dx <

    (theo bt ng thc trn). Vy ta c iu phi chng minh.

    Nhn xt 2.3. Ta c th tng qut khng nh trn (vi vic chng minhtng t) cho hm f l hm kh vi, li, tng th

    Ef(X) < Ef( X) < .Phng trnh (2.1) l cha thc s tt cho nhiu p dng khc, v

    vy n c ci tin nh sau:

    nh l 2.4. Vi mia, t > 0

    inffD

    P{| f(X) | a}P{X > t + a} P{X X > t}. (2.2)

    Chng minh. Tht vy, ly sao cho X() > t + a, khi tn tih D cho: |h(X())| > t + a (do trong B th x = sup

    fDf(x)).

    T suy ra vi |h(X())| a thX() X() |h(X() X())|

    = |h(X()) h(X())| > t + a a = t.V vy m

    { : |h(X())| a} { : X() X() > t}.Do ; vi X() > t + a

    inffD P

    {|f(X)| a} P{X X > t}.

    15

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    19/83

    Suy ra

    I{X()>t+a} inff

    DP{|f(X)| a} P{X() X > t}.

    Ly tch phn theo , p dng nh l Fubini v v X, X cng phnphi nn

    inffD

    P{|f(X)| a}P{X > t + a}

    = inffD

    P{|f(X)| a}P{X > t + a} P{X X > t}.

    Nhn xt 2.5. Tng t, ta chng minh c rng t, a > 0 thP{X > t + a} P{X X > t} + sup

    fDP{|f(X)| > a}.

    Chng minh. Tht vy, vi sao cho X() > t + a th tn ti h D h(X()) > t + a, t suy ra vi m X() X() < t th vimi f D ta c f(X() X()) < t. Vy

    |h(X())

    | h(X())

    h(X()

    X()) > a.

    Nn{X() X > t}{ |f(X)| > a} = .

    V th m

    I{X()>t+a} P{X() X > t} + supfD

    P{|f(X)| > a}.

    Sau ly tch phn hai v theo ta c iu phi chng minh.

    Thc t, dy i xng ( Xi) xy dng t (Xi) l rt tin li cho vicnghin cu (Xi). lm r iu , ta bt u bng nh l Levy-Ito-Nisio cho dy bin ngu nhin c lp khng nht thit i xng (c thchng minh trc tip nh l ny bng cch p dng tiu chun Kca Prokhorov v bt ng thc Ottavani-Kolmogorov, c trnh bytrong [2] v [7]).

    16

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    20/83

    nh l 2.6. Cho {Xi} l dy bin ngu nhin Borel c lp vi cc gitr trong khng gian Banach tch c B. XtSn =

    n

    i=1Xi (n 1). Cc

    iu sau l tng ngi) (Sn) hi t h.c.c.ii) (Sn) hi t theo xc sut.iii) (Sn) hi t yu.

    Chng minh. Trc ht ta chng minh cho trng hp i xng:Ta thy (i) (ii) (iii) l hin nhin.

    Ta s chng minh (iii) (ii). chng minh iu ny ta chng minhXi

    P

    0.

    Do (Xi) l compc tng i yu, nn tn ti dy con (Xik) Xik yu Xv vy suy ra mi hm tuyn tnh f th f(Xik)

    yu f(X). Nhng f(Sn)hi t theo phn phi ti bin ngu nhin thc, nn vi mi > 0 vtn ti M > 0 sao cho

    supP{|f(Sn)| > M} < 2.Do tnh i xng nn

    supnPXP{|

    ni=1

    if(Xi)| > M}

    = supnP{|f(

    ni=1

    iXi)| > M}

    = supnP{|f(Sn)| > M} < 2

    vi (i) l dy Rademacher c lp ca (Xi); vi mi n ta t

    A = { : P{|n

    i=1

    if(Xi)| > M} < }

    suy raP(A) = PX(A) > 1

    v vy vi 18

    thn

    i=1f2

    (Xi()) 8M2

    .

    17

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    21/83

    t ta c:

    supn

    P

    {

    n

    i=1 f2(Xi) 8M2} < suy ra

    i

    f2(Xi) < h.c.c.

    Vy f(Xi)h.c.c 0.

    Li v (Xi) l dy cht vi gii hn duy nht l 0, suy ra XiP 0.

    Khi ta c (ii), v nu khng th (Sn) l dy cauchy theo xc sut nntn ti > 0 v dy tng (nk) Tk = Snk+1

    Snk khng hi t theo xc

    sut ti 0, nhng v k

    Tk =i

    Xi hi t yu nn ta li p dng l lun

    trn chok

    Tk th dn n TkP 0, iu ny l v l. Vy ta chng

    minh c (ii).Ta chng minh (ii) (i)

    Do SnP S, khi tn ti dy con (nk) sao cho

    k P{SnK S > 2k} < .S dng bt ng thc Levy ta c

    P{ maxnk1nnk

    Sn Snk1 > 2k+1} 2P{Snk Snk1 > 2k+1}

    2(P{Snk S > 2k} + P{Snk1 S > 2k1}).Theo b Borel-Cantelli ta c, dy (Sn) l dy c bn hu chc chn

    nn cng hi t hu chc chn, vy ta c (i).Tip theo ta chng minh cho trng hp tng qut.

    Tt nhin ta ch cn chng minh (iii) suy ra (i) l .Gi s (Sn) hi t yu ti bin ngu nhin S, trn khng gian xc

    sut khc (, A,P); ta xt bn sao (Xi) ca (Xi) v xt Sn =n

    i=1 Xn.

    Khi (Sn) hi t yu ti S, l bin ngu nhin c cng phn phi vi

    S.t

    Sn = Sn Sn ;

    S = S S nh ngha trn , vy (Sn) l i

    xng. Li do tnh lin tc ca tch chp nn Sn yu S, theo chng minh18

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    22/83

    trn th Sn h.c.c S. Khi tn ti trong sao choSn Sn() h.c.c S S() ().

    (v nu ngc li th tn ti < 1 P(A) > 1/2 vi

    A = { : P{Sn Sn()hi t } < }nhng theo nh l Fubini th P{Sn Snhi t } < 1).Ta thy rng (Sn(

    )) l dy compact tng i trong B, hn na chm c trng , vi mi f trong B tho mn:

    exp{if(Sn())} exp{if(S())}Suy ra f(Sn()) f(S()) v v vy Sn() hi t trong B nS(), cng vi (*) ta c iu phi chng minh.

    Phng php i xng ho c minh ho r hn trong mnh sauy.

    nh l 2.7. Cho F : R+ R+ l li, th mi dy hu hn(Xi) ccbnn c lp c k vng 0 trongB, sao cho EF(Xi) < i :

    EF(1

    2i

    iXi) EF(i

    Xi) EF(2i

    iXi)

    vi(i) l dy Rademecher c lp ca (Xi).

    Chng minh. Xt X = X X v ly (i) l dy Rademecher c lp t(Xi) v (Xi). Khi v

    i

    Xi vi k vng 0, theo bt ng thc (1.1) ta

    cEF(i Xi) EF(i Xi).

    Li nh l Frubini vi ch (Xi) v (iXi) cng phn phi nn ta c

    EF(

    i

    Xi) = EF(i

    i Xi).S dng bt ng thc (1.1) cng vi tnh cht li v

    i

    i(Xi + Xi) c

    k vng khng, ta c:

    EF(i

    i Xi) EF(2i

    iXi).

    19

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    23/83

    VyF(

    i

    Xi) EF(2

    i

    iXi).

    Bt ng thc cn li c chng minh tng t

    EF(1

    2

    i

    iXi) EF(12

    i

    i Xi) = EF(12

    i

    Xi) EF(i

    Xi).

    Phng php i xng ho v cc nh gi trn ch ra rng huht cc kt qu i vi bin ngu nhin i xng, c th di truyn chotrng hp chung. Vi l do ny, trong cc phn sau ta ch yu xt vi

    cc bin ngu nhin i xng.Phn tip theo, ta s dng cc kt qu bit ca tng cc bin

    Rademecher thu c cc kt qu cho tng cc bin ngu nhin clp tng qut. Vi t tng tng qut nh sau:

    Xut pht t kt qu ca dy Rademecher, chng han dng

    Ef(x11,...,xNN) Eg(x11,...,xNN) vi mi x1,...,xN Bsuy ra

    Ef(X1()1,...,XN()N) Eg(X1()1,...,XN()N) vi mi .V vy, ly k vng hai v ta c

    Ef(X11,...,XNN) Eg(X11,...,XNN)Khi , nu thm gi thit (Xi) i xng th ta c kt qu i vi ccbin (Xi):

    Ef(X1,...,XN) Eg(X1,...,XN).Vi t tng trn, ta bt u vi vic m rng bt ng thc co chotrng hp tng qut.

    nh l 2.8. Cho (Xi) l dy hu hn cc bin ngu nhin i xngnhn gi tr trong B, lyi vi l hai bin ngu nhin thc sao cho:

    i = i(Xi) vi i : R R l i xng, v tng t i vii. Khi , nu |i| |i| a.s vi mi i, cho mi hm li, khng gimF : R+ R+ kh tch th

    EF(i

    iXi) EF(i

    iXi).

    20

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    24/83

    Chng ta cng c, vi t > 0P(

    iiXi > t) 2P(

    iiXi > t).

    Bt ng thc trong trng hp c bit p dng khi i = 1{XiAi} 1 i vi Ai c lp, i xng trong B ( trong trng hp c thAi = {x ai}) ta c:

    EF(

    i

    Xi1{Xiai}) EF(

    i

    Xi).

    Chng minh. Dy (Xi) cng phn phi nh (iXi) v bi gi thit i

    xng ca i nn (iXi) v (iiXi) cng phn phi, sau theo nh lFubini ta c:

    EF(

    i

    iXi) = EXEF(

    i

    iiXi).

    Tng t , ta cng c

    EF(

    i

    iXi) = EXEF(

    i

    iiXi).

    Vi mi bi nguyn l co (nh l 1.4 ) thEF(

    i

    ii()Xi()) EF(

    i

    ii()Xi()).

    Ly k vng theo X th

    EXEF(

    i

    iiXi) EXEF(

    i

    iiXi).

    Cng vi hai ng thc trn, ta c bt ng thc u.Bt ng thc th hai c thit lp tng t vi vic p dng bt ngthc (1.3).

    Tht vy, do tnh cht cng phn phi v nh l Fubini ta c

    P(

    i

    iXi > t) = PXP(

    i

    iiXi > t).

    V

    P(i

    iXi > t) = PXP(i

    iiXi > t).

    21

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    25/83

    Vi mi , theo bt ng thc (1.3) th

    P(i

    ii()Xi() > t) 2P(i

    ii()Xi() > t).

    Sau ly tch phn hai v theo ta c iu phi chng minh.

    Nhn xt 2.9. Vi X, Y l hai bin ngu nhin i xng, c lp v hmF l hm li, tng; p dng vi 1 = 1, 2 = 0 v 1 = 1, 2 = 1 th ta c:

    EFX + Y EFX.T bt ng thc th hai ca nh l cng vi biu din tch phn

    ca k vng ta suy ra tnh cht sau:Nu F l hm khng gim, v kh vi th ta c:

    EF(

    i

    iXi) 2EF(

    i

    iXi).

    Nhn xt cui cng l xut pht t cu hi nu (Xi) khng i xngth bt ng thc ca nh l cn ng khng? Ta c kt qu nh sau:

    Nu (Xi) khng nht thit i xng nhng c k vng khng cngvi cc gi thit khc nh trn nh l th

    EF(i

    iXi) EF(2i

    iXi).

