31
2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

2012 11 30

유 하 늘

인하대학교 기계공학과

에코스마트파워연구실(eco-Smart Power Lab)

연료전지 및 고체 수소저장용기 전산모사

2

발표순서

ㅅ 1

2

3

연료전지 소개

연료전지 모델

연료전지 해석 결과

연료전지

ㅅ 1

2

3

금속수소화물 소개

수소 흡middot탈장 모델

수소 흡middot탈장 모델 해석 결과

수소

저장용기

Large scale PEFC simulation High-Temperature PEMFC model

GDL deformation IV curve validation

Current density water contents distribution

Fuel cell model development amp structural analysis rArr FSI(fluid-structure interaction) approach

High performance computing cluster

Master PC

266GHz x

4core cpu x 2

Sub node

266GHz x

4core cpu

Introduction of Eco Smart Power Lab (ESPL)

3

HCM DMFC simulation

Performance curve and methanol crossover validation Johan Ko et al JPS 2011 3D DMFC simulation result

Polymer Electrolyte Fuel Cell

고분자전해질연료전지 (PEFC)

2 2 2H H e Anode

2 2

12 2

2O H e H O Cathode

Hydrogen oxidation reaction (HOR)

Oxygen reduction reaction (ORR)

4

관련 모델

bull 2-phase steady state non-isothermal model

(Large scale simulation gt 135M cells)

bull PEFC cold start(CS-PEFC) model (with HMC)

bull Single phase transient model

Reference Ju H Investigation of the effects of the anisotropy

of gas-diffusion layers on heat and water

transport in polymer electrolyte fuel cells J Power

Sources 2009191259-68

외 SCI급 11편

( ) mu S

uu p

Ku p

( ) g g eff g g l l

i i i i i i im u D m m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

5

Reference Ju H Investigation of the effects of the anisotropy of gas-diffusion layers on heat and water transport in polymer electrolyte fuel cells J Power Sources 2009191259-68

mem mem

m i w w

i

S S M D EW

i i d iS M n F I s j nF

i i iS M s j nF

S j

질량 보존식

화학종 보존식

전하 보존식

운동량 보존식 Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

Fuel cell modeling 3-D two phase PEFC

For water in the CLs

For other species in the CLs

In the CLs

bull Total number of cells ndash 13538070 (~ 135 million)

bull Number of iterations required for convergence 5000

bull CPU time iteration 781 minutes

bull Intel core i7 with 253 GHz

bull Each processor memory 2 GB

Active Area (cm2) 200

Operating cell voltage 0713 V

H2 Concentration () 30

Anode Stoichiometry 133

Cathode Stoichiometry 20

AnodeCathodeCoolant Outlet Pressure

Atmospheric

Cell operating temperature 60 oC

PEFC large-scale simulations

Mesh configuration

Channel [EA] 24 24

Channel width [mm] 1 1

Channel Depth [mm] 06 08

Rib width [mm] 1 1

Thickness of GDLCLMEM [mm]

025001003 025001003

Total channel area [m2] 144E-5 192E-5

Reaction area [cm2] 200 200

Cell dimensions

Operating conditions

Anode

Inlet

Cathode Inlet

Cathode

outlet

Anode

outlet

6

PEFC large-scale simulations

Pressure distribution (Pa)

Anode Gas Channel

Cathode Gas Channel

Hydrogen concentration distribution In the anode (molm3)

Oxygen concentration distribution In the cathode (molm3)

7

Liquid saturation contours

PEFC large-scale simulations

Current distribution in the membrane (Am2)

Cathode

inlet

Water content distribution in the membrane

8

Two-dimensional cross-sectional view

PEFC large-scale simulations

9

Overall polarization curves for Cases 1-3

Liquid saturation curves in different regions of the cathode GDL at 15 Amiddotcm-2

Mesh configuration

PEFC large-scale simulations

10

Case 1 Case 2 Case 3

Current density contours at 15 Amiddotcm-2 Liquid saturation contours at 15 Amiddotcm-2

11

sgsgeff

e

eo

T hSi

T

UTjS

2

Proton

Electron jS

jS

nF

jsS

i

i

c

Water

Other species

2 2 2H O H O H Oec d sg

IjS s n q

nF F

2 ( ) ( )2

em a H w w m w d

ijS M M D C n

F F

2 2 ( ) ( )4 2

em c O H O w w m w d

ij jS M M M D C n

F F F

Anode

Cathode

Fuel cell modeling 3-D transient CS-PEFC

Reference J Ko Comparison of numerical simulation results and experimental data during cold-start of PEFCs

Applied Energy 2012 94 364-374

질량 보존식

화학종 보존식

전하 보존식

에너지 보존식

u

dt

du

Kgpuuu

t

u s

seff

11

i

c

ii

eff

ii

SCDCut

C

0 Se

eff

e

0 Ss

eff

s

T

OH

effp

gpcellp

STkTuCt

TC

t

TC

2

energy

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 2: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

2

발표순서

ㅅ 1

2

3

연료전지 소개

연료전지 모델

연료전지 해석 결과

연료전지

ㅅ 1

2

3

금속수소화물 소개

수소 흡middot탈장 모델

수소 흡middot탈장 모델 해석 결과

수소

저장용기

Large scale PEFC simulation High-Temperature PEMFC model

GDL deformation IV curve validation

Current density water contents distribution

Fuel cell model development amp structural analysis rArr FSI(fluid-structure interaction) approach

