21
Hisaaki Shinkai 真貝寿明 (Osaka Inst. Tech., Japan) 1 2017/7/6 The 13th International Conference on Gravitation, Astrophysics, & Cosmology (ICGAC-XIII) @ Seoul, Korea Nonlinear dynamics in the Einstein-Gauss-Bonnet gravity http://www.oit.ac.jp/is/~shinkai/ 4-dim, 5-dim, 6-dim, … how dimensionality affects to dynamics? Gauss-Bonnet terms … how higher-order curvature terms affects to dynamics? 2 models Colliding scalar pulses / Fate of wormholes Ref: HS & Torii , arXiv:1706.02070

Nonlinear dynamics in the Einstein-Gauss-Bonnet gravityHisaaki Shinkai 真貝寿明 (Osaka Inst. Tech., Japan) 1 2017/7/6 The 13th International Conference on Gravitation, Astrophysics,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Hisaaki Shinkai 真貝寿明 (Osaka Inst. Tech., Japan)

    12017/7/6 The 13th International Conference on Gravitation, Astrophysics, & Cosmology (ICGAC-XIII)

    @ Seoul, Korea

    Nonlinear dynamics in the Einstein-Gauss-Bonnet gravity

    http://www.oit.ac.jp/is/~shinkai/

    4-dim, 5-dim, 6-dim, 
… how dimensionality affects to dynamics? Gauss-Bonnet terms
… how higher-order curvature terms affects to dynamics? 2 models
Colliding scalar pulses / Fate of wormholes Ref: HS & Torii , arXiv:1706.02070 


  • Dynamics in Gauss-Bonnet gravity?

    •  has  the  simplest  leading  terms  from  String  Theory      •  has  two  solution  branches  (GR/non-‐‑‒GR).    •  has  minimum  mass  for  static  spherical  BH  solution 


    •  is  expected  to  have  singularity  avoidance  feature.   
(but  has  never  been  demonstrated  in  full  gravity.)      •new  topic  in  numerical  relativity. 
S  Golod  &  T  Piran,  PRD  85  (2012)  104015 
N  Deppe+,  PRD  86  (2012)  104011
F  Izaurieta  &  E  Rodriguez,  1207.1496  

    •much  attentions  in  WH  community
H  Maeda  &  M  Nozawa,  PRD  78  (2008)  024005  
P  Kanti,  B  Kleihaus  &  J  Kunz,  PRL  107  (2011)  271101 
P  Kanti,  B  Kleihaus  &  J  Kunz,  PRD  85  (2012)  044007   


     Introduction

    T  Torii  &  H  Maeda,  PRD  71  (2005)  124002  W-‐‑‒K  Ahn,  B  Gwak,  B-‐‑‒H  Lee,  W  Lee,  Eur.  Phys.  J.  C75  (2015)  372

  • Formulation for evolution [dual null]  Field Equations (1)

    x

    +x

    ⌃0

    Evolution

  • Formulation for evolution [dual null]  Field Equations (1)

  • matter variables  Field Equations (2)

  • evolution equations (1)  Field Equations (3)

  • evolution equations (2)  Field Equations (4)

  • @+ @�

    I(5) = RijklRijkl

    GR 5d: small amplitude waves  Colliding Scalar Waves

    flat background, normal scalar field

  • @+ @�

    I(5) = RijklRijkl

    GR 5d: large amplitude waves  Colliding Scalar Waves

  • ��

    ����

    ��

    ����

    ��

    ����

    ��

    �� �� �� �� �� �� ��

    ������������������������������������������������������������

    GR 5d GaussBonnet 5d

    I(5) = RijklRijkl

    I(5) at origin

    x

    I(5) = RijklRijkl

    GaussBonnet 5d (negative α)

    ↵GB = +1

    ↵GB = �1

    ↵GB = 0

    ↵GB = �1

    ↵GB = +1

    ↵GB = 0

  •  Colliding Scalar Waves

    max (RijklRijkl

    )

    *4dim, 5dim, 6dim,… higher dim *Gauss-Bonnet coupling (α>0) ̶> less growth of curvature

    ↵GB = �1

    ↵GB = +1

    ↵GB = 0

    ��

    ����

    ��

    ����

    ��

    ����

    ��

    �� �� �� �� �� �� ��

    ������������������������������������������������������������

    I(5) at origin

    ↵GB = �1

    ↵GB = +1

    ↵GB = 0

    maximum of Kretschmann invariant

  • BH & WH are interconvertible?