    Chng minh. V

    EF(

    i

    iXi) EF(

    i

    i Xi) EF(i

    i Xi) EF(2i

    iXi).

    nh l 2.10. Cho F : R+ R+ l li v tng, vi dy(Xi) cc binngu nhin ty EF(Xi) < i.

    EF

    1

    2supfD

    i

    i|f(Xi)|

    EF(

    i

    iXi). (2.3)

    KhiXi l bin ngu nhin i xng v c lp trong L2(B), chng ta c:

    EsupfDi f2(Xi) supfDi Ef2(Xi) + 8Ei XiXi. (2.4)22

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    26/83

    Chng minh. (2.3) l n gin khi p dng nh l 1.5, viT = {t = (f(Xi))iN; f = 1} v i(x) = |x| ta c

    EF12

    supfD

    i

    i|f(Xi)| EFsupfD|i if(Xi)|= EF(

    i

    iXi).

    chng minh (2.4) ta xt c lng:

    EsupfDi f2(Xi) E

    supfD

    |

    i

    f2(Xi) Ef2(Xi)| + supfD

    i

    Ef2(Xi)

    = supfD

    i

    Ef2(Xi) + E

    supfD

    |

    i

    f2(Xi) Ef2(Xi)|

    .

    T nh l 2.7 suy ra:

    E

    supfD

    |

    i

    f2(Xi) Ef2(Xi)|

    2E

    supfD

    i

    if2(Xi)

    v, bi (1.4)

    E

    supfD

    i

    if2(Xi)

    4E

    i

    iXiXi.

    Cng vi tnh cht i xng ca (Xi) ta suy ra iu phi chng minh.

    2.2 Tnh kh tch ca tng i lng ngu

    nhin c lp

    Phn ny ta xem xt tnh kh tch ca tng cc i lng ngu nhinc lp c gi tr trn khng gian Banach. iu dn n, cn c mt

    23

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    27/83

    nh gi cho cc bin c ui. y s a ra vi tng n gin,c bit l mt bt ng thc quan trng ca J.Hoffmann- Jorgensen vmt s h qu ca n.

    nh l 2.11. Cho (Xi)iN l bin ngu nhin c lp nhn gi tr trongB. Xt

    Sk =k

    i=1

    Xi k N.

    Vis, t > 0 ta c

    P{maxk 3t+s} (P{maxk t})2+P{maxi s}. (2.5)

    Nu bin ngu nhin i xng th vi mit, s > 0

    P{maxk 2t + s} 4(P{SN > t})2 + P{maxi s}. (2.6)

    Chng minh. t = inf{j N : Sj > t} vi nh ngha ny th{ = j} ch ph thuc X1, X2,...,Xj v {max

    kNSk > t} =

    N

    j=1{ = j}

    (hp ri nhau).Trn { = j} th:Nu k < j ta c Sk t.Nu k j ta c

    Sk Sj1 + Xj + Sk Sj t + Xj + Sk Sj.

    Nn trong mi trng hp ta u c, trn { = j}

    maxkN Sk t + max Xi + maxjkNSk Sj

    Vy trn { = j} th:

    {max Sk > 3t + s} {maxiN

    Xi > s} { maxj 2t}.

    Li do, tnh c lp ca { = j} v Sk Sj ta c

    P{ = j, maxkN Sk > 3t + s}

    24

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    28/83

    P{ = j, maxiN

    Xi > s} + P{ = j}P{ maxj 2t}.

    V maxj 3t + s}

    P{ = j, maxiN

    Xi > s} + P{ = j}P{2maxkN

    Sk > 2t}.

    Ly tng theo j = 1...N v cng vi nhn xt

    maxkN

    {Sk > t} =N

    j=1

    { = j} ( hp ri nhau) ta c :

    P{maxkN Sk > 3t + s} =

    P{maxkN

    Sk > t, maxkN

    Sk > 3t+s} = P{N

    j=1

    { = j}, maxkN

    Sk > 3t+s}

    P{maxkN

    Sk > s, maxiN

    Xi > s} + (N

    j=1

    P{ = j})P{2maxkN

    Sk > 2t}

    = P{maxiN Xi > s} + (P{maxkN Sk > t})2.Vy ta c iu phi chng minh.

    chng minh (2.6) ta c nhn xt, vi i = 1...N thSN Sj1 + Xj + SN Sj.

    Vy trn { = j} th

    SN t + maxi Xi + SN Sj.Suy ra

    P{ = j, SN > 2t + s} P{ = j, max

    iXi > s} + P{ = j}P{SN Sj > t}.

    p dng bt ng thc Lvy cho bin ngu nhin i xng (nh l 1.1)ta c:

    P{ = j, SN > 2t+s} P{ = j, max Xi > s}+2P{ = j}P{SN > t}.25

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    29/83

    Ly tng theo j ta c

    P{SN > 2t + s} = P{maxkN

    Sk > t, SN > 2t + s}

    P{maxkN

    Sk > t, max Xi > s} + 2P{maxkN

    Sk > t}P{SN > t}.

    p dng bt ng thc Lvy (nh l 1.1) ln na, ta c iu phichng minh.

    Nhn xt 2.12. T tng ca nh l trn l phn hoch khng gianthnh cc min nh gi trn tng min. Tc gi suy ngh rng nuta phn hoch khng gian mn hn ta s c nhng nh gi tt hn y, chng han ta t:

    1 = inf{j N : Sj > t}2 = inf{j N : Xj > s}

    sau nh gi trn tng min (1, 2) = (i, j). Tuy nhin, tc gi vncha gi quyt c vn ny.

    Bt ng thc trn c s dng ch yu vi t = s, iu th vca chng c bt ngun t bnh phng xc sut v phi. iu nycn c tho lun tip phn sau.

    Nh h qu ca bt ng thc trn, mnh tip theo l mt bck thut trc khi trnh by v tnh kh tch. Vi vic p dng biu dintch phn ca k vng, ta c:

    nh l 2.13. Cho 0 < p < v (Xi)iN l bin ngu nhin c lptrongLp(B), tSk =

    ki=1

    Xi, k N. Khi , vi

    to = inf{

    t > 0 : P{

    maxkN

    Sk

    > t}

    (2.4p)1

    }th

    EmaxkN

    Skp 2.4pEmaxiN

    Xip + 2(4to)p. (2.7)NuXi l bin ngu nhin i xng v

    to = inf{t > 0 : P{SN > t} (8.3p)1}th

    ESNp

    2.3p

    EmaxiN Xip

    + 2(3to)p

    . (2.8)

    26

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    30/83

    Chng minh. u tin ta chng minh (2.7)Ta ly u > to v s dng (2.5)

    EmaxkN

    Skp = 4p+

    0

    P{maxkN

    Sk > 4t}dtp

    = 4p(

    u0

    +

    +u

    )P{maxkN

    Sk > 4t}dtp

    (4u)p + 4p

    +

    u (P{maxkN Sk > t})2dtp + 4p

    +

    u P{max Xi > t}dtp

    (4u)p + 4pP{maxkN

    Sk > u}+0

    P{maxkN

    Sk > t}dtp + 4pEmaxiN

    Xip.

    Do vic chon u > to nn 4pP{maxkN

    Sk > t} 12

    v vy nn:

    EmaxkN Sk

    p

    (4u)p

    +

    1

    2E

    maxkN Skp

    + 4

    pE

    maxiN Xip

    EmaxkN

    Skp 2.4pEmaxiN

    Xip + 2(4to)p

    iu ny ng vi bt k u > to nn ta c iu phi chng minh.Tip theo ta chng minh (2.8)Tng t nh phn trn, ly u > to bi biu din tch phn ca k vngv (2.6) ta c

    ESNp = 3p+0

    P{SN > 3t}dtp = 3p(u

    0

    ++u

    )P{SN > 3t}dtp

    (3u)p + 4.3p+u

    (P{SN > t})2dtp + 3p+u

    P{max Xi > t}dtp

    (3u)p

    + 4.3

    pP

    {SN > u}

    +

    0

    P

    {SN > t}dtp

    + 3

    pE

    maxiN Xip

    .

    27

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    31/83

    Do vic chon u > to nn 4.3pP{SN > u} 12

    khi th

    ESNp (3u)p + 4.3pP{SN > u}+0

    P{SN > t}dtp

    +3pEmaxiN

    Xip (3u)p + 12ESNp + 3pEmax

    iNXip

    3pESNp 2(3u)p + 2.3pEmaxiN

    Xip.

    Do u bt k u > to nn ta c iu phi chng minh.

    Nhn xt 2.14. By gi, ta p dng cch lm tng t cho cc hm khcca dy tng ring, c gng thu c nhng bt ng thc mi, vta c kt qu sau:

    Cho (Xi)iN l bin ngu nhin c lp trong L1(B), t Sk =k

    i=1

    Xi, k N khi vi

    to = inf{t > 0 : P{maxkN

    Sk > t} 1/8}

    th

    E{ln(maxkN

    Sk + 1)} 8E{ln(maxiN

    Xi + 1)} + 2 ln(4to + 1).

    Nu Xi l bin ngu nhin i xng v

    to = inf{t > 0 : P{SN > t} 1/24}

    thE ln(SN + 1) 6E ln(max

    iNXi) + 2 ln(3to + 1).

    Chng minh. Ta ch chng minh cng thc u, cng thc th hai tngt.

    Vi u > to ta c

    E ln(maxkN

    Sk

    + 1) =

    +

    0

    P

    {max max

    kN Sk

    > 4t

    }d ln(4t + 1)

    28

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    32/83

    u0

    4

    4t + 1dt +

    +u

    P{maxkN

    Sk > 4t} 44t + 1

    du.

    Sau p dng bt ng thc (2.5) cng ch vi t > 0 th4

    4t + 1 0 v (Zi ) l dy hu hn cc bin ngu nhindng trongLp chon > 0, v t

    o = inf{t > 0,

    i

    P(Zi > t) }

    th:

    (1 + )1po + (1 + )1

    i

    +

    o

    P{Zi > t}dtp Emaxi

    Zpi

    po +

    i

    +o

    P{Zi > t}dtp.

    Chng minh. Bt ng thc v phi l tm thng v:

    Emaxi

    Zpi =

    +0

    P{maxi

    Zi > t}dtp

    o0

    P{maxi

    Zi > t}dtp++o

    P{maxi

    Zi > t}dtp po++o

    i

    P{Zi > t}dtp

    ( do{

    maxi

    Zi

    > t}

    = i {Zi > t} P{maxi Zi > t} i P{Zi > t}).29

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    33/83

    By gi, ta chng minh bt ng thc tri:p dng bt ng thc ca nh l 1.10. Do (Zi)iN l bin ngu nhinc lp dng, nn vi mi t th

    P{maxi

    Zi > t} i

    P{(Zi > t)}1 +i

    P{(Zi > t)} .

    Vi ch y =x

    1 + xng bin trn (1, +) v

    o = inf{t > 0,iP(Zi > t) }.

    Nn ta cNu t o th

    i

    P(Zi > t) P{maxi

    Zi > t} 1 +

    .

    Nu t > o, do Zi dng nn

    iP{(Zi > t)} vy

    P{maxi

    Zi > t} i

    P{(Zi > t)}1 +

    .