High performance computing cluster

Master PC

266GHz x

4core cpu x 2

Sub node

266GHz x

4core cpu

Introduction of Eco Smart Power Lab (ESPL)

3

HCM DMFC simulation

Performance curve and methanol crossover validation Johan Ko et al JPS 2011 3D DMFC simulation result

Polymer Electrolyte Fuel Cell

고분자전해질연료전지 (PEFC)

2 2 2H H e Anode

2 2

12 2

2O H e H O Cathode

Hydrogen oxidation reaction (HOR)

Oxygen reduction reaction (ORR)

4

관련 모델

bull 2-phase steady state non-isothermal model

(Large scale simulation gt 135M cells)

bull PEFC cold start(CS-PEFC) model (with HMC)

bull Single phase transient model

Reference Ju H Investigation of the effects of the anisotropy

of gas-diffusion layers on heat and water

transport in polymer electrolyte fuel cells J Power

Sources 2009191259-68

외 SCI급 11편

( ) mu S

uu p

Ku p

( ) g g eff g g l l

i i i i i i im u D m m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

5

Reference Ju H Investigation of the effects of the anisotropy of gas-diffusion layers on heat and water transport in polymer electrolyte fuel cells J Power Sources 2009191259-68

mem mem

m i w w

i

S S M D EW

i i d iS M n F I s j nF

i i iS M s j nF

S j

질량 보존식

화학종 보존식

전하 보존식

운동량 보존식 Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

Fuel cell modeling 3-D two phase PEFC

For water in the CLs

For other species in the CLs

In the CLs

bull Total number of cells ndash 13538070 (~ 135 million)

bull Number of iterations required for convergence 5000

bull CPU time iteration 781 minutes

bull Intel core i7 with 253 GHz

bull Each processor memory 2 GB

Active Area (cm2) 200

Operating cell voltage 0713 V

H2 Concentration () 30

Anode Stoichiometry 133

Cathode Stoichiometry 20

AnodeCathodeCoolant Outlet Pressure

Atmospheric

Cell operating temperature 60 oC

PEFC large-scale simulations

Mesh configuration

Channel [EA] 24 24

Channel width [mm] 1 1

Channel Depth [mm] 06 08

Rib width [mm] 1 1

Thickness of GDLCLMEM [mm]

025001003 025001003

Total channel area [m2] 144E-5 192E-5

Reaction area [cm2] 200 200

Cell dimensions

Operating conditions

Anode

Inlet

Cathode Inlet

Cathode

outlet

Anode

outlet

6

PEFC large-scale simulations

Pressure distribution (Pa)

Anode Gas Channel

Cathode Gas Channel

Hydrogen concentration distribution In the anode (molm3)

Oxygen concentration distribution In the cathode (molm3)

7

Liquid saturation contours

PEFC large-scale simulations

Current distribution in the membrane (Am2)

Cathode

inlet

Water content distribution in the membrane

8

Two-dimensional cross-sectional view

PEFC large-scale simulations

9

Overall polarization curves for Cases 1-3

Liquid saturation curves in different regions of the cathode GDL at 15 Amiddotcm-2

Mesh configuration

PEFC large-scale simulations

10

Case 1 Case 2 Case 3

Current density contours at 15 Amiddotcm-2 Liquid saturation contours at 15 Amiddotcm-2

11

sgsgeff

e

eo

T hSi

T

UTjS

2

Proton

Electron jS

jS

nF

jsS

i

i

c

Water

Other species

2 2 2H O H O H Oec d sg

IjS s n q

nF F

2 ( ) ( )2

em a H w w m w d

ijS M M D C n

F F

2 2 ( ) ( )4 2

em c O H O w w m w d

ij jS M M M D C n

F F F

Anode

Cathode

Fuel cell modeling 3-D transient CS-PEFC

Reference J Ko Comparison of numerical simulation results and experimental data during cold-start of PEFCs

Applied Energy 2012 94 364-374

질량 보존식

화학종 보존식

전하 보존식

에너지 보존식

u

dt

du

Kgpuuu

t

u s

seff

11

i

c

ii

eff

ii

SCDCut

C

0 Se

eff

e

0 Ss

eff

s

T

OH

effp

gpcellp

STkTuCt

TC

t

TC

2

energy

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 3: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

Large scale PEFC simulation High-Temperature PEMFC model

GDL deformation IV curve validation

Current density water contents distribution

Fuel cell model development amp structural analysis rArr FSI(fluid-structure interaction) approach

High performance computing cluster

Master PC

266GHz x

4core cpu x 2

Sub node

266GHz x

4core cpu

Introduction of Eco Smart Power Lab (ESPL)

3

HCM DMFC simulation

Performance curve and methanol crossover validation Johan Ko et al JPS 2011 3D DMFC simulation result

Polymer Electrolyte Fuel Cell

고분자전해질연료전지 (PEFC)

2 2 2H H e Anode

2 2

12 2

2O H e H O Cathode

Hydrogen oxidation reaction (HOR)

Oxygen reduction reaction (ORR)

