57
Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford 1 Organic Chemistry Option II: Chemical Biology Dr Stuart Conway Department of Chemistry, Chemistry Research Laboratory, University of Oxford email: [email protected] Teaching webpage (to download handouts): http://conway.chem.ox.ac.uk/Teaching.html Recommended books: Biochemistry 4 th Edition by Voet and Voet, published by Wiley, ISBN: 9780470570951. Foundations of Chemical Biology by Dobson, Gerrard and Pratt, published by OUP (primer) ISBN: 0199248990

Organic Chemistry Option II: Chemical Biology

Embed Size (px)

Citation preview

Page 1: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

1

Organic  Chemistry  Option  II:  Chemical  Biology                  

                   

 

Dr  Stuart  Conway  Department  of  Chemistry,  Chemistry  Research  Laboratory,  University  of  Oxford  email:  [email protected]  Teaching  webpage  (to  download  hand-­‐outs):  http://conway.chem.ox.ac.uk/Teaching.html  

 Recommended  books:    Biochemistry  4th  Edition  by  Voet  and  Voet,  published  by  Wiley,  ISBN:  978-­‐0-­‐470-­‐57095-­‐1.    Foundations  of  Chemical  Biology  by  Dobson,  Gerrard  and  Pratt,  published  by  OUP  (primer)  ISBN:  0-­‐19-­‐924899-­‐0      

Page 2: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

2

Information  flow  in  cells  

   

   

• How  does  cellular  information  encoded  in  gene  flow,  via  RNA,  to  form  proteins?    

• We   must   understand   this   process   in   order   to   harness   it   for   exploration   of   biological  problems.  

   The  central  dogma  of  molecular  biology  

 

   

• How  does  DNA  in  genes  direct  the  synthesis  of  RNA  and  protein?    

• How  is  DNA  replicated?    

• Francis  Crick  encapsulated  the  outlines  of  this  process  in  the  “central  dogma  of  molecular  biology”  

   

slide  7  

slide  8  

Page 3: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

3

The  central  dogma  of  molecular  biology  

   

   

• DNA  directs  its  own  replication  and  transcription  to  yield  RNA,  which  is  translated  to  form  proteins.  

 

•   Solid  lines  indicate  the  genetic  information  transfers  that  occur  in  all  cells.    

•   Dotted  lines  indicate  special  transfers.    

• The  missing  lines  indicate  transfers  that  the  central  dogma  postulates  never  occur.      The  structure  of  DNA  and  RNA  

   

   

• DNA  and  RNA  comprise  a  polymeric  phosphate-­‐sugar  backbone  attached  to  a  nucleic  acid  base.  

slide  9  

slide  10  

Page 4: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

4

The  structure  of  DNA  and  RNA  

   

   

• Nucleotides  are  phosphate  esters  of  pentose  (furanose)  sugars.    

•   Deoxynucleotides  lack  the  hydroxyl  group  at  the  2’  position  of  the  sugar  ring.    

•   A  nitrogen-­‐containing  base  is  linked  to  the  1’-­‐position  of  the  sugar.      The  structure  of  DNA  and  RNA  

   

• RNA,   but  NOT   DNA,   is   susceptible   to   base-­‐catalysed  hydrolysis.  

 • DNA   lacks   the   2’-­‐hydroxyl   group,   which   makes   it  

resistant  to  base-­‐catalysed  hydrolysis.    

• It   is   possible   that   this   chemical   stability   is  why  DNA  has  evolved  to  be  the  store  of  genetic  information.  

 

   

slide  12  

slide  13  

Page 5: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

5

The  structure  of  DNA  and  RNA  

 

   

• The  nitrogen  bases  are  planar,  aromatic  and  heterocyclic.    

•   They  are  usually  either  purine  or  pyrimidine  derivatives.    

 

The  structure  of  DNA  and  RNA  

 

   

• The  major  purine  components  of  nucleic  acids  are  adenine  and  guanine.    

•   The  purines  form  glycosidic  bonds  to  ribose  via  their  N9  atoms.    

 

The  structure  of  DNA  and  RNA  

   

 

• The   major   pyrimidine   components   of  nucleic   acids   are   cytosine,   uracil   and  thymine  (5-­‐methyluracil).  

 

•   Uracil   occurs   mainly   in   RNA   whereas  thymine  occurs  mainly  in  DNA.  

 

•   The  pyrimidinesform  glycosidic  bonds  to  ribose  via  their  N1  atoms.  

 

 

N

N N

NN

N

N N

NO

H

NHH

adenine guanine

H H

H

H

slide  14  

slide  15  

slide  16  

Page 6: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

6

The  structure  of  DNA  and  RNA  

 

   

• Some  DNAs  contain  bases  that  are  derivatives  of  the  standard  set.    

• For  example  N6-­‐methylation  of  adenine  and  5-­‐methylation  of  cytosine  can  occur.      The  structure  of  DNA  and  RNA  

   

   

slide  17  

slide  18  

Page 7: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

7

The  structure  of  DNA  and  RNA  

   

Nucleotide:  adenosine  monophosphate    (R  =  OH  in  RNA  and  H  in  DNA)  

 Nucleoside:  adenosine    (R  =  OH  in  RNA  and  H  in  DNA)  

 Base:  adenine  

   

 

The  structure  of  DNA  and  RNA  

 • Nucleic  acids  are  usually  linear  polymers  

of  nucleotides.    

• The  phosphate  groups  bridge  the  3’-­‐  and  5’-­‐positions  of  successive  sugar  residues.  

 • The  phosphate  groups  are  deprotonated  

at   physiological   pH,   hence   nucleic   acids  are  polyanions  in  the  cell.  

 • Polynucelotides   have   directionality:  

each  has  a  3’  end  and  a  5’  end.    

 

N

N

N

N

NH2

OO

HO R

PO

HOHO

N

N

N

N

NH2

OHO

HO R

NH

N

N

N

NH2

slide  19  

slide  20  

Page 8: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

8

The  structure  of  DNA  and  RNA  

   

• Nucleic  acids  were  first  isolated  in  1869  and  the  presence  of  these  molecules  in  cells  was  demonstrated  a  few  years  later.  