    V vy m

    Emaxi

    Zpi =

    +

    0P{max

    iSi > t}dtp

    o

    0(1+)1dtp+

    +

    oi

    P{(Zi > t)}1 +

    dtp

    = (1 + )1po + (1 + )1

    i

    +o

    P{(Zi > t)}dtp.

    Khng nh v s tng ng ca cc mmen c th hin mnh sau.

    30

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    34/83

    nh l 2.16. cho p, q > 0 v (Xi ) l dy hu hn cc bin ngu nhinc lp v i xng trong Lp(B).Khi tn ti hng sKpq ch ph thuc vo p,q sao cho

    i

    Xip Kpq maxi

    Xip +

    i

    XiI{Xio}q

    vi o = inf{t > 0,i

    P{Xi > t} (8.3p)1} v k hiua Kpq b nghal K1pq b a Kpqb.Chng minh. Do bt ng thc tam gic

    EXi + Yip Cp(EXip + EYip) (Cp 2p)ta c

    E

    i

    Xip 2pE

    i

    XiI{Xio}p + 2pE

    i

    XiI{Xi>o}p.

    Chng ta p dng (2.8) cho s hng th 2 v phi ca bt ngthc ny, vi nh ngha ca o th

    to = inf{t > 0 : P{i

    XiI{Xi>o} > t} (8.3p)1} = 0

    ( v mi t > 0 th ta c

    { :

    i

    XiI{Xi>o} > t} { :

    i

    XiI{Xi>o} > 0}

    i { : Xi() > o}nn P{

    i

    XiI{Xi>o} > t} i

    P{ : Xi() > o} (8.3p)1 ).Suy ra

    E

    i

    XiI{Xi>o}p 2.3pEmaxi

    Xip.

    Quay li s hng u v p dng li nh l 2.13 ( bt ng thc (2.8))vi nhn xt

    to (8.3p

    Ei

    XiI{Xio}q

    )

    1

    q

    31

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    35/83

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    36/83

    Nhng theo bt ng thc Marcop v bt ng thc co, ta c

    P{

    iXiI{Xio} > (8.3qE

    iXip) 1p}

    E

    i

    XiI{Xio}p

    8.3qEi

    Xip E

    i

    Xip

    8.3qEi

    Xip 1

    8.3q.

    V vy to (8.3qEi

    Xip)1

    p nn

    E

    iXiI{Xio}q 2.3qqo + 2.3q.8

    1

    p3qp (E

    iXip)

    qp . ()

    Tuy nhin theo b 2.15 th

    Emaxi

    Xip (1+)1po+1

    1 +

    i

    +o

    P{(Xi > t)}dtp (1+)1po.

    Vy

    V P() 2.3qq

    p (1 + )q

    p (Emaxi Xip)q

    p + 2.3q.81

    p3q

    p (Ei

    Xip)q

    p .

    Suy ra

    i

    XiI{Xio}q = (E

    i

    XiI{Xio}q)1

    q

    Cpq maxi

    Xip + Cpq

    i

    Xip. ()

    Hn na theo bt ng thc L-vy (nh l 1.1) th

    Emaxi

    Xip 2E

    i

    Xip.

    Nn max

    iXip C

    i

    Xip. ( )

    T (**) v (***) ta c :

    i

    XiI{Xio}q Cpqi

    Xip.

    33

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    37/83

    Sau li kt hp vi (***) ta c:

    Cpqi Xip max

    iXip + i XiI{Xio}

    q.

    Ta c iu phi chng minh.

    By gi, chng ta tng kt v tnh kh tch cho tng cc bin ngunhin c lp nhn gi tr trn khng gian Banach, da trn cc btng thc v cc lp lun trn.

    nh l 2.17. Cho (Xi)iN l dy bin ngu nhin c lp vi gi tr

    trongB

    t Sn =

    ni=1 Xi (n 1) v 0 < p < th nu sup Sn < h.c.c, chng ta c s tng ng gia(i) E sup

    nSnp < .

    (ii) E supn

    Xnp < .Hn na, nu(Sn) hi t h.c.c tiS, (i) v (ii) s tng ng vi(iii) ESp < .(iv) (Sn) hi t trongLp.

    Chng minh. (i) suy ra (ii) l d dng, v t

    Xn+1 = Sn+1 Snsuy ra

    Xn+1 Sn+1 + Sn.Vy ta c

    sup

    n Xn

    2sup

    n Sn

    .

    Nn khi E supn

    Snp < suy ra E supn

    Xnp < . Tc (i) suy ra (ii).Chng minh (ii) suy ra (i) khi N c nh, bi nh l 2.13 vi

    to = inf{t > 0 : P{maxkN

    Sk > t} (2.4p)1}.

    Ta cEmax

    nN Sn

    p

    2.4pEmax

    nN Xi

    p + 2(4to)

    p.

    34

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    38/83

    V supn

    Sn nu tn ti M > 0 sao cho to M v khng ph thucvo N, cho N ra v cng ta c (i).

    Vi gi thit v s hi t hu chc chn, u tin ta chng minh (i),(ii) tng ng vi (iii)(i) suy ra (iii) l hin nhin, do sup

    nSnp

    n

    Xnp

    Chng minh (iii) suy ra (ii):Ta i xng ho v p dng tnh cht 2.1 suy ra:

    Ei

    Xip < sau p dng bt ng thc Levy ta c c (ii) cho(

    Xi) ri li p dng tnh cht (2.1).

    Ta chng minh (iii) tng ng vi (iv)

    (iv) suy ra (iii) l hin nhin, by gi ta chng minh (iii) suy ra (iv) thtvy:V

    Sn Sp 2p(supn

    Snp + Sp)

    hn na do ESp < nn E supn

    Snp < vy theo nh l lebesguev hi t b chn suy ra (iv).

    Nhn xt 2.18. T nh l ny ta c th rt ra nhng nhn xt sau:Th nht: Nu (Xn) l dy bin ngu nhin c lp vi gi tr trongB v tha mn P{Xn < c} = 1 vi mi n, v Sn hcc S th

    ESp < vi mi p > 0

    (iu ny c c l v vi gi thit trn th E supn

    Xnp ap < ).Th hai: T nh l 2.17 ta c

    iIAi hi t hu chc chn th

    Ei

    IAi = i

    P(Ai) < y tng ng cho phn c lp ca b Borel- Cantelli.

    Vi t tng, c gng tm mt khng nh v mi quan h gia shi t hu chc chn v hi t trung bnh ging nh nh l Kolmogrov-Khinchin. Ta c kt qu sau:

    H qu 2.19. Cho dy (Xn) cc bin ngu nhin c lp thuc Lp()

    vi gi tr trong khng gian Banach, t Sn =

    ni=1 Xi. Vip > 0:35

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    39/83

    Nu(Sn) hi t trongLp thSn hi t hu chc chn.NuSn hi t hu chc chn tiS v mt trong hai iu sau tho mn:

    i) Tn tic

    P{Xn < c} = 1, vi min.ii) S thuc Lp.

    Th(Sn) hi t trongLp.

    Chng minh. Khng nh u tin, l do s hi t trung bnh ko theos hi t theo xc sut, tuy nhin p dng nh l Levy v s hi tu,suy ra (Sn) hi t hu chc chn.

    Tip theo, ta chng minh khng nh th hai, gi s Snhcc

    S Ta schng minhESn Sp 0.

    Tht vy: vi iu kin (i)

    P{Xn < c} = 1, vi mi nv p dng nh l 2.17 th

    E supn

    Snp <

    v vy mSn Sp 2p sup

    nSnp < .

    Do gi thit, thSn Sp hcc 0.

    Nn theo nh l hi t b chn lebesgue suy ra

    ESn Sp 0.Vi iu kin (ii)

    ESp < theo nh l 2.17 th

    E supn

    Snp < .

    Sau lp li lp lun nh phn (i).V vy, ta c iu phi chng minh.

    36

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    40/83

    By gi, vi mc tiu m rng nh l 2.17. Ta c kt qu sau:

    H qu 2.20. Cho (an) l mt dy cc s dng tng ti v cng, (Xi) l

    bin ngu nhin c lp nhn gi tr trong B v tSn =n

    i=1Xi vin > 1

    th nusup{Snan

    } < h.c.c. Khi , vi0 < p < ta c cc mnh sau tng ng:

    i) E supn

    (Snan

    )p < .ii) E sup

    n(Xnan )

    p < .

    Chng minh. Ta xt dy mi (Yi) ca dy bin ngu nhin vi gi tr

    trong khng gian Banach l(B)(l(B) l tp cc dy x = (xn) vi chun sup x = sup

    n{xn})

    Bi php t

    Yi = (0; ...; 0;Xiai

    ;Xi

    ai+1; .....).

    Vi i thnh phn u bng khng,v r rng Yi = Xiai vi i (do(ai) l n iu tng ).

    ng thini

    Yi = (X1a1

    ;X1 + X2

    a2; ..;

    X1 + ... + Xnan

    ;X1 + ... + Xn

    an+1; ...).

    Suy ra

    ni

    Yi = sup1in

    Siai

    .

    V vy msup

    n

    ni

    Yi = supn

    Snan

    < h.c.c.

    p dng nh l 2.17 cho dy Yi trong l(B), ta c iu phi chngminh.

    Lin quan n nh l 2.17, ta cn c hai khng nh sau:

    37

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    41/83

    nh l 2.21. Vi gi thit ca nh l2.17, cng vi iu kinSnhcc S

    th cc khng nh ca nh l tng ng vi iu kin t > 0 ta c

    i=1

    EXnpI{Xi>t} < .

    H qu 2.22. Cho p > 0, X1,...,Xn l dy bin ngu nhin c lp, khi

    i=1

    Xi hi t hu chc chn khi v ch khi vi mi a > 0 hai iu kin

    sau c tho mn:

    i)

    i=1P{Xi a} < .

    ii) i=1

    XiI{Xia} hi t trung bnh cp p.

    Chng minh hai khng nh ny c trnh by trong [7].By gi ta xt chui hi t hu chc chn S =

    i

    Xi cc bin ngu

    nhin c lp, b chn u nhn gi tr trong B, i xng hoc c kvng khng .Chng ta s nghin cu tnh kh tch ca S. Vi gi thitc bit hn l Xi l i xng v Xi a < cho i. Vi mi N,ta t SN =

    Ni=1

    Xi. Bi (2.6) vi mi t > 0

    P{SN > 2t + a} (2P{SN > t})2

    ( do P{maxiN

    Xi > a} = 0) vi to xc nh dy

    tn = 2n(to + a) a

    khi p dng bt ng thc trn vi t := tn1

    ta c

    P{SN > tn} = P{SN > 2tn1 + a} (2P{SN > tn1})2.Lp li n-1 ln, ta thu c kt qu

    P{SN > tn} 22n+12(P{SN > to})2n.Nu S =

    i

    Xi l hi t h.c.c, th s tn ti to sao cho

    N, P{SN > to} 18

    38

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    42/83

    khi ta cP{SN > 2n(to + a)} 22n.

    V vy, s tn ti > 0 (to + a) < 1.Khi , t

    e.2n(to+a)P{SN > 2n(to + a)} e2n{(to+a)1}.

    iu ny cha chng minh cht ch, nhng cng dn ta n phnon rng

    supE exp(SN) < .V v vy theo b Fatou th: E exp(S) < .

    Tip theo, ta s chng minh tnh cht trn, thng qua bt ng thcsau:

    nh l 2.23. Cho (Xi)iN l bin ngu nhin c lp, i xng nhngi tr trong B.