4

관련 모델

bull 2-phase steady state non-isothermal model

(Large scale simulation gt 135M cells)

bull PEFC cold start(CS-PEFC) model (with HMC)

bull Single phase transient model

Reference Ju H Investigation of the effects of the anisotropy

of gas-diffusion layers on heat and water

transport in polymer electrolyte fuel cells J Power

Sources 2009191259-68

외 SCI급 11편

( ) mu S

uu p

Ku p

( ) g g eff g g l l

i i i i i i im u D m m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

5

Reference Ju H Investigation of the effects of the anisotropy of gas-diffusion layers on heat and water transport in polymer electrolyte fuel cells J Power Sources 2009191259-68

mem mem

m i w w

i

S S M D EW

i i d iS M n F I s j nF

i i iS M s j nF

S j

질량 보존식

화학종 보존식

전하 보존식

운동량 보존식 Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

Fuel cell modeling 3-D two phase PEFC

For water in the CLs

For other species in the CLs

In the CLs

bull Total number of cells ndash 13538070 (~ 135 million)

bull Number of iterations required for convergence 5000

bull CPU time iteration 781 minutes

bull Intel core i7 with 253 GHz

bull Each processor memory 2 GB

Active Area (cm2) 200

Operating cell voltage 0713 V

H2 Concentration () 30

Anode Stoichiometry 133

Cathode Stoichiometry 20

AnodeCathodeCoolant Outlet Pressure

Atmospheric

Cell operating temperature 60 oC

PEFC large-scale simulations

Mesh configuration

Channel [EA] 24 24

Channel width [mm] 1 1

Channel Depth [mm] 06 08

Rib width [mm] 1 1

Thickness of GDLCLMEM [mm]

025001003 025001003

Total channel area [m2] 144E-5 192E-5

Reaction area [cm2] 200 200

Cell dimensions

Operating conditions

Anode

Inlet

Cathode Inlet

Cathode

outlet

Anode

outlet

6

PEFC large-scale simulations

Pressure distribution (Pa)

Anode Gas Channel

Cathode Gas Channel

Hydrogen concentration distribution In the anode (molm3)

Oxygen concentration distribution In the cathode (molm3)

7

Liquid saturation contours

PEFC large-scale simulations

Current distribution in the membrane (Am2)

Cathode

inlet

Water content distribution in the membrane

8

Two-dimensional cross-sectional view

PEFC large-scale simulations

9

Overall polarization curves for Cases 1-3

Liquid saturation curves in different regions of the cathode GDL at 15 Amiddotcm-2

Mesh configuration

PEFC large-scale simulations

10

Case 1 Case 2 Case 3

Current density contours at 15 Amiddotcm-2 Liquid saturation contours at 15 Amiddotcm-2

11

sgsgeff

e

eo

T hSi

T

UTjS

2

Proton

Electron jS

jS

nF

jsS

i

i

c

Water

Other species

2 2 2H O H O H Oec d sg

IjS s n q

nF F

2 ( ) ( )2

em a H w w m w d

ijS M M D C n

F F

2 2 ( ) ( )4 2

em c O H O w w m w d

ij jS M M M D C n

F F F

Anode

Cathode

Fuel cell modeling 3-D transient CS-PEFC

Reference J Ko Comparison of numerical simulation results and experimental data during cold-start of PEFCs

Applied Energy 2012 94 364-374

질량 보존식

화학종 보존식

전하 보존식

에너지 보존식

u

dt

du

Kgpuuu

t

u s

seff

11

i

c

ii

eff

ii

SCDCut

C

0 Se

eff

e

0 Ss

eff

s

T

OH

effp

gpcellp

STkTuCt

TC

t

TC

2

energy

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 4: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

Polymer Electrolyte Fuel Cell

고분자전해질연료전지 (PEFC)

2 2 2H H e Anode

2 2

12 2

2O H e H O Cathode

Hydrogen oxidation reaction (HOR)

Oxygen reduction reaction (ORR)

4

관련 모델

bull 2-phase steady state non-isothermal model

(Large scale simulation gt 135M cells)

bull PEFC cold start(CS-PEFC) model (with HMC)

bull Single phase transient model

Reference Ju H Investigation of the effects of the anisotropy

of gas-diffusion layers on heat and water

transport in polymer electrolyte fuel cells J Power

Sources 2009191259-68

외 SCI급 11편

( ) mu S

uu p

Ku p

( ) g g eff g g l l

i i i i i i im u D m m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

5

Reference Ju H Investigation of the effects of the anisotropy of gas-diffusion layers on heat and water transport in polymer electrolyte fuel cells J Power Sources 2009191259-68

mem mem

m i w w

i

S S M D EW

i i d iS M n F I s j nF

i i iS M s j nF

S j

질량 보존식

화학종 보존식

전하 보존식

운동량 보존식 Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

Fuel cell modeling 3-D two phase PEFC

For water in the CLs

For other species in the CLs

In the CLs

bull Total number of cells ndash 13538070 (~ 135 million)

bull Number of iterations required for convergence 5000

bull CPU time iteration 781 minutes

bull Intel core i7 with 253 GHz

bull Each processor memory 2 GB

Active Area (cm2) 200

Operating cell voltage 0713 V

H2 Concentration () 30

Anode Stoichiometry 133

Cathode Stoichiometry 20

AnodeCathodeCoolant Outlet Pressure

Atmospheric

Cell operating temperature 60 oC

PEFC large-scale simulations

Mesh configuration

Channel [EA] 24 24

Channel width [mm] 1 1

Channel Depth [mm] 06 08

Rib width [mm] 1 1

Thickness of GDLCLMEM [mm]

025001003 025001003

Total channel area [m2] 144E-5 192E-5

Reaction area [cm2] 200 200

Cell dimensions

Operating conditions

Anode

Inlet

Cathode Inlet

Cathode

outlet

Anode

outlet

6

PEFC large-scale simulations

Pressure distribution (Pa)

Anode Gas Channel

Cathode Gas Channel

Hydrogen concentration distribution In the anode (molm3)