    They  are  very  similar    -‐‑‒-‐‑‒  both  contain  (marginally)  trapped  surfaces  and  can  be  defined  by  trapping  horizons  (TH)  

    Only  the  causal  nature  of  the  THs  differs,  whether  THs  evolve  in  plus  /  minus  density  which  is  given  locally.  

    S.A.  Hayward,  Int.  J.  Mod.  Phys.  D  8  (1999)  373

    Black Hole WormholeLocally defined

    by

    Achronal (spatial/null) outer TH ⇨ 1-way traversable

    Temporal (timelike) outer THs
⇨ 2-way traversable

    Einstein eqs.

    Positive energy density 
normal matter (or vacuum)

    Negative energy density 
“exotic” matter

    Appear-ance occur naturally

    Unlikely to occur naturally.
but constructible??

     Wormhole Evolution

  • BH & WH are interconvertible?

    They  are  very  similar    -‐‑‒-‐‑‒  both  contain  (marginally)  trapped  surfaces  and  can  be  defined  by  trapping  horizons  (TH)  

    Only  the  causal  nature  of  the  THs  differs,  whether  THs  evolve  in  plus  /  minus  density  which  is  given  locally.  

    S.A.  Hayward,  Int.  J.  Mod.  Phys.  D  8  (1999)  373

    Black Hole WormholeLocally defined

    by

    Achronal (spatial/null) outer TH ⇨ 1-way traversable

    Temporal (timelike) outer THs
⇨ 2-way traversable

    Einstein eqs.

    Positive energy density 
normal matter (or vacuum)

    Negative energy density 
“exotic” matter

    Appear-ance occur naturally

    Unlikely to occur naturally.
but constructible??

     Wormhole Evolution

  • Wormhole evolution

    #+ = 0 #� = 0#+ = 0#� = 0

    x

    +x

    �x

    +x

    Positive Energy Input= add normal scalar field= subtract ghost field

    Negative Energy Input= add ghost scalar field

    Black Hole InflationaryExpansion

    4d GR ↵GB = 0 HS-Hayward PRD 66(2002) 044005

    ⌃(t)

    #+ = 0 #� = 0

    ⌃(t)

    #+ = 0#� = 0

     (known  fact)

  • �E > 0

    �E < 0

    4d GR ↵GB = 0 HS-Hayward PRD 66(2002) 044005

    #+ = 0 #� = 0#+ = 0#� = 0

    x

    +x

    �x

    +x

    Positive Energy Input= add normal scalar field= subtract ghost field

    Negative Energy Input= add ghost scalar field

    Black Hole InflationaryExpansion

    ⌃(t)

    #+ = 0 #� = 0

    ⌃(t)

    #+ = 0#� = 0

    Wormhole evolution  (known  fact)

    真貝著 タイムマシンと時空の科学

  • 4-dim.

    5-dim.

    6-dim.

    x

    +x

    Sn�2

    #+ = 0#� = 0

    Positive Energy

    Black Hole

    In higher dim, large instability. (linear perturbation analysis)

    Wormhole evolution in n-dim n-dim GR Torii-HS PRD 88 (2013) 064027↵GB = 0

     (known  fact)

  • 4-dim.

    5-dim.

    6-dim.

    x

    +x

    Sn�2

    #+ = 0#� = 0

    Positive Energy

    Black Hole

    In higher dim, large instability. (linear perturbation analysis)

    Wormhole evolution in n-dim n-dim GR Torii-HS PRD 88 (2013) 064027↵GB = 0

     (known  fact)

    Confirmed Numerically

  • ↵GB = +0.001

    Wormhole evolution in Gauss-Bonnet のおさらい 5d Gauss-Bonnet WH : positive energy injection

    MSmass, H.Maeda-Nozawa, PRD77 (2008) 063031

    (a)