    Sn =k

    i=1

    Xi k N gi s rngXi a, cho mii N th mi, t > 0.

    E exp

    SN

    exp(t) + 2 exp((t + a))P{

    SN

    > t}E exp

    S

    N.

    Chng minh. t = inf{k N; Sk > t} ta vit

    E exp SN

    {N}

    exp SNdP +N

    i=1

    {=k}

    exp SNdP

    exp(t) +N

    i=1

    {=k}exp SNdP.

    Trn tp { = k} thSN Sk1 + Xk + SN Sk t + a + SN Sk.

    Li do tnh c lp ca { = k} v SN Sk ta c:

    {=k} exp SNdP exp((t + a)) {=k} exp SN SkdP39

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    43/83

    = exp((t + a))P{ = k}E exp SN Sk.Li vi bt ng thc Jensen vi k vng khng ( theo (1.1)) ta c

    E exp SN Sk E exp SN.V vy m

    {=k}

    exp SNdP exp((t + a))E exp(SN).P{ = k}

    vi ch N

    k=1{ = k} = {max

    kNSk > t} cng vi bt ng thc Levy ta

    c Nk=1

    { = k} = P{maxkN

    Sk > t} 2P{SN > t}.

    Sau ly tng theo k :

    E exp S exp(t) + exp((t + a))E exp SNN

    i=1

    P{ = k}

    = exp(t) + exp((t + a))E exp SNP{maxkN Sk > t}

    exp(t) + 2 exp((t + a))E exp SNP{SN > t}.Ta c pcm.

    T , ta c khng nh sau v tnh kh tch ca tng bin ngunhin c lp:

    H qu 2.24. Cho (Xi) l mt dy i xng, c lp ( hoc c k vng

    khng) b chn u v Sn = ki=1

    Xi hi t h.c.c, th tn ti > 0

    E exp S < .Chng minh. p dng nh l 2.23 vi t l gi tr sao cho: vi mi NP{SN t} (4e)1 v = (t + a)1, chng ta c ngay

    supE exp SN 2exp(t) < .Trng hp khng i xng, ta dng phng php i xng ho v tnhcht 2.1 ta c iu phi chng minh.

    40

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    44/83

    T vic phn tch chng minh ca nh l, ta c th tng qut nhl trn nh sau:

    H qu 2.25.Vi cc gi thit ca nh l2.23v vi mip > 0 th:

    E exp SNp exp(tp)+2 exp(Cp(t+a)p)P{SN > t}E exp CpSNp.Vi

    Cp =

    1 nu 0 < p 12p1 nu p > 1.Chng minh. t = inf

    {k

    N;

    Sk

    > t

    }ta vit

    E exp SNp exp(tp) +N

    i=1

    {=k}

    exp SNpdP.

    Tuy nhin, trn { = k} th:SNp (t + a + SN Sk)p Cp(t + a)p + CpSn Skp.

    V vy m{=k}

    exp SNpdP exp{Cp(t + a)p}.

    {=k}

    exp CpSN SkpdP

    = exp{Cp(t + a)p}.P{ = k}E exp CpSN Skp.Li do hm exp(Cpxp) l li, p dng bt ng thc 1.1 ta c

    E exp Cp

    SN

    Sk

    p

    E exp Cp

    SN

    p.

    T y ta c iu phi chng minh.

    Ging nh t tng ca khng nh trn, ta thay hm m bi hmlu tha v vi l lun trong chng minh ca nh l 2.23. Ta c mtbt ng thc thuc dng bt ng thc Kolmogorov nh sau:

    H qu 2.26. Vi gi thit ca nh l2.23, cho mit > 0 v1 p <

    P{SN > t} 1

    2p (1 22p(tp + Emax

    Xi

    p)

    ESNp ).

    41

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    45/83

    Chng minh. t = inf{k N; Sk > t}.Trn tp { = k} th

    SNp

    22p

    (tp

    + maxi Xip

    ) + 2p

    SN Skp

    ta vit

    ESNp tp + [22p(tp + max Xip) + 2pESNp]P{maxkN

    Sk > t}.

    Ri p dng bt ng thc Levy ta c iu phi chng minh.

    Khi quan st bt ng thc ca nh l ta thy, c s hng cha

    xc sut ca bin c ui. iu lm ta lin tng n cng thc tchphn ca k vng. C th ho nhn xt trn ta c c h qu sau:

    H qu 2.27. Vi gi thit ca nh l 2.23v mi sao cho: exp a > 1/4 ta c

    supNE exp SN 1 +

    1 162 exp a4 exp a

    .

    Vi > 0 th1

    1 + E exp SN 1 + 2ESN.E exp SN.

    Chng minh. T bt ng thc ca nh l 2.23 ta c

    E exp SN exp(t) + exp(2t + t/n + a)P{SN > t}E exp SN exp{( + 1/n)t}E exp SN

    exp{t/n} + 2 exp{a} exp{t}P{SN > t}E exp SNLy tch phn hai v, gii phng trnh bc hai v cho n tin ra v cngta c khng nh th nht.

    Cng t bt ng thc ca nh l 2.23 ta c :

    E exp SN exp(t) + exp(2t + t)P{SN > t}E exp SNChia hai v cho exp(2t) ri ly tch phn hai v ta c khng nhhai.

    42

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    46/83

    Cho (Xi) l mt dy i xng, c lp (hoc c k vng khng), b

    chn u v vi Sn =k

    i=1Xi hi t h.c.c. Th ging nh dy h qu

    2.24 ta c khng nh rng E exp S < vi > 0.Tuy nhin, khng nh ca h qu 2.24 khng tho mn mtkt qu bit ca trng hp thc, E exp |S| log+ |S| < vi > 0. m rng kt qu ny trong trng hp gi tr vc t, ta s s dngbt ng thc ng chu, th hin phn tip theo.

    2.3 S tp trung v dng iu ui

    Trong phn nay, chng ta ngin cu ch yu v tnh kh tch v bin cui ca tng bin ngu nhin c lp, da trn phng php ng chu(nh l 1.11) .

    Nhng trc khi quay li tho lun vi tnh ng chu trong nghincu ny, chng ta s a ra mt s kt qu da trn cc bt ng thcmartingale. Mc d n khng mnh xem xt trong trng hptng qut cho tnh kh tch v cu hi v nh gi bin c ui. Tuynhin chng l nhng cng c n gin v hu ch trong nhiu tnhhung. Mt trong nhng p dng l s m rng cho s chiu v hntrong trng hp cc bt ng thc m nh bt ng thc Bernstein(nh l 1.7), Kolmogropv, Bennett...

    u tin ta nhc li v bt ng thc Bennett.Ly (Xi) l mt dy ca cc bin ngu nhin thc k vng khng,

    sao cho X i v nu b2 =EX2i t > 0

    P

    {i Xi > t} exp{t

    a (

    t

    a+

    b2

    a2) ln(1 +

    at

    b2)}

    (2.9)

    Bt ng thc l loi in hnh ca dng iu ui ca tng cc binngu nhin c lp, dng iu ny ph thuc trn quan h ca t v t

    sb2

    a2, c th ta xt mt vi trng hp sau:

    Nu t b2

    a2hay 0 at

    b2th t bt ng thc ln(1 + t) t 1

    2t2 vi

    43

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    47/83

    0 t 1 (2.9) suy ra:

    P

    {i Xi > t} exp(t2

    2b2

    +at3

    2b4

    ).

    Nu t b2

    2ath

    at3

    2b4 t

    2

    4b2v vy ta c nh gi sau:

    P{

    i

    Xi > t} exp{t2

    4b2}.

    Nu t > 0 th ln(1 +at

    b2

    ) > 0 nn t (2.9) suy ra:

    P{

    i

    Xi > t} exp{ta

    (ln(1 +at

    b2) 1)}.

    Nhn xt dn n vic s dng cc bt ng thc martingale trongnghin cu tng cc vc t ngu nhin c lp, l quan st n ginnhng cc k hu ch ca Yurinski.

    Ly (Xi)i N l bin ngu nhin kh tch trong B, k hiu Ai l -

    i s sinh bi X1, X2,...,Xi i N, Ao l - i s tm thng, talun vit SN =

    Ni=1

    Xi v t:

    di = EAiSN EAi1SN

    (di)iN l hiu martingale thc ( v EAi1di = 0 ) v

    N

    i=1 di = EANSN EAoSN = SN ESN.Chng ta c khng nh sau:

    B 2.28. Gi s bin ngu nhin Xi l c lp, th h.c.c i N|di| X + ESN.

    Hn na, nuXi trongL2() ta s c EAi1d2i EXi2.Chng minh. Ta c

    (EAiEAi1)(SNSNXi) = di(EAiSNXiEAi1SNXi) = di.44

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    48/83

    Li do bt ng thc tam gic

    |di| (EAi + EAi1)(|SN SN Xi|) (EAi + EAi1)(Xi)= Xi + EXi.

    V k vng c iu kin l hnh chiu trong L2 nn ta cng c btng thc th hai ca b .

    ngha ca quan st pha trn l biu din lch ca tng SN ccvc t ngu nhin c lp Xi vi k vng ca n ESN thng qua hiumartingale thc di (

    N

    i=1di = SN ESN) vi di li c c lng

    bi Xi .in hnh ca cch nhn ny l bt ng thc bnh phng martin-

    gale. Sau y l h qu trc tip ca b 2.28 v tnh trc giao cahiu martingale

    ESN ESN2 N

    i=1

    EXi2. (2.10)

    T b 2.28 v cng vi cc bt ng thc martingale chng 1 cth c p dng xem xt tnh cht tp chung ca SN ESN.Tht vy sau y l mt vi pht biu cho iu ny, vn vi k hiu

    a = maxXi , b (N

    i=1

    EXi2)1/2. p dng nh l 1.7 chng 1 suyra

    P{|SN ESN| > t} 2exp[ t2

    2b2(2 exp(2at

    b2))]. (2.11)

    Hn na t nh l 1.8 v tnh cht Ni=1

    di = SN ESN cng vi b 2.28 ta suy ra rng: nu 1 < p < 2, q =

    p

    p 1 v

    a = supi1

    i1/pXi supi1

    i1/pdi, vi mi t > 0. Th

    P{|SN ESN| > t} 2exp( tq

    Cqa2) (2.12)

    vi Cq > 0 ch ph thuc vo q.

    45

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    49/83

    By gi, chng ta quay li vn chnh ca chng ny vi nhngp dng ca bt ng thc ng chu nh l 1.11 cho tng cc binngu nhin c lp. Bt ng thc ny l cng c rt mnh v hiu qu

    cho vic nghin cu su hn tnh cht kh tch ca tng cc bin ngunhin c lp c bt u phn trc, v nghin cu v cc nh lv gii hn hu chc chn chng sau.

    u tin, ta s pht biu v chng minh mt c lng ui catng cc bin ngu nhin c lp da vo bt ng thc ng chu, vik hiu (Xi)iN l dy khng tng, c sp sp t (Xi)iN.nh l 2.29. Cho cc bin ngu nhin(Xi)iN l c lp, i xng vnhn gi tr trong khng gian Banach B. Vi mi s nguyn k

    q v

    cc s thc s, t > 0

    P{N

    i=1

    Xi > 8qM+2s+t} (Koq

    )k+P{k

    i=1

    Xi > s}+exp( t2

    128qm2).

    (2.13)

    Vi M = EN

    i=1

    ui , m = E(supfD

    (N

    i=1

    f2(ui))1

    2 ) , ui = XiI{Xi sk} (i N)

    Chng minh. Ta s chia chng minh thnh 3 bc.