 • In   the   1930s   and   1940s   it   was   widely   believed   that   nucleic   acids   had   a   monotonously  

repeating  sequence  of  all  four  bases  =  the  so  called  “tetranucleotide  hypothesis”.    

• It  was   generally   assumed   that   genes,   known   to   be   carriers   of   genetic   information,  were  proteins.  

 • See   Biochemistry   pages   85-­‐89   to   see   the   experiments   that   proved  DNA   is   the   carrier   of  

genetic  information.      The  structure  of  DNA  and  RNA  

   

• Erwin  Chargaff  was  the  first  to  show  that  DNA  contains  equal  numbers  of  adenine  and   thymine   residues   (A  =  T)   and  equal  numbers   of   cytosine   and   guanine  residues  (C  =  G).  

 • These   relationships   are   known   as  

“Chargaff’s  rules”.    

• Although   not   specifically   stated   by  Chargaff,  this  observation  suggests  some  form   of   base   pairing   in   the   (then  unknown)  structure  of  DNA.  

         

N

N N

NNH2

N

N N

NO

H

H2NX

X

N

N

N

N

XO

NH2

X

O

O

H CH3

adenine(A, X=H)

thymine(T, X=H)

guanine(G, X=H)

cytosine(C, X=H)

=

=

slide  21  

slide  22  

Page 9: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

9

The  structure  of  DNA  and  RNA  

   

     

• The  Watson-­‐Crick  structure  of  B-­‐DNA  consists  of   two  strands  that  wind  about  a  common  axis  with  a  right-­‐handed  twist  to  form  a  ~20  Å  diameter  double  helix.  The  two  strands  are  anti  parallel  (run  in  opposite  directions).  

 • The  planes  of  the  bases  are  nearly  perpendicular  to  the  helix  axis.  

 • Each  base  is  hydrogen  bonded  to  a  base  on  the  opposite  strand  to  form  a  planar  base  pair.  

   Complementary  base  pairing  

   

 

   

   

 • The  most  remarkable  feature  of  the  Watson  and  Crick  structure  is  that  it  can  accommodate  

only  two  types  of  base  pairs.    

• Each  adenine  residue  must  pair  with  a  thymine  residue  and  vice  versa.    

slide  25  

slide  26  

Page 10: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

10

Complementary  base  pairing  

   

 

 

   

 • Each  guanine  residue  must  pair  with  a  cytosine  residue  and  vice  versa.  

 • The  geometries  of   these  A:T  and  G:C  pairs   ,   the  so-­‐called  Watson-­‐Crick  base  pairs,  mean  

that  these  base  pairs  are  interchangeable  in  the  double  helix.      

slide  27  

Page 11: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

11

Hydrogen  bonding  

 

   

• Hydrogen   bonds   are   one   of   the   most   important   non-­‐covalent   interactions   in   biological  systems.  

 

• They  take  place  between  an  electron-­‐rich  heteroatom  (acceptor)  and  an  electron-­‐deficient  hydrogen  atom  (donor).  

 

• The  hydrogen  atom  is  usually  covalently  linked  to  an  electronegative  atom,  such  as  O  or  N.    

• There  is  a  significant  electrostatic  component  to  H-­‐bonding.    

 

Hydrogen  bonding  

 

   

• However,  orbital  interactions  are  also  an  important  component  of  H-­‐bonding.    

• H-­‐bonds  can  be  viewed  as  having  a  σ-­‐bonding  component.      

• Consequently,  there  is  an  optimum  orientation  for  H-­‐  bonding.    

 

Hydrogen  bonding  

 

   

• The  optimum  angle  for  H-­‐bonding   is  where  the  X-­‐H  bond  points  directly  to  the   lone  pair,  such  that  the  angle  is  180°.  

 

• H-­‐bond  strength  can  vary  between  16  and  60  kJmol-­‐1.    

• H-­‐bonds  are  typically  1.5-­‐2.2  Å  compared  to  1.0-­‐1.5  Å  for  covalent  bonds.      

slide  28  

slide  29  

slide  30  

Page 12: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

12

Complementary  base  pairing  

 

   

   

• The  H-­‐bond  donor  and  acceptor  patterns  are  such  that  A  can  only  bind  to  T  and  G  can  only  bind  to  C.  

 • As   A   can   only   bind   to   T   and   G   can   only   bind   to   C,   we   can   immediately   understand  

Chargaff’s  rules.    

• In   addition,   the   Watson-­‐Crick   structure   allows   for   any   sequences   of   bases   on   one  polynucleotide  strand  if  the  opposite  strand  has  the  complementary  sequence.  

 • This   structure   also   suggests   that   hereditary   information   is   encoded   in   the   sequence   of  

bases  on  either  strand.      

NN

NH

HN

NX N

NH

O CH3

XOHN

N

ON

NX N

N

N

XON

H

HH

HHdonor

acceptor

acceptor

donor

acceptor

donor

donor acceptor

donor

acceptor

adenine thymine guanine cytosine

NN

NH

HN

NX N

N

N

XOH

donor

acceptor

donor

acceptor

adenine cytosine

HH

acceptor

slide  31  

Page 13: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

13

DNA  structure  

   

     

• DNA  has  three  major  helical  forms,  B-­‐DNA,  A-­‐DNA  and  Z-­‐DNA.    

• B-­‐DNA   is   the   biologically   predominant   form   of   DNA   it   forms   a   right-­‐handed   helix   with  major  and  minor  grooves.  

 • When  relative  humidity   is  reduced  to  75%,  B-­‐DNA  undergoes  a  reversible  conformational  

change  to  A-­‐DNA.    

• A-­‐DNA  forms  a  wide,  flatter  helix  than  B-­‐DNA.    

• The  base  pairs  of  A-­‐DNA  are  tilted  20  °  with  respect  to  the  helix  axis.    

• Certain  DNA  sequences  can  form  a  left-­‐handed  helix  that  has  been  called  Z-­‐DNA.    

• It   is   not   clear   whether   Z-­‐DNA   has   any   biological   significance     -­‐   it   may   play   a   role   in  regulating  DNA  transcription.  

                         

advanced  slide  32  &  33  

Page 14: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

14

RNA  structure  

   

• RNA  can  also  adopt  defined  conformations.    