Oxygen concentration distribution In the cathode (molm3)

7

Liquid saturation contours

PEFC large-scale simulations

Current distribution in the membrane (Am2)

Cathode

inlet

Water content distribution in the membrane

8

Two-dimensional cross-sectional view

PEFC large-scale simulations

9

Overall polarization curves for Cases 1-3

Liquid saturation curves in different regions of the cathode GDL at 15 Amiddotcm-2

Mesh configuration

PEFC large-scale simulations

10

Case 1 Case 2 Case 3

Current density contours at 15 Amiddotcm-2 Liquid saturation contours at 15 Amiddotcm-2

11

sgsgeff

e

eo

T hSi

T

UTjS

2

Proton

Electron jS

jS

nF

jsS

i

i

c

Water

Other species

2 2 2H O H O H Oec d sg

IjS s n q

nF F

2 ( ) ( )2

em a H w w m w d

ijS M M D C n

F F

2 2 ( ) ( )4 2

em c O H O w w m w d

ij jS M M M D C n

F F F

Anode

Cathode

Fuel cell modeling 3-D transient CS-PEFC

Reference J Ko Comparison of numerical simulation results and experimental data during cold-start of PEFCs

Applied Energy 2012 94 364-374

질량 보존식

화학종 보존식

전하 보존식

에너지 보존식

u

dt

du

Kgpuuu

t

u s

seff

11

i

c

ii

eff

ii

SCDCut

C

0 Se

eff

e

0 Ss

eff

s

T

OH

effp

gpcellp

STkTuCt

TC

t

TC

2

energy

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 5: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

( ) mu S

uu p

Ku p

( ) g g eff g g l l

i i i i i i im u D m m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

5

Reference Ju H Investigation of the effects of the anisotropy of gas-diffusion layers on heat and water transport in polymer electrolyte fuel cells J Power Sources 2009191259-68

mem mem

m i w w

i

S S M D EW

i i d iS M n F I s j nF

i i iS M s j nF

S j

질량 보존식

화학종 보존식

전하 보존식

운동량 보존식 Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

Fuel cell modeling 3-D two phase PEFC

For water in the CLs

For other species in the CLs

In the CLs

bull Total number of cells ndash 13538070 (~ 135 million)

bull Number of iterations required for convergence 5000

bull CPU time iteration 781 minutes

bull Intel core i7 with 253 GHz

bull Each processor memory 2 GB

Active Area (cm2) 200

Operating cell voltage 0713 V

H2 Concentration () 30

Anode Stoichiometry 133

Cathode Stoichiometry 20

AnodeCathodeCoolant Outlet Pressure

Atmospheric

Cell operating temperature 60 oC

PEFC large-scale simulations

Mesh configuration

Channel [EA] 24 24

Channel width [mm] 1 1

Channel Depth [mm] 06 08

Rib width [mm] 1 1

Thickness of GDLCLMEM [mm]

025001003 025001003

Total channel area [m2] 144E-5 192E-5

Reaction area [cm2] 200 200

Cell dimensions

Operating conditions

Anode

Inlet

Cathode Inlet

Cathode

outlet

Anode

outlet

6

PEFC large-scale simulations

Pressure distribution (Pa)

Anode Gas Channel

Cathode Gas Channel

Hydrogen concentration distribution In the anode (molm3)

Oxygen concentration distribution In the cathode (molm3)

7

Liquid saturation contours

PEFC large-scale simulations

Current distribution in the membrane (Am2)

Cathode

inlet

Water content distribution in the membrane

8

Two-dimensional cross-sectional view

PEFC large-scale simulations

9

Overall polarization curves for Cases 1-3

Liquid saturation curves in different regions of the cathode GDL at 15 Amiddotcm-2

Mesh configuration

PEFC large-scale simulations

10

Case 1 Case 2 Case 3

Current density contours at 15 Amiddotcm-2 Liquid saturation contours at 15 Amiddotcm-2

11

sgsgeff

e

eo

T hSi

T

UTjS

2

Proton

Electron jS

jS

nF

jsS

i

i

c

Water

Other species

2 2 2H O H O H Oec d sg

IjS s n q

nF F

2 ( ) ( )2

em a H w w m w d

ijS M M D C n

F F

2 2 ( ) ( )4 2

em c O H O w w m w d

ij jS M M M D C n

F F F

Anode

Cathode

Fuel cell modeling 3-D transient CS-PEFC

Reference J Ko Comparison of numerical simulation results and experimental data during cold-start of PEFCs

Applied Energy 2012 94 364-374

질량 보존식

화학종 보존식

전하 보존식

에너지 보존식

u

dt

du

Kgpuuu

t

u s

seff

11

i

c

ii

eff

ii

SCDCut

C

0 Se

eff

e

0 Ss

eff

s

T

OH

effp

gpcellp

STkTuCt

TC

t

TC

2

energy

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 6: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

bull Total number of cells ndash 13538070 (~ 135 million)

bull Number of iterations required for convergence 5000

bull CPU time iteration 781 minutes

bull Intel core i7 with 253 GHz

bull Each processor memory 2 GB

Active Area (cm2) 200

Operating cell voltage 0713 V

H2 Concentration () 30

Anode Stoichiometry 133

Cathode Stoichiometry 20

AnodeCathodeCoolant Outlet Pressure

Atmospheric

Cell operating temperature 60 oC

PEFC large-scale simulations

Mesh configuration

Channel [EA] 24 24

Channel width [mm] 1 1

Channel Depth [mm] 06 08

Rib width [mm] 1 1

Thickness of GDLCLMEM [mm]