    Bc 1: Vi Xi l bin ngu nhin tu v nu s k

    i=1

    Xi

    th N

    i=1

    Xi s + N

    i=1

    ui vi ui = XiI{Xi sk} (i N).Thc vy, nu k hiu J l tp cc s t nhin i N sao cho Xi > s

    k

    th CardJ k (v nu ph nhn th s ki=1 Xi) v khi :

    N

    i=1

    Xi iJ

    Xi + i/J

    Xi k

    i=1

    Xi + N

    i=1

    ui s + N

    i=1

    ui.

    Bc 2: Bi tnh i xng, c lp ca (Xi), nn X = (Xi)iN ccng phn phi vi (iXi)iN (vi (i) l dy Redemache c lp ca X)

    gi s rng chng ta cho A BN sao cho P{X A} 12

    .

    Nu khi X

    H = H(A,q,k) th tn ti (theo nh ngha ca H )

    46

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    50/83

    j k v x1,...,xq A sao cho

    {1,...,N

    }=

    {i1,...,ij

    } I vi I =

    q

    l=1{i N; Xi = xli}cng vi bc 1 ta c th vit : nu s

    ki=1

    Xi th

    N

    i=1

    iXi s + N

    i=1

    iui s +j

    l=1

    iuil + iI

    iui

    s +j

    l=1

    Xl + iI

    iui 2s + iI

    iui

    iu c ngha l, vi mi r q; s , t > 0 khi s k

    i=1

    Xi th

    N

    i=1

    iXi > 2s + t suy ra iI

    iui > t, vy ta c

    {N

    i=1

    iXi > 2s + t} {k

    i=1

    Xi > s}{iI

    iui > t}.

    T y ta c

    P{N

    i=1

    iXi > 2s + t} = P{k

    i=1

    Xi > s} + P{iI

    iui > t}

    P{k

    i=1

    Xi > s} + PXP{iI

    iui > t} = P{k

    i=1

    Xi > s}

    +

    {X /H}

    P{iI

    iui > t}dPX +

    {XH}

    P{iI

    iui > t}dPX.

    p dng cng thc ng chu nh l 1.11 (cng thc (1.7)) th

    {X /H} P{iI iui > t}dPX P{X / H} (Ko

    q)k.

    47

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    51/83

    Vy ta c

    P{N

    i=1iXi > 2s + t}.

    (Koq

    )k + P{k

    i=1

    Xi > s} +

    {XH}

    P{iI

    iui > t}dPX. (2.14)

    Bc 3: Ta chn A v c lng cho P{N

    i=1

    iui > t} vi vic chn A

    . p dng bt ng thc (1.5) vi ch M(X) XP

    {i ixi > 2Ei ixi + t} P{

    i

    ixi > M(X) + t} 2exp(t2/82) (2.15)

    by gi ta xt A = A1 A2 vi

    A1 = {x = (xi)iN : EN

    i=1

    ixiI{xis/k} 4M}

    A2 = {x = (xi)iN : supfD

    Ni=1

    f2(xi)I{xis/k}1/2 4m}.

    Khi ta c P{X A} 1/2 v vy ta c th p dng (2.14), tuy nhinta thy:

    V E(iI

    ixi) = 0 vi I N nn p dng bt ng thc (1.1) th

    EiIJixi EiJ ixi.Vy ta c nhn xt trung bnh Rademacher l n iu tng , tc lE

    iJixi n iu tng ca J N.

    Theo nh ngha ca I, th vi mi i I, ta c th c nh l(i) saocho 1 l(i) q vi Xi = xl(i)i . Ly Il = {i : l(i) = l}, 1 l q, khi ql=1Il = I v Il1 Il2 = vy ta c

    E

    iI iui =E

    q

    l=1iI(l)

    iui q

    l=1

    EiI(l)

    ixl

    iI{xlis/k}.

    48

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    52/83

    Li do tnh n iu ca trung bnh Rademacher, v nh ngha caA , suy ra:

    EiI(l)

    ixliI{xlis/k} EN

    i=1

    ixliI{xlis/k} 4M.

    Vy chng ta cEiI

    iui 4qM. ()

    Tng t, do tng supfD

    iI

    f2(ui) cng l n iu theo I N nn

    supfDiI

    f2(ui) = supfD

    ql=1

    iI(l)

    f2(ui) q

    l=1

    supfD

    (iI(l)

    f2(xi)I{xis/k})

    q

    l=1

    supfD

    (N

    i=1

    f2(xi)I{xis/k}) q(4m)2.

    Vy ta c2 = sup

    f

    DiIf2(ui) 16qm2. ()

    T (2.15) v (*)(**) ta c

    P{

    i

    iui > 8qM + t} P{

    i

    iui > 2E

    i

    iui + t}

    2exp(t2/82) 2exp(t2/128qm2).T iu ny cng cng thc (2.14) vi ch thay t bi t + 8qM, ta ciu phi chng minh.

    Nhn xt 2.30. Nhn xt u tin M,m c nh ngha thng qua binngu nhin cht ct ui nu ta khng cn quan tm n tnh cht ct,chng hn bin ngu nhin b chn th (2.13) v tri c th thay th2s bi sNhn xt tip theo v mt vi c lng cho M v m.

    Th nht:

    m2

    supfDN

    i=1f2

    (ui) + 8

    Ms

    k . (2.16)

    49

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    53/83

    Tht vy, p dng ln lt cc bt ng thc Holder, bt ng thc(2.4) v nguyn l co nh l 2.8 ta c:

    m2 = (E supfD

    (N

    i=1

    f2(ui))12 )2 E(sup

    fD

    Ni=1

    f2(ui))

    supfD

    Ni=1

    Ef2(ui) + 8E

    i

    uiui supfD

    Ni=1

    Ef2(ui) + 8E

    i

    uisk

    ( v ui sk ).Th hai:

    m2

    2M2. (2.17)

    Tht vy: theo nh l 1.3 (TH p = 1) ta c

    m E(supfD

    Ni=1

    2f(ui)) = E(sup

    fD

    2f(

    Ni=1

    ui))

    2M.

    Th ba:

    m2 N

    i=1 Eui2. (2.18)

    (iu ny c suy ra t bt ng thc Holder v tnh cht: vi mif D th f2(u) u2 ).

    Mt nhn xt quan trng bc ba ca chng minh trn l tnhn iu ca trung bnh Rademacher, n c s dng khi nh gi k

    vng EN

    i=1

    iXi. Di y l mt p dng na cho nhn xt ny.

    H qu 2.31. Cho (Xi)iN l bin ngu nhin i xng v c lp trongL1(B) v t M = E

    Ni=1

    Xi. Th vi mik q v s > 0.

    P{EN

    i=1

    iXi 2qM + s} (Koq

    )k + P{k

    i=1

    Xi > s}. (2.19)

    (Chng minh h qu c trnh by trong [5])Tip theo ta quay li vi mt s ng dng ca nh l 2.29. u tin,ta tr li cu hi v tnh kh tch ca chui hi t hu chc chn ca

    50

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    54/83

    cc bin ngu nhin c lp quy tm b chn. Nh nh l 2.23 chng minh, dng hm m ca chui l kh tch. Nhng ta bit trongtrng hp thc th chui nay l kh tch cho c hm exp(x ln+ x), v

    n l hm tt nht c th cho tnh kh tch.Tht vy, ly (Xi)i1 l dy cc bin ngu nhin c lp xc nhbi

    P{Xi = 1} = (2i2)1 v P{Xi = 0} = 1 i2.Khi th

    i

    EX2i < . Tuy nhin, nu SN =i

    Xi v vi , > 0, vi

    mi N, ta c

    E exp(|SN|(ln+ |SN|)1+) =N

    k=0exp(k(ln+ k)1+)P{|SN| = k}

    exp(N(ln N)1+)P{|SN| = N} exp(N(ln N)1+)N

    i=1

    P{Xi = 1}

    = exp(N(ln N)1+)N

    i=1

    2i2 = exp(N(ln N)1+ 2N

    i=1

    ln

    2i)

    exp(N(ln N)1+2N(ln 2N)) = exp N((ln N)1+2 ln Nln2)).tin ti v cng khi N tin ti v cng.

    Di y l nh l m rng tnh cht kh tch ny cho trng hpvc t.

    nh l 2.32. Cho (Xi) l bin ngu nhin c lp nhn gi tr trongkhng gian Banach B sao cho S =

    i

    Xi hi t hu chc chn v

    Xi < a vi mii th vi mi < 1/aE exp(S(ln+ S) < .

    NuXi ch quy tm th vi mi < 1/2a iu trn ng.

    Chng minh. Vi mi N ta t SN =N

    i=0

    Xi , Bi v khi p dng b

    Fatou ta c

    E exp(S(ln+ S) infNE exp(SN(ln+ SN)

    51

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    55/83

    supNE exp(SN(ln+ SN)

    do ta ch cn chng minh

    supNE exp(SN(ln+ SN) <

    l .Ta thy S =

    i

    Xi hi t hu chc chn nn supn

    Sn hu chcchn v vy theo nh l 2.17 th E sup

    iSip < li p dng b

    FatouM = sup

    iE

    S

    ip

    E sup

    i S

    ip 0

    P{N

    i=1

    Xi > 8qM+s+t} (Koq

    )k+P{k

    i=1

    Xi > s}+exp( t2

    128qm2)

    li theo (2.17) ta c

    P{N

    i=1

    Xi > 8qM+s+t} (Koq

    )k+P{k

    i=1

    Xi > s}+exp( t2

    256qM2)

    Theo gi thit ta cng suy rak

    i=1

    Xi ka h.c.c, v vy m

    P

    {

    N

    i=1 Xi > 8qM + ka + t} (Ko

    q )

    k

    + exp(t2

    256qM2)

    khi vi mi u > 0 ln ly > 0 , v t t = u, k = [(1 2)a1u]v q = [

    2a

    256M2u

    lnu] khi

    (Koq

    )k = exp(k ln(q/Ko)) exp((1 2)a1u ln(q/Ko))

    exp((1 3)a1u ln u)

    52

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    56/83

    (chn > 0 nh c iu trn v k q) V hn na theo cch xcnh q th

    q 2

    a256M2 ulnu 256qM2 at2

    u ln u t2

    256qM2 ua1 ln u

    V vy, khi u uo(M,a,) = 8qM + ka + t ln th

    P{SN > u} P{SN > 8qM + ka + t} (Koq

    )k + exp( t2

    256qM2)

    exp((1 3)a1u ln u) + 2 exp(ua1 ln u) Cexp(( + )u ln u).

    Khi > 0 nh, hayexp(u ln u)P{SN > u} Cexp(u ln u)

    vyE exp(SN(ln+ SN) C.

    N l ng vi mi N, nn ta c iu phi chng minh.Trng hp bin ngu nhin ch quy tm, ta dng phng php i

    xng ha v p dng b 2.7 ta c pcm.

    Khi p dng bt ng thc J.Hoffmann- Jorgensen, nh l 2.16 chng minh s tng ng gia cc momen. y, vi bt ngchu ta s tin xa hn mt bc. Ch ra s ph thuc ca hng s nhntrong bt ng thc momen Lp vo p.

    nh l 2.33. C mt hng s K sao cho vi mi dy hu hn(Xi) ccbin ngu nhin k vong 0, c lp trong Lp(B)

    i

    Xip K plnp

    (

    i

    Xi1 + maxi

    Xip).