• Transfer  RNA  (see  later)  resembles  an  “L”  shape,  being   made   up   of   two   short   helical   regions  connected  by  a  hinge.  

 • Each  helical  segment  comprises  two  portions  of  

the   single   RNA   chain   running   in   opposite  directions.  

   

     RNA  structure  

   

   

• Hydrogen  bonding  in  helical  RNA  occurs  between  cytosine  and  guanine  as  in  DNA.    

• Cytosine  is  replaced  by  uracil,  which  forms  complementary  hydrogen  bonds  with  adenine.      

NN

NH

HN

NX N

NH

O

XOHadenine uracil

slide  34  

slide  35  

Page 15: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

15

DNA  replication  

 “It  has  not  escaped  our  notice  that  the  specific  pairing  we  have  postulated  immediately  suggests  a  possible  copying  mechanism  for  genetic  material.”    

• The  division  of   cells  must  be  accompanied  by   the   replication  of  DNA.  

 

• In  this  process,  mediates  by  DNA  polymerase  enzymes,  each  DNA  strand  acts  as  a  template  for  the  formation  of  its  complementary  strand.  

 

• Consequently,   every   progeny   cell   contains   a   complete   copy   of  the  DNA  from  the  parent  cell.  

 

• Mutations  arise  when,  through  rare  copying  errors,  one  or  more  wrong  bases  are  incorporated  into  a  daughter  strand.  

 

• DNA  replication  is  a  highly  complex  process.    

• This   complexity,   when   compared   to   the   chemically   similar  transcription  process,  arises  from  the  need  for  extreme  accuracy  in  DNA  replication  so  as  to  preserve  the  integrity  of  the  genome  from  generation  to  generation.  

 

 

Translation  and  transcription  

   

• DNA   directs   its   own   replication   and  transcription   to   yield   RNA,   which   is  translated  to  form  proteins.  

 

• “Transcription”   indicates   that   the  “language”   of   the   encoding   information  remains  the  same.  

 

• “Translation”  indicates  that  the  “language”  changes  from  that  of  the  base  sequence  to  that  of  the  amino  acid  sequence.  

     

• Individual   portions   of   a   DNA   molecule   provide   the   information   for   the   construction   of  various  RNA  molecules  and  proteins.  

 

• RNA  corresponding  to  the  region  of  interest  is  produced  by  transcription  (the  synthesis  of  an  RNA  strand  from  a  DNA  template).  The  RNA  produced  in  this  case  is  called  messenger  RNA  or  mRNA.  

 

• This  mRNA  is  then  translated  when  molecules  of  transfer  RNA  (tRNA)  align  with  the  mRNA  via   complementary   base   pairing   between   segments   of   three   consecutive   nucleotides  (codon).  

 

• Each   type   of   tRNA   carries   a   specific   amino   acid,   which   are   covalently   joined   by   the  ribosome  to  form  a  protein.  

slide  36  

slide  37  &  38  

Page 16: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

16

RNA  synthesis:  Transcription  

 

   

• The  enzyme  that  synthesises  RNA  is  called  RNA  polymerase.    

• It  catalyses  the  DNA-­‐directed  coupling  of  nucleotide  triphosphates  to  synthesise  new  RNA.    

• The  newly  synthesised  RNA  is  complementary  to  the  template  DNA.    

 

Transcription  

 

   

• RNA  synthesis  proceeds  in  a  stepwise  manner  in  the  5’→3’  direction.    

• Hence,  the  incoming  nucleotide  is  added  to  the  free  3’-­‐OH  of  the  growing  RNA  chain.    

• RNA  polymerase  selects  the  nucleotide   it   incorporates   into  the  growing  RNA  chain  based  on   the   requirement   that   it   forms   a  Watson-­‐Crick   base   pair   with   the   DNA   strand   that   is  being  transcribed  (the  template  strand  -­‐  only  one  strand  of  DNA  is  transcribed  at  a  time).  

 

• The  RNA  polymerase  moves  along   the  DNA  duplex   that   it   is   transcribing  and  separates  a  short  (~14  base  pairs)  segment  of  the  DNA  helix  to  form  a  transcription  bubble.  

 

• The   DNA   in   the   transcription   bubble   forms   a   short   DNA-­‐RNA   helix   with   the   newly  synthesised  RNA.  

 

• The   DNA-­‐RNA   hybrid   helix   consists   of   antiparallel   strands,   hence   the   DNA’s   template  strand  is  read  in  its  3’→5’ direction.  

slide  39  

slide  40  

Page 17: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

17

RNA  polymerase  

 

 • RNA  polymerase  has  the  overall  structure  of  a  crab  claw  with  two  “pincers”.  

 

• The   outer   surface   of   the   protein   is   almost   uniformly   negatively   charges,   whereas   the  surfaces  that  interact  with  nucleic  acids  are  positively  charged.  

 

• The  DNA  occupies  the  main  channel,  which  directs  the  template  strand  to  the  active  site.    

• There  the  DNA  base-­‐pairs  with  the  incoming  nucleotide  triphosphate  (not  in  structure).    

 

Translation  

 

 • Translation  is  the  RNA-­‐directed  synthesis  of  polypeptides.  

 

• Although  the  formation  of  a  peptide  bond  is  relatively  simple,  the  translational  process  in  highly  complicated.  

 

• This  complexity  arises  from  the  need  to  link  20  different  amino  acids  residues  accurately  in  the  order  specified  by  a  particular  mRNA.  

 

• According  to  the  one  gene-­‐one  polypeptide  hypothesis,   the  genetic  message  dictates  the  amino  acid  sequences  of  proteins.  

 

• As  the  base  sequence  of  DNA  is  the  only  variable  element  in  this  otherwise  monotonously  repeating  polymer,  the  base  sequence  and  the  protein  sequence  must  be  linked.  

slide  41  

slide  42  

Page 18: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

18

Translation  

 

     “The   problem   of   how   a   sequence   of   four   things   can   determine   a   sequence   of   twenty   things   is  known  as  the  coding  problem.”        Translation  

 

   

• With  only  4  bases  in  DNA  to  code  for  20  amino  acids,  a  group  of  several  bases  (a  codon)  is  necessary  to  specify  a  single  amino  acid.  