025001003 025001003

Total channel area [m2] 144E-5 192E-5

Reaction area [cm2] 200 200

Cell dimensions

Operating conditions

Anode

Inlet

Cathode Inlet

Cathode

outlet

Anode

outlet

6

PEFC large-scale simulations

Pressure distribution (Pa)

Anode Gas Channel

Cathode Gas Channel

Hydrogen concentration distribution In the anode (molm3)

Oxygen concentration distribution In the cathode (molm3)

7

Liquid saturation contours

PEFC large-scale simulations

Current distribution in the membrane (Am2)

Cathode

inlet

Water content distribution in the membrane

8

Two-dimensional cross-sectional view

PEFC large-scale simulations

9

Overall polarization curves for Cases 1-3

Liquid saturation curves in different regions of the cathode GDL at 15 Amiddotcm-2

Mesh configuration

PEFC large-scale simulations

10

Case 1 Case 2 Case 3

Current density contours at 15 Amiddotcm-2 Liquid saturation contours at 15 Amiddotcm-2

11

sgsgeff

e

eo

T hSi

T

UTjS

2

Proton

Electron jS

jS

nF

jsS

i

i

c

Water

Other species

2 2 2H O H O H Oec d sg

IjS s n q

nF F

2 ( ) ( )2

em a H w w m w d

ijS M M D C n

F F

2 2 ( ) ( )4 2

em c O H O w w m w d

ij jS M M M D C n

F F F

Anode

Cathode

Fuel cell modeling 3-D transient CS-PEFC

Reference J Ko Comparison of numerical simulation results and experimental data during cold-start of PEFCs

Applied Energy 2012 94 364-374

질량 보존식

화학종 보존식

전하 보존식

에너지 보존식

u

dt

du

Kgpuuu

t

u s

seff

11

i

c

ii

eff

ii

SCDCut

C

0 Se

eff

e

0 Ss

eff

s

T

OH

effp

gpcellp

STkTuCt

TC

t

TC

2

energy

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 7: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

PEFC large-scale simulations

Pressure distribution (Pa)

Anode Gas Channel

Cathode Gas Channel

Hydrogen concentration distribution In the anode (molm3)

Oxygen concentration distribution In the cathode (molm3)

7

Liquid saturation contours

PEFC large-scale simulations

Current distribution in the membrane (Am2)

Cathode

inlet

Water content distribution in the membrane

8

Two-dimensional cross-sectional view

PEFC large-scale simulations

9

Overall polarization curves for Cases 1-3

Liquid saturation curves in different regions of the cathode GDL at 15 Amiddotcm-2

Mesh configuration

PEFC large-scale simulations

10

Case 1 Case 2 Case 3

Current density contours at 15 Amiddotcm-2 Liquid saturation contours at 15 Amiddotcm-2

11

sgsgeff

e

eo

T hSi

T

UTjS

2

Proton

Electron jS

jS

nF

jsS

i

i

c

Water

Other species

2 2 2H O H O H Oec d sg

IjS s n q

nF F

2 ( ) ( )2

em a H w w m w d

ijS M M D C n

F F

2 2 ( ) ( )4 2

em c O H O w w m w d

ij jS M M M D C n

F F F

Anode

Cathode

Fuel cell modeling 3-D transient CS-PEFC

Reference J Ko Comparison of numerical simulation results and experimental data during cold-start of PEFCs

Applied Energy 2012 94 364-374

질량 보존식

화학종 보존식

전하 보존식

에너지 보존식

u

dt

du

Kgpuuu

t

u s

seff

11

i

c

ii

eff

ii

SCDCut

C

0 Se

eff

e

0 Ss

eff

s

T

OH

effp

gpcellp

STkTuCt

TC

t

TC

2

energy

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 8: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

Liquid saturation contours

PEFC large-scale simulations

Current distribution in the membrane (Am2)

Cathode

inlet

Water content distribution in the membrane

8

Two-dimensional cross-sectional view

PEFC large-scale simulations

9

Overall polarization curves for Cases 1-3

Liquid saturation curves in different regions of the cathode GDL at 15 Amiddotcm-2

Mesh configuration

PEFC large-scale simulations

10

Case 1 Case 2 Case 3

Current density contours at 15 Amiddotcm-2 Liquid saturation contours at 15 Amiddotcm-2

11

sgsgeff

e

eo

T hSi

T

UTjS

2

Proton

Electron jS

jS

nF

jsS

i

i

c

Water

Other species

2 2 2H O H O H Oec d sg

IjS s n q

nF F

2 ( ) ( )2

em a H w w m w d

ijS M M D C n

F F

2 2 ( ) ( )4 2

em c O H O w w m w d

ij jS M M M D C n

F F F

Anode

Cathode

Fuel cell modeling 3-D transient CS-PEFC

Reference J Ko Comparison of numerical simulation results and experimental data during cold-start of PEFCs

Applied Energy 2012 94 364-374

질량 보존식

화학종 보존식

전하 보존식

에너지 보존식

u

dt

du

Kgpuuu

t

u s

seff

11

i

c

ii

eff

ii

SCDCut

C

0 Se

eff

e

0 Ss

eff

s

T

OH

effp

gpcellp

STkTuCt

TC

t

TC

2

energy

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 9: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

Two-dimensional cross-sectional view

PEFC large-scale simulations

9

Overall polarization curves for Cases 1-3

Liquid saturation curves in different regions of the cathode GDL at 15 Amiddotcm-2