    Chng minh. Ta c th gi thit Xi (i N) l i xng (v nu khngta dng phng php i xng ho v p dng b 2.7 s c iuphi chng minh).

    Vi mi s nguyn r, ta t X(r)N = Xj vi Xj l maximum th

    r ca mu (Xi)iN (v X(r)N = 0 vi r > N) nu t M = N

    i=1Xi1

    53

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    57/83

    th theo nh l 2.29 v (2.17) ch ra rng vi mi k q v s, t > 0

    P

    {

    N

    i=1 Xi > 8qM+2s+t} Ko

    q k

    +P{

    k

    i=1 Xi > s}+exp(t2

    256qM2). (

    )

    chng minh nh l ta c th gi s M 1 v X(1)N p 1 ( ta chiahai v cho max{X(1)N p, M} s c khng nh trn)

    c bit, vi mi u > 0 ta c

    P{X(1)N > u} EX(1)N p

    up up.

    Hn na, vi X(r)N () > u suy ra X(r1)N () > u v X

    (1)N () > u v vy

    P{X(r)N > u} P{maxiN

    X > u}P{X(r1)N > u}

    tip tc p dng vi r thay bi r-1 v bng phng php quy np theor ta c

    P{X(r)N > u} (P{X(1)N > u})r urp.

    Cho u 1 l c nh chng ta p dng cng thc trn vi r = 2 vu bi u2/3 th P{X(2)N } u4p/3. V vy m phn b ca tp

    {X(1)N u, X(2)N u2/3, X(l)N 2}

    c xc sut nh hn hoc bng

    P{X(1)N > u} + 2u4p/3.

    Chng ta p dng (*) vi k l s nguyn nh nht ln hn u. Khi ,trn tp{X(1)N u, X(2)N u2/3, X(l)N 2}

    thk

    r=1

    X(1)N + lX(2)N + (k 1)X(l)N u + lu2/3 + 2(k 1)

    u + (ln u + 1)u2/3 + 2u 4u + 3u1/3u2/3 = 7u = Cu

    54

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    58/83

    cng vi q l s nguyn nh nht ln hn hoc bng u1/2, s = Cu, t = uta c:

    P{N

    i=1

    Xi > 2(C+ 10)u} P{N

    i=1

    Xi > 8qM + 2s + t}

    Koq

    k+ P{

    ki=1

    Xi > s} + 2 exp( t2

    256qM2)

    = exp

    k ln

    q

    Ko

    + P{

    k

    i=1Xi > Cu} + 2 exp( t

    2

    256qM2)

    expu lnu1/2Ko

    + P{X(1)N > u} + 5u4p/3 + 2 exp(

    u3/2

    256)

    nhn hai v vi up v ly tch phn hai v ta c iu phi chng minh.

    55

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    59/83

    Chng 3

    Lut mnh s ln

    Chng ny, chng ta nghin cu lut mnh ca s ln cho tng ca binngu nhin c lp trong khng gian Banach. y, nh l 2.29 caphn 2.3 c dng rt hiu qu. Chng ta ch nghin cu lut mnhs ln dng Kolmogorov. Chng c chia lm 2 phn.

    3.1 Pht biu chung cho nh l gii hnCho (Xi)iN l dy cc bin ngu nhin c lp nhn gi tr trong B,gi (ai) l dy v hn cc s dng, tng. Chng ta s nghin cu tnh

    cht hu chc chn ca dySnan

    . u tin ta a ra mt mnh n

    gin sau:

    B 3.1. Cho (Yn) v (Yn) l dy c lp cc bin ngu nhin sao

    cho dy(Yn Yn) l b chn hcc (tng ng hi t hcc v 0), v (Yn) lb chn (tng ng hi t v 0) theo xc sut. Th (Yn) l b chn hcc(tng ng hi t hcc v 0).

    (Chng minh nh phn cui ca nh l Levy-Ito-Nisio, nh l 2.6).Cho cc bin ngu nhin c lp (Xi). Ly (Xi) l bn sao c lp

    ca (Xi) v t

    Xi = Xi Xi l cc bin ngu nhin c lp v i

    xng. Theo b 3.1, nghin cu tnh h.c.c caSn

    an

    khi bit tnh cht

    56

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    60/83

    theo xc sut ca n, th ch cn nghin cu (

    ni=1

    Xian

    ) l . Sau y ta

    s nu mt b hu ch v cc tnh cht theo xc sut ca Snan lin hvi tnh cht tng ng trong Lp.

    B 3.2. Cho (Xi) l dy cc bin ngu nhin c lp, i xng,

    nhn gi tr trong B. Nu dySnan

    l b chn (tng ng hi t v 0)

    theo xc sut, cho p > 0 v mt dy b chn(cn) cc s dng th dy(E

    ni=1 Xi1{Xicnan}/anp) l b chn (tng ng hi t v 0).

    Chng minh. Ta chng minh cho pht biu hi t.Xt dy (cn) b chn bi C. Theo bt ng thc (2.8) cho mi n ta

    c:

    En

    i=1

    Xi1{Xicnan}p 2.3pE(maxiN

    Xip1{Xicnan}) + 2(3t0(n))p

    vi

    t0(n) = inf{t > 0 : P{n

    i=1

    Xi1{Xicnan} > t} < (8.3p)1}.

    VSnan

    hi t theo xc sut v 0; s dng nguyn l co (nh l 2.8) ta

    c:

    P

    {

    n

    i=1 Xi1{Xicnan} > t} < 2P{Sn > t} = 2P{Sn

    an>

    t

    an}

    li doSnan

    P 0 > 0; n0 : n > n0 :

    P{Snan

    > } 12

    (8.3)p1.

    Vy

    n > n0 tht0(n)

    an<

    t0(n) < an. (1).

    57

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    61/83

    Hn na

    Emaxi

    n

    Xip1{Xicnan} =

    0

    P(maxi

    n

    Xi1{Xicnan} > t)dtp

    can0

    P{maxin

    Xi > t}dtp = apnc0

    P{maxin

    Xi > ant}dtp

    2apnc0

    P{Sn > ant}dtp (2).

    (c c l do bt ng thc Levy).T (1) v (2) ta c, vi n > n0 th

    E ni=1

    Xi1{Xicnan}/anp

    2.3p(p +c0

    P{Snan

    > t}dtp) 2.3p(p + p +c

    P{Snan

    > t}dtp).

    Do t [, c] th

    P

    {Sn

    an> t

    } P

    {Sn

    an>

    } p.

    Khi n ln. V vy m khi n ln:

    En

    i=1

    Xi1{Xicnan}/anp 2.3p(2p + p(c )p) 2.3p(2 + cp)p

    hay

    En

    i=1

    Xi1{Xicnan}/an

    p

    0.Trng hp b chn, chng minh tng t.

    Tip tc, khi ta xt dy (an) c tnh cht sau: tn ti dy con (amn)sao cho vi mi n: camn amn+1 Camn+1 ( y 1 < c < C < +).Trong phn tip theo ta lun gi thit iu ny ng; v vi mi n tat I(n) = {mn + 1; ...; mn}. B tip theo m t s rt gn vo trongcc tp I(n) khi nghin cu

    Sn

    an.

    58

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    62/83

    B 3.3. Cho (Xi) l bin ngu nhin c lp; i xng. DySnan

    l

    dy b chn h.c.c (hoc hi t h.c.c v 0 ) nu v ch nu iu tng ng

    ng cho (iI(n) Xi/amn).Chng minh. Ta chng minh cho pht biu hi t:

    iu kin cn:Snan

    hcc 0 suy ra Smnamn

    hcc 0.

    Nhng do (an) l dy tng, nnSmn1amn

    hcc 0 v vy m

    Smnamn

    Smn1amn = iI(n)Xi

    amnhcc 0.

    iu kin :

    iI(n)

    Xi

    amn

    hcc 0, cng vi tnh c lp ca dy ( iI(n)

    Xi)n,

    nn theo b Borel - Catelli suy ra > 0,

    n=1

    P

    iI(n)Xi

    an > < .Theo bt ng thc Levy suy ra:

    n=1

    P

    supkI(n)

    k

    i=mn1+1Xi

    amn>

    .

    Theo b Borel-Cantelli suy ra

    supkI(n)

    ki=mn1+1

    Xi

    amn

    hi t h.c.c ti0. T y, ta suy ra vi hu ht w, > 0, l0 sao cho l > l0

    supkI(l) k

    i=ml1+1

    Xi(w) < aml.

    59

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    63/83

    Vi j l0 khi vi n sao cho mj1 < n mj th theo bt ng thctam gic ta c:

    Sn(w) Sml01(w) +j

    1

    l=l0

    iI(l)

    Xi(w) + n

    i=mj1+1

    Xi(w)

    Sml01(w) +j1l=l0

    aml + amj

    Sml01(w) +i

    l=1aml

    Sml01(w) +j1l=0

    Cancl

    (V t gi thit ca (ai) nn: aml 1

    caml+1 ...

    1

    cjlamjl 0 tu , v gi thit v ai tho mn camn amn+1 amn+1 nnamn than vy ta c iu phi chng minh.

    T b 3.1 v b 3.3 ta c h qu sau:

    H qu 3.4. Cho (Xi) l bin ngu nhin c lp nhn gi tr trong B

    thSnan

    h.c.c 0 khi v ch khi Snan

    P 0 v Smnamn

    h.c.c 0. Tng t cho tnh bchn.

    Chng minh. Tht vy, iu kin cn l hin nhin. Ta ch cn chngminh iu kin .

    Xt Xi l bn sao c lp ca Xi khi Xi = Xi Xi l i xng

    ha ca Xi.

    60

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    64/83

    V

    Snm

    anm

    hcc

    0

    Smn

    amn

    hcc

    0

    iI(n)

    Xi

    amn

    P

    0.

    Theo b 3.3 suy ra Snan

    hcc 0.

    Li doSnan

    P 0, v b 3.1, ta c Snan

    hcc 0.

    T b 3.3v b Borel-Cantelli, ta c nhn xt: Vi bin ngunhin i xng th, s hi t ca chui dng n P{ iI(n) Xi > an} ssuy ra s hi t h.c.c ca

    Snan

    .

    V vy phn tip theo di y ta s xem xt iu kin cn v chui

    nP{

    iI(n)Xi > an} hi t.

    nh l 3.5. Cho (Xi) l mt dy bin ngu nhin i xng, c lpnhn gi tr trong B. Gi s, tn ti mt s nguynq 2K0 v mt dy(kn) cc s nguyn dng, sao cho iu sau y ng:

    n

    (K0q

    )kn < (3.1)

    n

    P{kn

    r=1

    X(r)I(n) > amn} < . (3.2)

    Vi > 0, t :

    Mn = E iI(n)

    Xi1{Xiamn/Kn}

    n = supfD

    (

    iI(n)E(f2(Xi)1{Xiamn/Kn}))

    1/2.

    NuL = limn

    supMnamn

    < v vi > 0

    n

    exp(2

    a2mn/

    2n) < . (3.3)

    61

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    65/83

    Th ta c:

    nP{iI(n)

    Xi > 102(,,q,L)amn} < . (3.4)

    Vi(,,q,L)amn = + qL + (L +

    2)1/2(q logq

    K0)1/2

    + qL + (L + 2)1/2.Ngc li, nu (3.4) ng vi mt s (tng ng vi tt c) > 0 v

    (3.1), (3.2) tha mn th L < (tng ng L = 0) v (3.3) ng chomt vi (tng ng, tt c) > 0.