 • A  triplet  code  (3  bases  per  codon)   is  minimally  required  since  there  are  43  =  64  different  

triplets  of  four  bases.    

• A  doublet  code  would  only  allow  42  =  16  codons,  which  is  insufficient  to  specify  20  amino  acids.  

 • In  a  triplet  code  as  many  as  44  codons  might  not  code  for  amino  acids.  

 • Alternatively,  some  amino  acids  might  be  specified  by  more  than  one  codon  -­‐  a  degenerate  

code.      

slide  43  

slide  44  

Page 19: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

19

The  genetic  code  

 

   

• How  is  DNA’s  continuous  sequence  grouped  into  codons?    

• Is   the   code  overlapping?  E.g.  ABC   codes   for   the   first   amino  acids  and  BDC  codes   for   the  second  etc.  

 

 

The  genetic  code  

 

   

• Or  is  the  code  non-­‐overlapping?    

• E.g.  ABC  specifies  the  first  amino  acid  and  DEF  the  second  etc.    

 

The  genetic  code  

 • The   genetic   code   (right)   is   a   non-­‐

overlapping,   comma   free,   degenerate,  triplet  code.  

 • The   genetic   code   is   highly   degenerate:  

Three   amino   acids   (L,   R,   S)   are   each  specified  by  six  codons.  

 • Only   Met   and   Trp,   two   of   the   least  

common   amino   acids   in   proteins,   are  specified  by  a  single  codon.  

 

 

slide  45  

slide  46  

slide  47  

Page 20: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

20

The  genetic  code  

   

• Sydney  Brenner  and  Francis  Crick  formed  the  following  hypotheses  on  the  genetic  code:    

1. The  code  is  a  triplet  code.    

2. The   code   is   read   in   a   sequential   manner   starting   from   a   fixed   point   in   the   gene.   The  insertion   or   deletion   of   a   nucleotide   shifts   the   frame   (grouping)   in   which   in   which   the  succeeding  nucleotides  are  read  as  codons.  Thus  the  code  has  no  internal  punctuation  that  indicates  the  reading  frame  -­‐  the  code  is  comma  free.  

 3. All   (or  nearly  all)  of  the  64  triplet  codons  code  for  an  amino  acid.  Therefore  some  amino  

acids  are  specified  by  more  than  one  codon  -­‐  the  code  is  degenerate.      The  genetic  code  

   

     

• The   sentence   represents   a   gene   in  which   the  words   (codons)   each   contain   three   letters  (bases).  

 

• The  spaces  have  no  physical  significance;  they  only  present  to  indicate  the  reading  frame.    

• The  deletion  of  the  fourth  letter  (B)  shifts  the  reading  frame  so  that  all  of  the  words  after  the  deletion  are  meaningless  -­‐  specify  the  wrong  amino  acids.  

   The  genetic  code  

 

   

• Insertion   of   a   letter   (X)   passed   the   point   of   the   original   mutation   restores   the   original  reading  frame.  

 

• Hence  on  the  words  (codons)  between  the  two  changes  (mutations)  are  altered.    

• Therefore   the   sentence  may   still   be   intelligible   (the   gene   could   still   specify   a   functional  protein),  particularly  if  the  changes  are  close  together.  

     

slide  48  

slide  49  

slide  50  

Page 21: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

21

The  genetic  code  

 • The  major   breakthrough   in   deciphering  

the   genetic   code   came   in   1961   when  Nirenberg  and  Matthaei  established  that  UUU  is  the  codon  specifying  Phe.  

 

• They  added  poly(U)  to  a  cell-­‐free  protein  synthesising   system   and   showed   that  this   stimulated   synthesis   of   only  poly(Phe).  

 

• In   similar   experiments,   poly(A)   was  shown   to   specify   poly(Lys)   and   poly(C)  was  found  to  specify  poly(Pro).  

 

• UAG,  UAA   and  UGA   are   “stop”   codons,  which  act  as  a  signal  to  the  ribosome  to  terminate  protein  synthesis.  

 

• These   stop   codons   are   also   known  (somewhat   inappropriately)   as  nonsense   codons   as   they   are   the   only  codons  that  do  not  specify  amino  acids.  

 

• UAG,   UAA   and   UGA   are   sometimes  referred   to   as   amber,   ochre   and   opal  codons.    

 • AUG  and  (less  frequently)  GUG  codons  form  part  of  the  chain  initiation  sequence.  

 

• These  codons  also  specify  amino  acids,  Met  and  Val,  respectively.    

• The  arrangement  of  the  genetic  code  is  not  random.    

• Most  synonyms  (codons  that  only  differ  in  their  third  nucleotide)  occupy  the  same  box  in  the  table.  

 • XYU  and  XYC  always  specify  the  same  amino  acids;  XYA  and  XYG  do  so  in  all  by  two  cases.  

 • Changes  in  the  first  codon  position  tend  to  specify  the  same  or  similar  amino  acids.  

 • Codons  with   second   position   pyrimidines   (C   AND  U)   tend   to   specify   hydrophobic   amino  

acids.    

• Codons  with  second  position  purines  (A  and  G)  encode  mostly  polar  amino  acids.    

• It   seems   that   the   genetic   code   has   evolved   so   as   to   minimise   the   deleterious   effects   of  mutations.  

     

slide  51  

Page 22: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

22

The  genetic  code  

 

   

• How  does  the  information  in  DNA  actually  translate  into  polypeptide  sequences?    

• In   1955   Francis   Crick   proposed   the   adaptor   hypothesis   stating   that   translation   occurs  through  the  mediation  of  adaptor  molecules.  

 

• Crick  suggested  that  the  adaptors  might  contain  RNA  as  codon  recognition  could  occur  by  complementary  base  pairing.  

 

• Each   adaptor   was   postulated   to   carry   a   specific   amino   acid   and   to   recognise   the  corresponding  codon.  

 

• At  a  similar   time   it  was  shown  that   in   the  course  of  protein  synthesis   14C   labelled  amino  acids  become  bound  to  low  molecular  mass  fractions  of  RNA.  

 

• This  RNA  is  known  as  transfer  RNA  or  tRNA  and  is  Crick’s  putative  adaptor  molecule.    