Mesh configuration

PEFC large-scale simulations

10

Case 1 Case 2 Case 3

Current density contours at 15 Amiddotcm-2 Liquid saturation contours at 15 Amiddotcm-2

11

sgsgeff

e

eo

T hSi

T

UTjS

2

Proton

Electron jS

jS

nF

jsS

i

i

c

Water

Other species

2 2 2H O H O H Oec d sg

IjS s n q

nF F

2 ( ) ( )2

em a H w w m w d

ijS M M D C n

F F

2 2 ( ) ( )4 2

em c O H O w w m w d

ij jS M M M D C n

F F F

Anode

Cathode

Fuel cell modeling 3-D transient CS-PEFC

Reference J Ko Comparison of numerical simulation results and experimental data during cold-start of PEFCs

Applied Energy 2012 94 364-374

질량 보존식

화학종 보존식

전하 보존식

에너지 보존식

u

dt

du

Kgpuuu

t

u s

seff

11

i

c

ii

eff

ii

SCDCut

C

0 Se

eff

e

0 Ss

eff

s

T

OH

effp

gpcellp

STkTuCt

TC

t

TC

2

energy

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 10: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

PEFC large-scale simulations

10

Case 1 Case 2 Case 3

Current density contours at 15 Amiddotcm-2 Liquid saturation contours at 15 Amiddotcm-2

11

sgsgeff

e

eo

T hSi

T

UTjS

2

Proton

Electron jS

jS

nF

jsS

i

i

c

Water

Other species

2 2 2H O H O H Oec d sg

IjS s n q

nF F

2 ( ) ( )2

em a H w w m w d

ijS M M D C n

F F

2 2 ( ) ( )4 2

em c O H O w w m w d

ij jS M M M D C n

F F F

Anode

Cathode

Fuel cell modeling 3-D transient CS-PEFC

Reference J Ko Comparison of numerical simulation results and experimental data during cold-start of PEFCs

Applied Energy 2012 94 364-374

질량 보존식

화학종 보존식

전하 보존식

에너지 보존식

u

dt

du

Kgpuuu

t

u s

seff

11

i

c

ii

eff

ii

SCDCut

C

0 Se

eff

e

0 Ss

eff

s

T

OH

effp

gpcellp

STkTuCt

TC

t

TC

2

energy

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 11: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

11

sgsgeff

e

eo

T hSi

T

UTjS

2

Proton

Electron jS

jS

nF

jsS

i

i

c

Water

Other species

2 2 2H O H O H Oec d sg

IjS s n q

nF F

2 ( ) ( )2

em a H w w m w d

ijS M M D C n

F F

2 2 ( ) ( )4 2

em c O H O w w m w d

ij jS M M M D C n

F F F

Anode

Cathode

Fuel cell modeling 3-D transient CS-PEFC

Reference J Ko Comparison of numerical simulation results and experimental data during cold-start of PEFCs

Applied Energy 2012 94 364-374

질량 보존식

화학종 보존식

전하 보존식

에너지 보존식

u

dt

du

Kgpuuu

t

u s

seff

11

i

c

ii

eff

ii

SCDCut

C

0 Se

eff

e

0 Ss

eff

s

T

OH

effp

gpcellp

STkTuCt

TC

t

TC

2

energy

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 12: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

Ice evolution contours in the cathode catalyst layer

CS-PEFC simulations

Current density evolution contours in the membrane (Am2)

Cell voltage evolution curve

12

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 13: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

13

직접메탄올연료전지 (DMFC)

Anode

Cathode

Methanol oxidation reaction (MOR)

Oxygen reduction reaction (ORR)

2 2

12 2

2O H e H O

3 2 26 6CH OH H O H e CO

Fuel cell modeling 3-D two phase DMFC

관련 모델

bull 2-phase steady state non-

isothermal model

(Large scale simulation gt 12M cells)

Reference H Ju et al Effects of serpentine flow-field

designs with different channel and rib widths on

the performance of a direct methanol fuel cell

J Power sources 205 2012 32-47

외 SCI급 4편

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 14: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

( ) mu S

uu p

Ku p

( ) g g eff g l l eff l

i i i i i i

g l l

i i i

m u D m D m

m m j S

0mem mem

mem l

w w d w l

I KD M n M P

EW F

0eff

e S

0eff

s S

14

Fuel cell modeling 3-D two phase DMFC

Reference H Ju et al Effects of serpentine flow-field designs with different channel and rib widths on the performance of a

direct methanol fuel cell J Power sources 205 2012 32-47

질량 보존식

화학종 보존식

전하 보존식

Flow channels (Navier-Stokes equation) Porous media (Darcyrsquos equations)

Flow channels and porous media Water transport in the membrane

Proton transport Electron transport

6

6

lCMeOHj i mema e cataS S M n Dm k MeOH MeOHd MeOHF F mem

k

memj imema eM D nw w dF EW F

Anode CL Cathode CL 2 4 2

c cm k O w

kxovermem

mem e MeOH MeOHw w d

CL

j jS S M M

F F

i M nM D n

EW F

l

MeOHmema e cata

MeOH MeOH d MeOH MeOH

mem

Cj iS M n D

6F F

2 2

xover

c MeOH

O O

CL

j n3S M

4F 2

MeOH O2

jS xover

cS j j

Anode CL Cathode CL

운동량 보존식

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 15: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