    0.0

    0.5

    1.0

    1.5

    2.0

    0.0 1.0 2.0 3.0 4.0 5.0 6.0

    Circumference radius of throat [5dim GB alpha=+0.001](with perturabation of positive-energy pulse)

    alpha=0.001, c1=0.1, E=+0.11alpha=0.001, c1=0.2, E=+0.46alpha=0.001, c1=0.3, E=+1.04alpha=0.001, c1=0.5, E=+2.85alpha=0.001, c1=0.7, E=+5.49

    circ

    umfe

    renc

    e ra

    dius

    of t

    he th

    roat

    proper time at the throat

    (a)

    ΔE > ΔE5 > 0 --> BH collapse ΔE < ΔE5 --> Inflationary expansion

    �E < +0.5

    �E > +0.5

  • ↵GB = +0.001

    Wormhole evolution in Gauss-Bonnet のおさらい 6d Gauss-Bonnet WH : positive energy injection

    MSmass, H.Maeda-Nozawa, PRD77 (2008) 063031

    ΔE > ΔE6 > ΔE5 > 0 --> BH collapse ΔE < ΔE5 < ΔE6 --> Inflationary expansion

    0.0

    0.5

    1.0

    1.5

    2.0

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    Circumference radius of throat [6dim GB alpha=+0.001](with perturabation of positive-energy pulse)

    alpha=0.001, c1=0.50, E=+1.5276alpha=0.001, c1=0.60, E=+2.1954alpha=0.001, c1=0.65, E=+2.5790alpha=0.001, c1=0.70, E=+2.9896

    circ

    umfe

    renc

    e ra

    dius

    of t

    he th

    roat

    proper time at the throat

    (b)(b)

    �E > +2.2

    �E < +2.2

  • 0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    horiz

    on lo

    catio

    ns

    (alph

    a=+0

    .01, w

    ith p

    ertur

    batio

    n of

    posit

    ive e

    nerg

    y)

    theta_

    +=0 :

    alph

    a=0.0

    1, a=

    0.0

    theta_

    -=0 : a

    lpha=

    0.01,

    a=0.0

    theta_

    +=0 :

    alph

    a=0.0

    1, a=

    0.5

    theta_

    -=0 : a

    lpha=

    0.01,

    a=0.5

    theta_

    +=0 :

    alph

    a=0.0

    1, a=

    0.6

    theta_

    -=0 : a

    lpha=

    0.01,

    a=0.6

    theta_

    +=0 :

    alph

    a=0.0

    1, a=

    0.7

    theta_

    -=0 : a

    lpha=

    0.01,

    a=0.7

    theta_

    +=0 :

    alph

    a=0.0

    1, a=

    0.8

    theta_

    -=0 : a

    lpha=

    0.01,

    a=0.8

    xminu

    sxp

    lus

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    horiz

    on lo

    catio

    ns

    (alph

    a=+0

    .01, w

    ith p

    ertur

    batio

    n of

    posit

    ive e

    nerg

    y)

    theta_

    +=0 :

    alph

    a=0.0

    1, a=

    0.77

    theta_

    -=0 : a

    lpha=

    0.01,

    a=0.7

    7

    theta_

    +=0 :

    alph

    a=0.0

    1, a=

    0.78

    theta_

    -=0 : a

    lpha=

    0.01,

    a=0.7

    8

    theta_

    +=0 :

    alph

    a=0.0

    1, a=

    0.79

    theta_

    -=0 : a

    lpha=

    0.01,

    a=0.7

    9

    theta_

    +=0 :

    alph

    a=0.0

    1, a=

    0.80

    theta_

    -=0 : a

    lpha=

    0.01,

    a=0.8

    0

    xminu

    sxp

    lus

    critical behavior

    existence of trapped surface ̶> not necessary to form a BH

    ↵GB = 0.01

    5d Gauss-Bonnet WH : trapped surface

  •  Colliding Scalar Waves

    Summary

     Wormhole Evolution

    max (RijklRijkl

    )

    For  both  models,  the  normal  corrections  (αGB  >  0)  work  for  avoiding  the  appearance  of  singularity,  although  it  is  inevitable.  

    We  found  that  in  the  critical  situation  for  forming  a  BH,  the  existence  of  the  trapped  region  in  the  Einstein-‐‑‒GB  gravity  does  not  directly  indicate  a  formation  of  a  BH.  

    ΔE > ΔE6 > ΔE5 > 0 --> BH collapse ΔE < ΔE5 < ΔE6 --> Inflationary expansion