 

Translation  

 • All  tRNAs  contain:  

 

• A  5’-­‐terminal  phosphate.    

• A  7-­‐base  pair  step  that  includes  the  5’-­‐terminal  nucleotide  and  may  include  non-­‐Watson-­‐Crick  base  pairs,  such  as  G  ⋅  U.  This  assembly  is  known  as  the  acceptor  stem  as  the  amino  acid  is  appended  to  the  3’-­‐OH  group.  

 

• A  3-­‐  or  4-­‐base  stem  ending  in  a  loop  that  that  frequently  contains  the  modified  base  dihydrouridine  (D),  known  as  the  D  arm.  

 

• A  5-­‐base-­‐pair  stem  ending  in  a  loop  that  usually  contains  the  sequence  TΨC  (Ψ  =  pseudouridine).  

 

• All  tRNAs  terminate  in  the  sequence  CCA,  with  a  free  3’-­‐OH  group.  

 

• There  are  15  invariant  positions  and  8  semi-­‐invariant  (only  a  purine  or  only  a  pyrimidine)  positions.    

slide  52  

slide  53  

Page 23: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

23

Modified  nucleotides  that  occur  in  tRNA  

 

   

 

The  structure  of  yeast  tRNAPhe  

 

   

slide  54  

slide  55  

Page 24: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

24

Synthesis  of  tRNA  

 • The   amino   acid   is   activated   by   reaction  

with  ATP  to  form  aminoacyl-­‐adenylate.    

• This   mixed   anhydride   then   reacts   with  tRNA  to  form  aminoacyl-­‐tRNA  and  AMP.  

 

     Ribosome  

 

   

• For   translation   to  occur,  mRNA  and   tRNA  must  bind   to  each  other,   and   the  amino  acids  carried  by  the  tRNA  must  react  to  form  the  polypetide  chain.  

 • This  process  is  mediated  by  the  ribosome.  

 

• The  ribosome  is  a  ribozyme,  comprising  mainly  ribosomal  RNA  (rRNA).    

• Elucidating  the  molecular  structure  of  the  ribosome  has  been  extremely  challenging.        

slide  56  

slide  57  

Page 25: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

25

Ribosome  

 

   

 

 

   

slide  59  

Page 26: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

26

Translation  

   

     Translation  

   

       

slide  60  

slide  61  

Page 27: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

27

Translation  

 

     

• The   ribosomal   peptidyl   transfer   reaction   occurs   ~107-­‐fold   faster   than   the   uncatalysed  reaction.  

 

• The  rate  enhancement  does  NOT  occur  via  general  acid  or  general  base  catalysis.      Translation  

 

   

 • The   ribosome  enhances   the   rate   of   peptide  bond   formation  by   properly   positioning   and  

orienting  its  substrates.    

• The  ribosome  may  also  play  a  role  in  excluding  water  from  the  preorganised  electrostatic  environment  of  the  active  site.  

       

slide  62  

slide  63  

Page 28: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

28

Translation  

   

   

• Ribosomes  act  very  fast  -­‐  a  rate  of  6-­‐9  amino  acids  per  second  in  eukaryotic  cells  and  17-­‐21  amino  acids  per  second  in  prokaryotic  cells.  

   

slide  64  

Page 29: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

29

Naturally  occurring  amino  acids  

   

     Protein  structure  –α-­‐helices  

   

   

       

       

 • Only   one   helical   polypeptide   conformation   has   simultaneously   allowed   conformational  

angles  and  a  favourable  hydrogen-­‐binding  pattern.    

• This  striking  element  of  secondary  structure  is  known  as  the  α-­‐helix.        

slide  66  

slide  67  

Page 30: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

30

Protein  structure  –  anti-­‐parallel  β-­‐sheets  

 

 

 

 

 

• Anti-­‐parallel  β-­‐sheets  are  an  important  type  of  protein  secondary  structure.    

• This  arrangement  results  in  a  strong  hydrogen  bond  with  a  near  optimal  N-­‐O  distance.      Protein  structure  –  parallel  β-­‐sheets  

 

 

 

 

 

• β-­‐sheets  can  also  have  a  parallel  arrangement.    

• This  results  in  a  staggered  pattern  of  hydrogen-­‐bonding.      Protein  structure  –  β-­‐turns  

 

     

• There  are  two  types  of  β-­‐turns,  Type  I  and  Type  II.    

• Each  comprises  four  key  amino  acids.    

ONH

O

Phe

NHLys

ON

Val

H

ON

Phe

H

ONH

Gln

H ON N

ONH

Trp

Ala H

N

O

HThr

N

O

HIle

Gln

NH

ON

Leu

H

ON

Phe

H

ONH

Ile ONH

Asp

NH

ON

Ile

H

ON

Trp

H

ONH

Ile ONH

AlaN

O

AspHO

Leu

slide  68  

slide  69  

slide  70  

Page 31: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

31

Enzymes  

   

   

• Almost  all  chemical  reactions  that  comprise  life  are  catalysed  by  enzymes.    

• The   rates   of   enzymatically   catalysed   reactions   are   typically   106   to   1012   greater   than   the  corresponding  uncatalysed  reactions.  

 • The  catalysis  occurs  under  relatively  mild  conditions.  

 • Enzymes  often  catalyse  their  reactions  with  a  high  degree  of  substrate  selectivity.  

 • As  enzymes  are  chiral  the  active  site  is  “chiral  space”  allowing  differentiation  between  pro-­‐

chiral  groups.      Enzymes  

   

• Types  of  enzyme  catalysis:    

1. Acid-­‐base  catalysis.    

2. Covalent  catalysis.    

3. Metal  ion  catalysis.    

4. Electrostatic  catalysis.    

5. Proximity  and  orientation  effects.    

6. Preferential  binding  (stabilisation)  of  the  transition  state  complex.        

slide  71  

slide  72  

Page 32: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

32

Egg  white  lysozyme  (retaining  glycosidase)  

 

   

• Lysozyme  enzymes  are  glycoside  hydrolase  or  glycosidase  enzymes.    

• These  enzymes  catalyse  hydrolysis  or  transacetylation  of  glycosidic  linkage  in  sugars.    

• Egg   white   lysozyme   is   a   retaining   glycosidase,   meaning   that   the   configuration   of   the  anomeric  centre  is  the  same  in  substrate  and  product.  