Flow channel geometry and numerical procedures

15

bull Total number of cells 12 million

bull CPU time iteration 16 sec

bull Intel core i7 with 253 GHz

Description Value

Channel rib width 1005 mm

Thickness of anode GDL 190 times10-6 m

Thickness of anode CL 30 times10-6 m

Thickness of cathode GDL 235 times10-6 m

Thickness of cathode CL 30 times10-6 m

Thickness of membrane 127 times10-6 m

Thickness of bipolar plate 2 times10-3 m

Porosity of GDLs 07

Porosity of CLs 07

Volume fraction of ionomer in CLs 023

Permeability of GDLs 10times10-12 m2

Permeability of GDLs 10times10-12 m2

Hydraulic permeability of MEM 50times10-19 m2

Contact angle of GDLs and CLs 92deg

Anode cathode stoichiometry 25 30

Cell operating temperature 60 oC

Anodecathode inlet pressure Atmospheric

Inlet methanol concentration 1000 mol m-3

Cell properties and operating conditions

3-D two-phase DMFC simulations

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 16: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

Methanol concentration contours (molm3)

3-D two-phase DMFC simulations

16

Anode flow channel Anode CL

Anode GDL [molm3] [molm3] [molm3]

Oxygen concentration contours (molm3) at 400 mAcm2

Cathode flow channel Cathode GDL Cathode CL [molm3] [molm3] [molm3]

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 17: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

Liquid saturation contours at 400 mAcm2

Cathode GDL

Anode GDL

17

Cathode CL

Anode CL

3-D two-phase DMFC simulations

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 18: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

18

3-D two-phase DMFC simulations

Flow field design and optimization

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 19: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

질량 보존식

Fuel Cell modeling HT-PEMFC

19

mu S

2

1( )

( )

uu p for flow channels Navier Stokes equations

Ku p for porous media Darcy s equations

 

eff

i i i iuC D C S

0

0

eff

e

eff

s

S for proton transport

S for electron transport

 

 

eff

p TC uT k T S

2

2 2

2

4 2

am H

c cm k O H O

k

jS M for anode catalyst layer

F

j jS S M M for cathode catalyst layer

F F

 

2

2 2

2

4 2

aH

c cO H

jS for anode catalyst layer

F

j jS S for cathode catalyst layer

F F

 

a

c

S j for anode catalyst layer

S j for cathode catalyst layer

 

2

2

2

eT a eff

eT eff

e OT c ceff

IS j for anode catalyst layer

IS for membrane

I dUS j j T for cathode catalyst layer

dT

 

운동량 보존식

화학종 보존식

전하 보존식

에너지 보존식

전기화학 반응 z

i iks M ne i

i

M chemical formula of species i

s stoichiometry coefficient

n number of electrons transferred

2

2 2

2 2

2 4 4

H H e Hydrogen oxidation reaction at the anode side

H O O H e Oxygen reduction reaction at the cathode side

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 20: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

Cell dimensions and base operating conditions

Description Value

Cell length 08 m

Anodecathode channelrib width 1 times 10-3 m

Anodecathode channel height 07 times 10-3 m

Coolant channel width 05 times 10-3 m

Coolant channel height 05 times 10-3 m

Thickness of the anodecathode GDLs 350 times 10-6 m

Thickness of the anodecathode CLs 15 times 10-6 m

Thickness of the membrane 70 times 10-6 m

Anodecathode inlet pressure 10 atm

Anode stoichiometry 125 (70 H2)

Cathode stoichiometry 20 (Air)

Anodecathode inlet temperature 383K

RH of the anodecathode inlet 00

Phosphoric acid doping level 62

Description Value

Porosity of GDL CL 06 04

Volume fraction of ionomers in CL 03

Permeability of GDL CL 1 times 10-12 10 times 10-13 m2

Electronic conductivity in the GDL CL BP 1250 300 14000 S m-1

Specific heat capacities of GDL CL

membrane and BP respectively 568 3300 1650 2930 J kg-1K-1

Specific heat capacities of species (H2 O2

N2 H2O) 14430 929 1042 1968 J kg-1K-1

Thermal conductivities of GDL CL

membrane BP 12 15 095 20 W m-1K-1

Thermal conductivities of species (H2 O2

N2 H2O)

02040 00296 00293 002378 W m-

1K-1

Volumetric reference exchange current

density in anode 10 times109 A m-3

Volumetric reference exchange current

density in cathode 10 times 104 A m-3

Anode transfer coefficient 05

Cathode transfer coefficient 065

Reference H2O2 molar concentration 4088 mol m-3

Physiochemical and transport properties

20

HT-PEFC simulations

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 21: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

21

Model validation Gas crossover effects

HT-PEFC simulations

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 22: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

22

1

gg

m

s

m

u S for hydrogent

S for metalt

C Rate constant

E Activation energy

R Gas constant

eq

s

emp

P Equlibrium pressure

Saturated metal density

Empty metal density

s

sat

0

1 0

H 1 1exp

M

nn

eq n

g

HP a a

R T T

p g g effp T

cc uT k T S

t

1 1

gg

u u

uuu P S where S u

t K

Dynamic viscosity

Permeability

1

1

s s g gp p p

eff s g

o g sT m p p

where c c c

k k k

S S H T c c

exp ln

exp

g s sam a sat

eq a

g eq d s sdm d emp

eq d

where

PES C for absorption

RT P

P PES C for desorption

RT P

Modeling of the hydrogen absorption desorption

질량 보존식 평형 압력

에너지 보존식

운동량 보존식

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 23: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