    ( y: X(r)I(n) = Xj viXj l gi tr ln th r trong tp (Xi)iI(n)cn vir > CardI(n) thX(r)I(n) = 0).

    Chng minh. iu kin cn: V L = limn

    supMnamn

    < n0 : n > n0

    Mnamn

    < L +

    q 8qMn < 8(qL + )amn.

    Vy

    102(,,q,L)amn 8qMn + 2amn + 102(L + 2)1/2(q logq

    K0)1/2amn.

    V vy m p dng nh l 2.29 cho (Xi) ; K = Kn q vi n ln;s = amn v

    t = 102(L + 2)1/2(q logq

    K0)1/2amn.

    Ta c:

    P{

    iI(n)Xi > 102(,,q,L)amn}

    P{

    iI(n)Xi > 8qMn + 2amn + 102(L + 2)1/2(q log

    q

    K0)1/2amn}

    K0q kn

    +P

    {

    kn

    r=1 X(r)I(n) > amn} + 2exp t2

    128m2.62

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    66/83

    Theo (2.16) th m2 2n + 8amn

    knkhi :

    exp2a2mn

    2n > exp t2

    128m2.Vy

    n

    P{

    iI(n)Xi > 102(,,q,L)amn} <

    (Do gi thit, ba chui 3.1, 3.2, 3.3 hi t).iu kin .

    Ta chng minh cho trng hp > 0 (Trng hp > 0 lmtng t)

    P{ iI(n)

    Xi > amn} < . ()

    t Xni = Xi1{Xiamn/kn}, i I(n). Khi theo nh ngha ca can ta c th chn c fn D sao cho:

    2n 2

    iI(n)E(f2n(X

    ni ) 22n.

    p dng nguyn l co (nh l 2.8) ta c:n

    P{

    iI(n)fn(X

    ni ) > amn}

    n

    P{

    iI(n)Xni > amn}

    2

    n

    P{

    iI(n)Xi > amn}.

    Ly > 0, nu > 0 sao cho 2 > ln q

    K0

    (hay

    K0q

    > e2) khi

    nu a2

    mn > kn

    2

    n ta c:K0q

    kn> e

    2kn > e(2a2mn/

    2n).

    Theo 3.1 3.3 ng.Vy ta ch cn chng minh vi a2mn kn2n. Ta nh li cc tham s

    r, (r), k(r) trong nh l 1.9 vi r l s c nh c chn. Ly > 0 nh cho (1 + r)2 2 v 2 (r) sao cho

    (amn)amn(kn) 2

    n (r) iI(n)

    Ef2

    n(Xn

    i )

    63

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    67/83

    Li do: (*) nu

    iI(n)

    Xi

    amn

    hi t v 0 theo xc sut nn theo b

    3.2, ta cL = lim sup

    Mnamn

    = 0.

    Li do tnh trc giao

    iI(n)Ef2n(X

    2i )/a

    2mn

    0 nn vi n ln

    amn K(r)iI(n)Ef

    2n(X

    2i )

    1

    2

    .

    By gi p dng nh l 1.9 ta c

    P{

    iI(n)fn(X

    (n)i ) > amn} exp((1 + r)2a2mn/2n).

    Li v (1 + r)2 2 nn ta c

    P{iI(n) f

    n(X(n)

    i ) > amn} exp(2

    a2mn/

    2n).

    Ly tng theo n, kt hp vi iu kin (3.4), ta suy ra (3.3).

    B tip theo ta hy a ra cc iu kin d kim tra hn cc iukin (3.1), (3.2).

    B 3.6. Vi cc iu kin nh trong nh l3.5, gi s rng viu > 0n

    P{maxiI(n)

    Xi > uamn} < (3.5)

    v viv > 0, vi min v t, 0 < t 1

    P{maxi

    I(n)

    Xi > tvamn} n exp1

    t(3.6)

    64

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    68/83

    vin

    sn < vis nguyn no . Khi miq > K0, tn ti dy(kn)v cc s nguyn sao cho

    n(Ko

    q)kn < v tha mn

    n

    P

    knr=1

    X(r)I(n) > 2s(u + v(ln

    q

    K0)1)amn

    < .

    Chng minh. Ta c

    {X(2s)I(n) > tvamn} 2s

    i=1

    {X(i)I(n) > tvamn}.

    Suy ra

    P{X(2s)I(n) > tvamn} 2s

    i=1

    P{X(i)I(n) > tvamn}

    iI(n)P{Xi > tvamn}

    2s

    p dng nh l 1.10 cng vi gi thit cho ca b ta c

    iI(n)

    P{Xi > tvamn} 2P{max Xi > tvamn}

    2n exp

    1

    t

    .

    Vy

    P{X(2s)I(n) > tvamn}

    2n exp

    1

    t

    2s.

    Chn t = t(n) = ln 1n1

    v chn kn = 2sln qK01 ln 1n. Khi

    K0q

    kn

    K0q

    2sln qK01 ln 1n

    K0q

    2s ln 1n

    q

    K0

    = (n)2s = sn.

    65

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    69/83

    Vn

    sn < nnn

    K0q

    kn< . By gi ta c

    knr=1

    X(r)I(n) =2s

    r=1

    X(r)I(n) +

    knr=2s+1

    X(r)I(n) 2sX(1)I(n) + knX(2s)I(n).

    V vy

    P

    kn

    r=1

    X(r)I(n) > 2s(u + v

    ln

    q

    K0

    1)

    amn

    P{2sX(1)I(n) > 2suamn} {knX(2s)I(n) > 2svln qK01

    amn}P{X(1)I(n) > uamn} + P{X(2s)I(n) > t(n)vamn},

    vi ch rng, khi ly tng theo n thn

    P{X(1)I(n) > uamn} =

    n

    P{maxiI(n)

    Xi > uamn} <

    vn

    P{X(2s)I(n) > t(n)vamn}

    n

    2n exp

    1

    t(n)

    s 2s

    n

    sn < .

    Khi ta c iu phi chng minh.

    Khi cc bin ngu nhin Xi l c lp cng phn phi v dy (ai) lchnh quy, tc l k n, ap2n 2nkap2k (vi p > 0 no ) th ta c b sau:

    B 3.7. Cho (an) l chnh quy (tc l tn ti p k n, ap2n 2nkap

    2k). Gi s Xi l mt dy cc bin ngu nhin c lp cng phn

    phi viX. Nu tn tiu > 0 n

    2nP{X > ua2n} < th vi min v0 < t 1 ta c

    P{max Xi > tua2n} 2nP{X > tua2n} 1t2p

    n

    vin

    n < .66

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    70/83

    Chng minh. Vi mi n, t

    n = 2nP{X > ua2n}.

    Khi tn ti dy (n) sao cho n n, n 2n+1 vi mi n, vn

    n ua2n} = 1, i = max{i; 12i1}...).Ly 0 < t < 1 v k 1 sao cho 2k tp 2k+1.khi :

    Nu k < n ta ctpap2n 2kap2n ap2nk

    suy ra ta2n a2nk, v vy m

    P{X > tua2n} P{X > ua2nk} 2nP{X > tua2n} 2knk 2knk 4t2pn

    (do 2tp 2k).Nu k > n th

    2nP{X > tua2n} 2n 4t2p2n.

    Vy khi ta chn n = 4 max{n, 2n} thn

    n 4

    n

    n +

    n

    2n

    <

    v2nP{X > tua2n} 1

    t2pn.

    ng thi ta c

    {maxiI(n)

    Xi > tua2n} =

    iI(n){Xi > tua2n}

    suy ra

    P{max Xi > tua2n}

    iI(n)P{Xi > tua2n} = 2nP{X > tua2n}.

    67

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    71/83

    3.2 Cc lut s ln

    Phn ny ta p dng nh l 3.5 tng qut phn trn a ra cc

    lut s ln c th hn trong khng gian Banach.Ta p dng vi an = n, mn = 2n v chng ta lun ni: (Xn) tun

    theo lut mnh s ln nuSnn

    hcc 0 v (Xn) tun theo lut yu s lnnu

    Snn

    P 0.nh l 3.8. Cho 0 < p < 2, ly (Xi) l dy bin ngu nhin c lpcng phn phi (ging nh X), nhn gi tr trong khng gian Banach.

    Khi

    Sn

    n1p

    hcc

    0 nu v ch nuEXp

    < vSn

    n1p

    P

    0.Chng minh. iu kin cn. Ta c

    Sn

    n1

    p

    hcc 0 th hin nhin Snn

    1

    p

    P 0

    Hn naSn

    n1

    p

    hcc 0 th hu ht ch c hu hn n Sn()n

    1

    p

    > 1.

    Theo b Banach-Catelli th

    nP{X > n 1p} <

    nP{Xp < n} < EXp < .

    iu kin . Nu ta xt X l bn sao c lp ca X, tX = X X. Khi E Xp Cp(EXp + EXp) <

    vSnn

    1

    p

    P 0. V vy nn nu ta chng minh c kt lun ny i vi(

    Xi) th p dng b 3.1 suy ra kt qu ng i vi (Xi).

    Bi vy ta c th gi s (khng mt tnh tng qut) bn thn X li xng. Khi theo b 3.3 , ta suy raiI(n)

    Xi

    2np

    hcc 0.

    Li theo b Borel-Catelli ta suy ra

    n P

    iI(n)Xi

    2n

    2

    > =n P iI(n) Xi > 2np <

    68

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    72/83

    vi I(n) = {2n1 + 1; ; 2n}.Phn tip theo ta s chng minh bng 2 cch.Cch 1. Vi mi n, t ui = ui(n) = Xi1

    {Xi

    2np

    }, i I(n). Ta c

    {i I(n) : ui = Xi} 2n

    i=2n1+1

    {Xi > 2np}.

    Suy ra

    P{i I(n) : ui = Xi} 2n

    i=2n1+1

    P{Xi > 2np} = 2nP{X > 2np}.

    Do n

    P{i I(n) : ui = Xi} n

    2nP{X > 2np}

    =

    n

    2nP{Xp > 2n} < ,

    (v EXp < ). Li do

    iI(n) Xi > 2np iI(n) ui > 2

    np {i I(n) : ui = Xi} .

    Vy chng minh

    n

    P

    iI(n)Xi

    > 2np <

    Ta ch cn chng minh

    n

    PiI(n) ui > 2np < .

    Tuy nhin, vSn

    n1

    p

    P 0 nn theo b 3.2 ta c lim E

    n

    i=1

    ui

    2np

    = 0hay

    lim

    1

    2npE

    iI(n) ui = 0.

    69

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    73/83

    Vy ta ch cn chng minh

    n PiI(n) ui EiI(n) ui > 2np < .

    (suy ra t tnh cht: Nu an 0 v > 0 thn

    P{Xn an > } <

    suy ra > 0, nP{Xn > } < . Tht vy, v > 0 th

    nP{Xn an >

    2} <

    nhng n0 : n > n0 th an < 2

    , do n > n0 ta c

    P{Xn an > 2} P{Xn > },

    l iu phi chng minh.)Bi bt ng thc (2.10) v tnh cht cng phn phi ta suy ra

    n

    P{

    iI(n)ui E

    iI(n)

    ui > 2np} 12

    n

    1

    22np

    iI(n)

    Eui2

    12

    n

    1

    22np

    2nEX21{X2np } =1

    2

    n

    1

    2n(2

    p1)EX21{X2np }

    =1

    2E

    X2

    n1

    2n(2

    p1) 1{2nXp}

    (v EXp < ). Ta c iu phi chng minh.Cch 2. V EXp < nn vi mi > 0 th

    n

    2nP{X > 2np} < .