 

• The   retaining  glycosidases  employ  both  acid-­‐base  catalysis  and  covalent  catalysis   in   their  mechanism.  

 

• Chemical  tools  and  crystallography  have  helped  to  determine  the  proposed  mechanism  of  this  enzyme.  

 

 

Egg  white  lysozyme  (retaining  glycosidase)  

   

• Lysozyme  enzymes  are  involved  in  the  destruction  of  bacterial  cell  walls.    

• These  enzymes  work  by  hydrolysing  β  (1→4)  glycosidic  linkages  from  N-­‐acetylmuramic  acid  to  N-­‐acetylglucosamine.  

 

• Lysozyme  occurs  mainly  in  the  cells  and  secretions  of  vertebrate,  where  it  may  function  as  an  antibacterial  agent.  

 

• However,  few  pathogenic  bacteria  are  susceptible  to  lysozyme  alone,  suggesting  that  this  enzyme  may  help  dispose  of  bacteria  after  they  have  been  killed  by  other  means.  

 

• Hen   egg  white   lysozyme   is   the  most   widely   studied   species   of   lysosyme,  mainly   as   it   is  readily  available  -­‐  one  egg  contains  about  5  g.  

 

 

Egg  white  lysozyme  (retaining  glycosidase)  

   

   

 

OOR1HO

OOR2HOretaining glycosidase

R2 OH

+

R1 OH

+

slide  74  

slide  75  

slide  76  

Page 33: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

33

Egg  white  lysozyme  (retaining  glycosidase)  

 

         Egg  white  lysozyme  (retaining  glycosidase)  

   

     

O O

D52retaining glycosidase

retaining glycosidase

OHO

HO

OH

ORHO

O O

D52

OH

O

E35

retaining glycosidase

retaining glycosidase

OHO

HO

OH

HO

O O

D52

O O

E35

O R'H

retaining glycosidase

retaining glycosidase

OHO

HO

OH

HO

O O

E35

H

OR'

slide  77  

slide  78  

Page 34: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

34

Egg  white  lysozyme  (retaining  glycosidase)  

   

       Egg  white  lysozyme  (retaining  glycosidase)  

   

   

• The   proposed   covalent   intermediate   in   the   mechanism   of   lysozyme   had   never   been  observed,   as   the   breakdown   of   this   intermediate  must   be  much   faster   than   the   rate   of  formation,  in  order  for  the  enzyme  to  function  efficiently.  

 • A  sugar  containing  a  fluoride  at  the  anomeric  position  should  react  rapidly  with  the  enzyme  

to  form  a  covalent  intermediate.    

• The  additional   fluorine  at   the  C2  position  of   the  ring  will   reduce  the  rate  of   the  covalent  intermediate  breaking  down.  

 • Mutation   of   glutamate   35   to   glutamine   (E35Q)   slows   the   rate   of   the   reaction   further,  

meaning   that   the   covalent   intermediate   with   the   fluorosugar   accumulates   and   can   be  observed  by  X-­‐ray  crystallography.  

             

slide  79  

slide  80  

Page 35: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

35

Inverting  glycosidase  

   

   

• Inverting  glycosidases  catalyse   the  same  overall   transformation  as   retaining  glycosidases,  but  the  resulting  effect  on  the  stereochemistry  of  the  anomeric  centre  is  different.  

 

• The  mechanism   of   inverting   glycosidases  means   that   the   configuration   of   the   anomeric  centre  is  inverted  during  the  reaction.  

 

• Inverting  glycosidases  employ  acid-­‐base  catalysis  in  their  mechanism.    

• Glycosidases   are   important   in   all   forms   of   life,   mainly   in   the   metabolism   of   complex  carbohydrates.  

 

 

Inverting  glycosidase  

 

     

 

 

Inverting  glycosidase  

 

     

OOR1HO

OHO

inverting glycosidase

R2 OH

+

R1 OH

+OR2

slide  82  

slide  83  

slide  84  

Page 36: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

36

Inverting  glycosidase  

   

         Inverting  glycosidase  

   

           

inverting glycosidase

inverting glycosidase

OOR

O O

D278

OH

O

E95

OH

inverting glycosidase

inverting glycosidase

O

O O

D278

O O

E95

OH

OH

H

inverting glycosidase

inverting glycosidase

O

O O

D278

O O

E95

OH

OH

H

slide  85  

slide  86  

Page 37: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

37

Serine  protease  

   

   

• Serine   proteases   (e.g.   trypsin,   chymotrypsin,   elastase)   are   digestive   enzymes   that   are  synthesised  in  pancreatic  acinar  cells  and  secreted  into  the  small  intestine.  

 

• These  enzymes  all  catalyse  the  hydrolysis  of  amide  bonds.    

• Different  enzymes  have  different  selectivities  for  the  amino  acid  side  chains  that  flank  the  amide  bond  to  be  cleaved.  

 

• Serine  proteases  employ  both  acid-­‐base  catalysis  and  covalent  catalysis  in  their  mechanism.    

• Additionally,  the  intermediate  oxyanion  is  stabilised  in  the  “oxyanion  hole”.      Serine  protease  

   

         

serine proteaseR1

HN R2

O

HO R2

OR1 NH2 +

slide  88  

slide  89  

Page 38: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

38

Serine  protease  

   

       Serine  protease  

   

         

O

OD102

N NH

H57

O

S195

H

N R

OR'

H

serine protease

O

OD102

N NH

H57

O

S195

serine protease

H

N ROR'

H

O

OD102

N NH

H57

O

S195

serine protease

O

R

R' NH

H

HO

HO

OD102

N NH

H57

O

S195

serine protease

O

ROH

H

R

O

O H

slide  90  

slide  91  

Page 39: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

39

Serine  protease  

 

   

 

Serine  protease  

 

   

• The  charged  carbonyl  carbon  of  the  tetrahedral  intermediate  is  stabilised  by  the  “oxyanion  hole”.  

 

• The   negatively   charged   oxygen   forms   hydrogen   bonds  with   the   backbone  NH   groups   of  Gly193  and  Ser195.  