Metal hydride LaNi5 Hydrogen absorption

LaNi5 + 3H2 rarr LaNi5H6

Reference J Nam Three-dimensional modeling and simulation of

hydrogen absorption in metal hydride hydrogen storage

vessels Applied energy 89 2012 164-175

외 SCI 1편 23

Model validation

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 24: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

24

Metal hydride LaNi5 Hydrogen desorption

LaNi5H6 rarr LaNi5 + 3H2

Model validation

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 25: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

25

Metal hydride simulations

outer diameter

inner diameter

Layer thickness

inlet

Model assumption

수소는 이상기체

베드는 동종 다공성 미디어

금속과 수소 사이에는 국부적 온도평형

부피팽창 비열의 변화는 무시

2 x

xZrCo H ZrCoH (0 x 3 )

2

Absorption desorption formula

Absorption exothermic reaction

Desorption endothermic reaction

Computational domain mesh and dimensions of numerical geometry

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 26: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

26

2 0 32

x

xZrCo H ZrCoH x

0

1 0

0

0

H 1 1exp

M

T =433K (absorption)

T =523K (desorption)

nn

eq n

g

HP a a

R T T

where

Curve fitting for equilibrium pressure

최소자승법을 이용하여 실험적으로 측정한 평형압력을 온도와 HM atomic ratio의 다항식으로 근사

bull 흡장 ndash 9차 다항식 탈장 ndash 7차 다항식

S Konishi Journal of Nuclear Materials 223 294p 1995

absorption desorption

a0 -2420956395 -6471388017

a1 3728572074 2970420677

a2 `-1667306731 -8930753043

a3 4186656358 1852136064

a4 -6500433016 -2526795731

a5 6586728692 2098084651

a6 -4452244562 -9333352094

a7 1970334294 1689306846

a8 -5217131085

a9 6276235435

3D hydrogen absorptiondesorption simulations in the ZrCo bed

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 27: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

27

Reaction kinetics thermal physical properties and operating conditions

3D hydrogen absorptiondesorption simulations in the ZrCo bed

( )( )

s MH MM

sat

k kk H M k

H M

kM

kMH

(HM)sat

Thermal conductivity

Description absorption desorption

Initial inlet temperature T0 Tin 2525 ordmC 350 350

Initial pressure Pi 71 kPa 3 kPa

Pre-exponential factor Ca 02 s-1 0043 s-1

Activation energy Ea 130 kJmol-1 132 kJmol-1

Specific heat of hydrogen gas Cgp 14890 kJ(molK)-1

Specific heat of the metal Csp 0508 kJ(molK)-1 0630 kJ(molK)-1

Thermal conductivity of hydrogen gas kg 0167 W(mK)-1 0351 W(mK)-1

Thermal conductivity of ZrCo kZrCo 3013 W(mK)-1

Thermal conductivity of ZrCo hydride kZrCoH3 0524 W(mK)-1

Thermal conductivity of the SUS 162 W(mK)-1

Porosity of the metal ε 0629

Permeability of the metal K 10-8 m2

Heat transfer coefficient h 1652 W(m2K)-1

Hydrogen-free metal density ρsemp 7620 kgm-3

Saturated metal density ρssat 77479 kgm-3

Reference pressure Pref 1 bar

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 28: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

28

2

22

H i M M

g i Hi M

R T V HP P MW

V MW M

2 2 2H H initial H abskg kg kg

금속수소화물에 수소가 저장됨에 따른 수소공급탱크의 압

력변화를 적용

실험적으로 측정한 온도 profile과 모델을 이용하여 계산한

온도 profile을 비교함으로써 모델의 정확성을 검증

수소 흡장반응은 발열반응으로 반응초기 급격히 온도가 상

승하지만 시간이 지남에 따라 용기외부에서의 냉각으로 인

하여 온도가 감소

계산결과 HM atomic ratio 18 기준 90 흡장되는 시간이

약 37분 99 흡장되는 시간은 약 135분으로 나타남

(실험결과 90 - 4분 99 - 14분)

90 desorbed 37min 99 desorbed 135min

3D hydrogen absorptiondesorption simulations in the ZrCo bed

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 29: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

29

temperature HM ratio

반응 초기 활발한 흡장반응으로 인하여 온도가 급격히 상승 (5325K 까지 상승함)

시간이 지남에 따라 용기 외부에서의 냉각으로 인하여 외벽의 온도가 감소하여 용기 벽면 부근에서 우선적으로 흡장반응이 일어남

ZrCo 층이 얇게 설계되어 radial 방향으로 큰 편차를 보이지 않음

3D hydrogen absorptiondesorption simulations in the ZrCo bed

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 30: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

30

temperature

HM atomic ratio

실험에서 측정한 용기 온도 profile과 계산한 결과를

비교함으로써 모델을 검증

탈장반응은 흡열반응으로 반응 초기 온도가 급격히 감

소하나 시간이 지남에 따라 용기 외벽에서의 가열로

인하여 온도가 상승

계산결과 HM atomic ratio 18기준 90 탈장도달시

간이 196분으로 실험에서 측정한 18분과 근사한 결과

를 나타냄

3D hydrogen absorptiondesorption simulations in the ZrCo bed

Page 31 31

Page 31: No Slide Title - MDX · 2012. 11. 30 유 하 늘 인하대학교 기계공학과 에코스마트파워연구실(eco-Smart Power Lab.) 연료전지 및 고체 수소저장용기 전산모사

Page 31 31