    Vi c nh, theo b 3.7 (p dng vi u = , an = n1

    p ) ta cn; v 0 < t 1 th

    P{maxiI(n) Xi > t2

    np} 1t2p n

    70

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    74/83

    vin

    n < . T , vi t = 1 th

    n P{maxiI(n) > 2np

    } n n < .Vi 0 < t 1 th 1t2p < exp(1t ) nn

    n

    P{maxiI(n)

    Xi > t2np} n exp(1t

    ).

    V vy, theo b 3.6, tn ti (kn) sao cho

    nK0q

    kn

    =n

    2kn =

    n12

    kn

    <

    v n

    P

    kn

    r=1

    X(r)I(n) > 52

    np

    nP

    Kn

    r=1X

    (r)I(n) > 2 1 ( + (log 2)1)2

    np

    < .

    Tip tc, ta p dng nh l 3.5 vi q = 2K0 v vi ch t b 5 thL = 0; hn na v

    2n supfD

    iI(n)

    E

    f2(Xi)1{Xiamn/Kn} .

    iI(n)EXi21Xi2n/p 2nEX21X2n/p.

    V vy mn

    22n/p2n

    n

    1

    2n(2p 1)EXp1X2n/p

    <

    (do EXp < , lp lun nh phn trn).Vy iu kin (3.3) ca nh l 3.5 c tha mn vi mi > 0 nn ta c

    n

    P{ iI(n) X

    i > 102

    (5 + 2K0)2n/p

    } <

    71

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    75/83

    V vy ta hon thnh chng minh.

    Tip theo ta nh li tnh cht trong trng hp khng gian hu hnchiu nh sau:Khi EXp < (0 < p < 2) (v EX = 0 vi 1 p < 2) th Sn

    n1/p 0

    (nh l MarcinKiewicz- Zygmund). y ta s dng phng php lp lun xp x chng minh mt phntnh cht ny (vi 0 < p 1) cho khng gian Banach tch c bt k.Tc l

    Khi 0 < p 1 vi iu kin kh tch EXp

    < (v X c k vng 0khi p = 1) th suy ra rng

    Snn1/p

    P 0.Tht vy, v X l radon v EXp < nn vi mi > 0 ta c thcho mt bin ngu nhin hu hn chiu Y (c k vng 0 khi p = 1 vEX = 0) sao cho EX Yp < .Gi Tn l tng ring ca bn sao c lp (Yi) ca Y. Khi theo btng thc tam gic (vi p 1).

    ESn Tnp n

    i=1

    EXi Yip = nEX Yp n

    E Snn1/p

    Tnn1/p

    p

    nhng v Y c s chiu hu hn nn theo phn trn suy raTn

    n1/pP 0.

    Cng vi bt ng thc sau:

    P{ Snn1/p

    > 2} P{ Snn1/p

    Tnn1/p

    } + P{ Tnn1/p

    }

    E Sn

    n1/p Tn

    n1/pp

    p+ P{ Tn

    n1/p }

    Suy raSn

    n1/pP 0.

    V vy, p dng nh l 3.8 ta c pht biu sau:

    Vi 0 < p 1 th Snn1/ph.c.c 0 khi v ch khi EXp < (v EX = 0

    72

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    76/83

    vi p = 1).c bit, ta c cc nh l v lut mnh s ln ca Kolmogorov chobin ngu nhin c lp cng phn phi, c m rng cho khng gian

    Banach tch c nh sau:H qu 3.9. Cho X l bin ngu nhin Borel vi gi tr trong khng

    gian Banach tch c B thSnn

    h.c.c 0 khi v ch khi EX < vEX = 0.

    Phng php chng minh xp x trn khng m rng c chotrng hp 1 < p < 2 c. Tnh cht ng vi trng hp 1 < p < 2khng ng cho khng gian Banach tng qut; v d tip theo s chng

    minh iu .V d 1. Trong C0- khng gian Banach tch c gm cc dy s thctin n 0, c trang b chun sup; Khi vi mi dy gim (n) ccs thc hi t v 0 th tn ti mt bin ngu nhin b chn hu chc

    chn v i xng, X sao choSn

    nnkhng hi t v 0 theo xc sut.

    Chng minh. Ly (k)k1 l i lng ngu nhin vi phn phi

    P{k = 1} = P{k = 1} =1

    2(1 P{k = 0}) =1

    ln(k + 1)

    t k =

    n vi 2n2 k < 2n v ly X l bin ngu nhin radon,nhn gi tr trong C0 vi ta (kk)k1 th X r rng l bin ngunhin i xng (do tng thnh phn kk l bin ngu nhin thc, ixng).

    Tuy nhinSn

    nnkhng hi t v khng theo xc sut.

    Tht vy, vi (ki)i l bn sao c lp ca (k).

    Vi mi k, n 1 t Enk = ni=1

    {ki = 1}; An = k2n

    Enk.

    Khi ta c:

    P(Enk) = P(n

    i=1

    (ki = 1)) =n

    i=1

    P{ki = 1} = (ln(k + 1))n

    V vy m

    P(An) = 1 P(k2n E

    c

    nk) = 1 k2n (1 P(Enk))

    73

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    77/83

    = 1 k2n

    1 1

    [ln(k + 1)]n

    Ta thy P(An)

    0.

    Nu ta k hiu (ei) l c s chnh tc ca C0 th Xi =

    k=1

    kkiek v vy

    m

    Snnn

    =

    ni=1

    k=1

    kkiek

    nn=

    k=1

    1

    nn

    ni=1

    ki

    kek

    Khi trn An th

    Snnn maxk2n 1nn k|i=1 nki| 1nnnn = 1nDo n 0 nn > 0 th

    lim infP{Snnn

    > } liminfP(An) = 1.

    Sau khi c s m rng lut mnh s ln ca bin ngu nhin cng

    phn phi vi gi tr trn khng gian Banach. Ta s nghin cu lutmnh s ln cho cc bin ngu nhin c lp, nhng khng cng phnphi.

    nh l 3.10. Cho (Xi) l mt dy cc bin ngu nhin radon c lp,nhn gi tr trong khng gian Banach B. Gi s rng

    Xii

    h.c.c 0. (3.7)

    Snn

    P 0. (3.8)Gi s rng tn ti v > 0; n v t : 0 < t 1.

    P{max Xi > t.v.2n} n exp(1t

    ). (3.9)

    Vi

    n sn < vis > 0 v rng vi mi > 0

    n exp(22n

    supfD iI(n) E(f2(Xi)1{Xi2n})) < (3.10)74

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    78/83

    yI(n) = {2n1+1; ; 2n} th lut mnh s ln ng, tc Snn

    h.c.c 0.

    Chng minh. Ta nh ngha Yi = Xi1{Xi i} bi (3.7):Xi

    i

    h.c.c

    0;nn hu ht th i() i > i() ta c Xi

    i 1 Xi i hay

    Yi = Xi hu chc chn vi i ln. V vy n l cho kt qu vi dy(Yi) thay cho Xi hay chng ta c th gi s rng Xi i h.c.c.

    Nu ta gi (Xi) l bn sao c lp ca (Xi); xt dy bin ngu nhini xng (Xi Xi), khi cc gi thit ca (Xi) u tha mn vi(Xi Xi) chng hn iu kin (3.9):

    P{maxiI(n) Xi Xi > t.(2v).2n}

    P{maxiI(n)

    Xi > tv2n} + P{max Xi > tv2n} 2n exp(1

    t)

    vi

    n(2n)s < bi vy nu ta chng minh c Sn

    nh.c.c 0 th theo

    b 3.1 cng vi iu kin (3.8) suy ra ngaySnn

    h.c.c 0. Vy ta c th

    gi thit bn thn (Xi) l i xng.Tip theo ta s kim tra cc iu kin p dng nh l 3.5. V

    gi thit (3.8) suy raS2n

    2n

    vS2n1

    2n

    hi t theo xc sut v 0 nn

    iI(n)

    Xi

    2n

    hi t theo xc sut v 0; p dng b 3.2 suy ra

    L = lim sup

    Mnamn = lim sup

    Mn2n = 0

    Li doXii

    h.c.c 0 nn > 0 thn

    P{maxiI(n)

    Xi > u.2n} <

    Vy theo b 3.6 (vi ch cng iu kin (3.9) ta suy ra:

    q 2k0 tn ti dy (kn) cc s nguyn sao cho nk0q kn < v tha

    75

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    79/83

    mn

    nP

    kn

    r=1X

    (r)I(n) > 2s

    u + v(ln

    q

    k0)1

    amn

    <

    Li cng vi gi thit (3.10) suy ra cc gi thit ca nh l 3.5 ctha mn. Vy u > 0, > 0 ta c

    n

    P

    iI(n)Xi 102

    2s(u + v(ln

    q

    k0)1) + q

    2n

    <

    V vy > 0, chn u, > 0 sao cho

    = 1022s(u + v(ln qk0)1) + qta c:

    n

    P{

    iI(n)Xi > 2n} <

    li p dng b 3.3 suy ra:Snn

    h.c.c 0H qu 3.11. Vi gi thit ca nh l3.10nhng iu kin (3.9) thay

    bi iu kin (3.9):n

    12np

    iI(n)EXip

    s< (vi p > 0 v s > 0 no ) th lut mnh

    s ln tha mn.

    Tht vy, ta p dng bt ng thc Markov, vi mi n:

    P{Xi > tv2n} EXip

    (tv2n)p

    Suy ra iI(n)

    P{Xi > tv2n} 1(tv)p

    1

    2np

    iI(n)

    EXip

    Tuy nhin ta bit vi 0 < t 1 th 1t > 1 v khi tn ti C(p) 1

    (tv)p C(p)exp 1

    t

    76

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    80/83

    v vy m

    iI(n)P{Xi > tv2n

    } C(p)exp

    1

    p1

    v

    p

    1

    2

    np iI(n)EXip

    vy ta c gi thit (3.9) ca nh l 3.10 vi

    n = C(p).1

    vp1

    2np

    iI(n)

    EXip

    v

    n sn = Cs(p) 1vpsn 12np iI(n) EXips

    0

    iI(n)

    P{Xi > t}

    Ta xt iu kini

    EXipip

    < , ta thy iu kin ny suy ra t iukin (3.7), (3.8) v (3.10) (vi p 2). V vy ta c h qu sau:H qu 3.12. Cho (Xi) l dy bnn c lp vi gi tr trongB. Nu tn

    ti1 p 2 :i

    EXipip

    < th lut mnh s ln ng khi v ch khilut yu s ln ng.

    77

  • 8/2/2019 Mt s vn l thuyt xc sut trn khng gian banach

    81/83

    Kt lun

    Lun vn cp n mt vn quan trng ca l thuyt xcsut. l vic nghin cu tng cc bin ngu nhin c lp vi gi tr

    trong khng gian Banach. N l s m rng cho trng hp s chiu vhn ca tng cc bin ngu nhin c lp. Tuy nhin, trong trng hpny thiu i tnh cht trc giao, v vy vic m rng ny cn phi ccc cng c khc c trnh by r rng trong lun vn nh: phngphp i xng ho, phng php dng dy bin Rademacher, phngphp dng cc bt ng thc martingale thc v c bit l phngphp ng chu. Ti liu tham