 

 

Serine  protease  

 

     

slide  92  

slide  93  

slide  94  

Page 40: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

40

Sulfatase  

   

   

• Sulfatase  enzymes  cleave  sulfate  esters  in  biological  systems.    

• These  enzymes  are  involved  in  regulating  the  sulfation  states  that  determine  the  function  of  may  physiologically  important  molecules.  

 

• The   mechanism   of   sulfatase   enzymes   involves   covalent   catalysis,   metal   (calcium)   ion  catalysis,  acid-­‐base  catalysis.  

 

• In  addition,  one  of  the  catalytic  residues  is  post-­‐translationally  modified  to  aid  the  catalytic  function  of  these  enzymes.  

   Sulfatase  

   

     

   Sulfatase  

 

       

sulfatase

O S OHRO O

HO S OH

O OR OH +

slide  96  

slide  97  

slide  98  

Page 41: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

41

Sulfatase  

   

     Sulfatase  

   

     

sulfatase

O H

FGly51

NN H

115H

H

O

OD317

sulfatase

N

NH

H211

OSO OO

R

H

Ca2+

sulfatase

O O

FGly51

NN

115H

H

O

OD317

sulfatase

N

NH

H211

OSO OO

R

H

Ca2+

H HOH

H

sulfatase

O O

FGly51

NN

115H

H

HO

OD317

sulfatase

N

NH

H211

S O

Ca2+

H

O O

R OH

sulfatase

O H

FGly51

NN

115H

H

HO

OD317

sulfatase

N

NH

H211

Ca2+

SO42-

slide  99  

slide  100  

Page 42: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

42

Phospholipase  C  

   

   

• Phospholipase   C   catalyses   the   hydrolysis   of   the   minor   membrane   phospholipid,  phosphatidylinositol   4,5-­‐bisphosphate,   to   give   inositol   1,4,5-­‐trisphosphate   and   diacyl  glycerol,  both  of  which  are  intracellular  second  messengers.  

 

• PLC  uses  acid-­‐base  catalysis  and  metal  (calcium)  ion  catalysis  in  its  mechanism.        Phospholipase  C  

   

     

       

slide  102  

slide  103  

Page 43: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

43

Phospholipase  C  

   

     Phospholipase  C  

   

       

PLC!

N

N

H

HH311

NN

H356

HH

O H

O PO

OO

Ca2+

B

R

PLC!

N

N

H

HH311

NN

H356

HH

O

O PO

OO

Ca2+

B

R

H

PLC!

N

N

H

HH311

NN

H356

HO

O P

Ca2+

BH

O

OH O H

PLC!

N

N

H

HH311

NN

H356

HO

O P

Ca2+

B

HO

OO

HH

R OH

slide  104  

slide  105  

Page 44: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

44

Phospholipase  C  

   

     

slide  106  

Page 45: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

45

Phospholipase  C  

   

   

• There  are  few  potent  and  selective  inhibitors  of  PLC.    

• In   order   to   develop   such   compounds,   an   effective   assay   for   PLC   (enzyme)   activity   is  required.  

 • Huang   et   al.   have   developed   a   compound,   based   on   PtdIns(4,5)P2   that   produce   a  

fluorescent  molecule  when  PLC  is  functioning.    

• This  compound  allows  accurate  monitoring  of  PLC  activity  inside  cells  and  hence  will  enable  the  discovery  of  new  PLC  inhibitors.  

   Phospholipase  C  

   

 

         

OH

O PO

OHO

HO

H2O3PO HO

H2O3POO

O lipid

lipid

OH

O PO

OOH

OC8H17O

HN

O

N

HO

H2O3PO HO

H2O3PO

slide  109  

slide  110  

Page 46: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

46

Phospholipase  C  

   

     Phospholipase  C  

   

     

OH

O PO

OOH

HO

H2O3PO HO

H2O3PO

phospholipase C

OH

O PO

OOH

HO

H2O3PO HO

H2O3PO

O NH

O

N

OC8H17

O

O NH

O

N

OC8H17

OOC8H17

O N

O

NH HN

H2N

fluorescentCO2

OH

O PO

OOH

HO

H2O3PO HO

H2O3PO

phospholipase COH

O PO

OOH

HO

H2O3PO HO

H2O3PO

OOC8H17

N

H2N

fluorescentO N

H

O

N

OC8H17

slide  111  

slide  112  

Page 47: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

47

Affinity  chromatography  

   

   

• Many   proteins   possess   the   ability   to   selectively   bind   small   molecules   tightly   but   non-­‐covalently.  

 • This   property   can   be   used   to   assist   the   purification   of   proteins   using   a   technique   called  

affinity  chromatography.    

• The  molecule  that  binds  to  the  protein  (ligand)  is  covalently  attached  to  a  solid  support.    

• When   an   impure   protein   solution   is   passed   through   this   chromatographic   material   the  desired  protein  binds  to  the  immobilised  material.  

 • Other  substances  and  proteins  are  washed  through  the  column  with  the  buffer.  

 • The  desired  protein   can  be   recovered   (in  a  highly  purified   form)  by   changing   the  elution  

conditions.    

• An   affinity   matrix   can   also   be   used   to   identify   which   proteins   bind   to   the   immobilised  ligand.  

 • Proteins   that   bind   to   the  matrix   and   that   can   be   competed   off   by   the   presence   of   the  

soluble  ligand,  demonstrate  selective  binding  to  the  ligand.    

• This  technique  has  been  used  to  understand  cellular  signalling  pathways.        

slide  114  

Page 48: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

48

Affinity  chromatography  

   

   

     Affinity  chromatography  

   

 

R3OOR4

HO OOHOR5

PO O

OHOR2

OR1

slide  115  

slide  116  

Page 49: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

49

Affinity  chromatography  

   

 

   

 

 • The  various  PIPs  were  synthesised  and  immobilised  onto  a  solid  phase  via  a  terminal  amino  

group.    

• The  immobilised  PIPs  formed  an  affinity  matrix  that  was  used  to  identify  novel  PIP-­‐binding  proteins  and  to  determine  their  binding  selectivity.  

   Affinity  chromatography  

   

   

• Cell  lysates  were  passed  through  affinity  columns  made  of  the  immobilised  PIPs.        

• The  proteins   that   bound   to   the  matrix  were   then  passed  down   the   column  having  been  pre-­‐incubated  with  soluble  ligand.  

 • Proteins   that   did   not   bind   in   the   second   case   are   the   proteins   that   bind   to   the   ligand  

selectively.      

(NaO)2OPOOPO(ONa)2

HO OOHOPO(ONa)2

PO O

ONaOCOC11H22NH

OCOC15H31O

= solid support

slide  117  

slide  118  

Page 50: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

50

Affinity  chromatography  

   

 

   

 

 

   

• Protein  kinase  B  (PKB)  is  known  to  bind  to  PtdIns(3,4,5)P3.    

• PKB  binds  most  strongly  to  the  natural  D-­‐form  of  PtdIns(3,4,5)P3.    

• The  protein  does  not  bind  to  unfunctionalised,  control,  beads.      Affinity  chromatography  

   

       

(NaO)2OPOOPO(ONa)2

HO OOHOPO(ONa)2

PO O

ONaOCOC11H22NH

OCOC15H31O

= solid support

slide  119  

slide  120  

Page 51: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

51

Transition  state  mimics  

   

   

• One  method   that   enzymes   catalyse   reactions   is   by   binding  preferentially   to   the   reaction  transition  state  rather  than  the  substrate  or  product.  

 • Therefore  molecules   that  mimic   the   transition   state   could   potentially   act   as   competitive  

inhibitors  of  the  enzyme.      Transition  state  mimics  

   

     

O O

D52retaining glycosidase

retaining glycosidase

OHO

HO

OH

ORHO

O O

D52

OH

O

E35

retaining glycosidase

retaining glycosidase

OHO

HO

OH

HO

O O

D52

O O

E35

O R'H

retaining glycosidase

retaining glycosidase

OHO

HO

OH

HO

O O

E35

H

OR'

slide  122  

slide  123  

Page 52: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

52

 Transition  state  mimics  

 

   

• The  δ-­‐lactone  above  is  a  mimic  of  the  lysozyme  transition  state.    

• The  ester  unit  (red)  is  coplanar,  similar  to  the  SN2  transition  state.      Transition  state  mimics  

 

   

• Neuraminidases,  which  are  involved  in  virus  proliferation  are  retaining  glycosidases.    

• Neuraminidases  cleave  the  budding  virus  particle  from  the  host  cell.    

• Inhibition  of  neuraminidases  is  potentially  of  therapeutic  value.      Transition  state  mimics  

 

   

• Both   Relenza   and   Tamiflu,   which   are   marketed   as   treatments   for   influenza,   are  neuraminidase  transition  state  mimics  and  competitive  inhibitors.  

 

• Relenza  was  one  of  the  first  examples  of  crystal  structures  being  employed  in  rational  drug  design.  

OCO2H

O glycoconjugateHO

R

HO OH

HO

neuraminidase(retaining glycosidase)

OCO2H

OHHO

R

HO OH

HOO

OHCO2H

HOR

HO OH

HO

O CO2H

HOR

HO OH

HO

O CO2H

HNR

HO OH

HO

H2NNH

CO2H

H2N

OR

O CO2H

HOR

HO OH

HO

LG

Nu

!!"#$%&'()*+'#($&$, -./. 0,1,'2& 3&4)56

slide  124  

slide  126  

slide  127  

Page 53: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

53

Transition  state  mimics  

 

       Caged  compounds  

 

   

• Caged  compounds  are  biologically  active  molecules  that  are  rendered  biologically  inert  by  the  addition  of  a  photolabile  protecting  group  to  an  important  functional  group.  

 

• Removal  of  the  protecting  group  releases  (uncages)  the  active  compound.    

• This   technique   is   often   applicable   to   the   non-­‐invasive   control   of   biologically   important  compounds  inside  cells.  

 • A  high  degree  of  temporal  and  spatial  control  is  obtained  by  using  caged  compounds.  

     

slide  128  

slide  129  

Page 54: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

54

Caged  compounds  

 

     Caged  compounds  

 

   

• The  dimethoxynitrobenzyl  moiety  is  a  commonly  used  caging  group.    

• Irradiation  with  light  of  wavelength  ~355  nm  gives  efficient  release  of  the  caged  compound.        

OR

NO2

MeOOMe

inactive compounds

light

active compound

O

NO

MeOOMe

H

ROH

slide  130  

slide  131  

Page 55: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

55

Caged  compounds  

   

   

• The  first  step  of  photocleavage  is  the  n  → π*  excitation  of  the  nitro  group  to  the  1st  singlet  excited  state.  

 

• The  singlet  state  then  decay,  via  intersystem  crossing,  to  the  triplet  state,  which  behaves  as  a  diradical  in  the  subsequent  “dark”  reactions.  

   Photoaffinity  labelling  

   

• Photoaffinity  labelling  employs  a  photoactivatable  but  chemically  inert  ligand  analogue.    

• Once  the  ligand  is  bound  to  the  receptor,  activation  by  light  forms  a  highly  reactive  species  that  binds  covalently  to  the  protein  at  the  site  of  interaction.  

 • Subsequent   analysis   of   the   protein   can   provide   information   about   the   site   of   ligand  

interaction.        

O

HR

NO O

H3COOCH3

O

HR

NO O

H3COOCH3

O RNO OH

H3COOCH3

O RNO

H3COOCH3

O HOH

H

NO

H3COOCH3

O

ROH

slide  132  

slide  137  

Page 56: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

56

Photoaffinity  labelling  

   

     Photoaffinity  labelling  

   

     Photoaffinity  labelling  

   

     

R N N Nlight

R N

N Nlight

R

R

R

R

R N Nlight

RX

light

R

R

R

R

NN

O

R

lightO

R

azide

diazo compounds

diazonium salts

diazirines

benzophenones

nitrene (singlet or triplet)

carbene (singlet or triplet)

carbocation

carbene

carbonyl excited state(triplet or singlet)

R N N Nlight

R NR N N N + N2

NN

12

3

45

6

7

12

3

4

56

7

Nu

H+

HN

Nu

slide  138  

slide  139  

slide  140  

Page 57: Organic Chemistry Option II: Chemical Biology

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

57

Photoaffinity  labelling  

   

   

slide  141