20
Pd(110) 表表表表表表表表表表表表表 Markus Wilde Satoshi Ohno Katsuyuki Fukutani Institute of Industrial Science, University of Tokyo 表表表表表表表表表表表表表表表表表 2014 表 3 表 11 表 表表表表 Materials Design through Computics Complex Correlation and Non-equilibrium Dynamics ココココココココココココココココココココココココココココココココココ 25 ココ コ 2 ココココ

Pd(110) 表面における水素吸収の機構

Embed Size (px)

DESCRIPTION

文部科学省科学研究費新学術領域研究 ・ 2014 年 3 月 11 日・東京大学. Materials Design through Computics Complex Correlation and Non-equilibrium Dynamics. 「コンピューティクスによる物質デザイン: 複合相関と非平衡ダイナミクス」 平成 25 年度 第 2 回研究会. Pd(110) 表面における水素吸収の機構. Markus Wilde ・ Satoshi Ohno ・ Katsuyuki Fukutani - PowerPoint PPT Presentation

Citation preview

Page 1: Pd(110) 表面における水素吸収の機構

Pd(110) 表面における水素吸収の機構

Markus Wilde Satoshi Ohno Katsuyuki Fukutani

Institute of Industrial Science University of Tokyo

文部科学省科学研究費新学術領域研究 2014 年 3 月 11 日東京大学

Materials Design through ComputicsComplex Correlation and Non-equilibrium

Dynamics

「コンピューティクスによる物質デザイン

複合相関と非平衡ダイナミクス」

平成 25 年度 第 2 回研究会

Hydrogen Absorption at Pd Surfaces

Industrial Importance

bull Hydrogen Storage (in hydrides)

bull Hydrogenation Catalysis

Objectives

bull Obtain atomic level understanding of the absorption mechanism

bull Model system H2 rarr Pd(110) (single crystal)

bull Influence of surface structure on absorption properties

=gt Clarify the microscopic pathways of hydrogen surface penetration

H2 z

0H

H2

HSurface

Subsurface

BulkH2

time

[5] Okuyama et al Surf Sci 401 (1998) 344[6] Ohno et al J Chem Phys submitted

Activation Energy Paradox

The actual reaction coordinate of H2 absorption

H

H2

Eabs lt 010 eV[5 6]

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705[2] Ferrin et al Surf Sci 606 679 (2012)[3] Nobuhara et al Surf Sci 566 703 (2004)[4] Ozawa et al J Phys Condens Matter 19 365214 (2007)

Prevailing H absorption model

Absorption activation

Experimental results

Emono = 03 ~ 06 eV[1-4]Monatomic in-diffusion

HPd

Chemi-sorption

Identify

R

Potential Energy

-05 eV

-02 eV-01 eV

Surface of particular interest Pd(110)

Pd(110) single crystal surface

Pd Well-known H absorbing metal

Excellent catalyst for olefin hydrogenation

(110) Single crystal Well-defined structure

Openness Surface atomic density ー 40 vs (111)

H-induced surface reconstruction ldquoProne to hydrogen absorptionrdquo[1]

[1] Christmann Prog Surf Sci 48 15 (1995)

_

[110]

[001]

H2 exposure

Pairing-row (P-R)reconstruction

Second-layer exposed Atomic step-like structure Lateral contraction in paired rows

Pd

(110)

Top view Side view

(1x2)

H2 D

eso

rptio

n s

ign

al

(TD

S)

600500400300200100

Temperature (K)

H2 Desorption signalCombine two hydrogen detection techniques

Experimental Approach TDS + NRA

① Thermal Desorption Spectroscopy (TDS)

rarr H2(D2) exposures at given Te desorption

rarr No of H species desorption activation energy

rarr lacks information on H location (onbelow surface)

H2 D

eso

rptio

n s

ign

al

(TD

S)

600500400300200100

Temperature (K)

Su

rface

ab

sorb

ed

H (N

RA

)

Surface-H signal (Hs) Subsurface-H signal (Hss)

Experimental  

Ei=Eres -detector

N

probing depth

EigtEres

z(Ei)= (Ei-Eres)(dEdz)

[Habsorbed]

15N2+ ion beam

0

[Hsurface]

② Nuclear Reaction Analysis (NRA) via 1H(15N)12C (Eres=6385 MeV =18 keV)

rarr distinguishes surface-adsorbed from absorbed H (~2 nm depth resolution)

300 L H+H2 on Pd(100) at 100 K

15N ion energy [MeV]

637 638 639 640 641

ray

yiel

d [c

ts

C]

0

50

100

150

depth [nm]

-4 -2 0 2 4 6 8

15N ion energy (MeV)

Depth (nm)

-yi

eld

(ct

sC

)

M Wilde PRB 78 (2008) 114511

rarr achieves unambiguous TDS peak identifications

0 L (clean) 03 L 05 L

[1] Ledentu et al Surf Sci 411 (1998) 123 [2] Yoshinobu et al Phys Rev B 51 4529 (1995)

(1times1) (2times1) (1times2)

Surface Adsorption Phases (LEED amp TPD) HPd(110)

H2 exposure at Te = 130 K50 L ~

θ=15 MLθ=10 ML

_

[110]

[001] θ=0 ML

[1]

θ= ML

[2]

120

100

80

60

40

20

0Q

MS io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

β1 β2

α2Surface

1 L = 10-6 Torr s1 L = 10-6 Torr s

1 ML = 94 x 1014 atomscm2

1 ML = 94 x 1014 atomscm2

01 L03 L

08 L

03 L

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Surface

α1

α3

200

150

100

50

0

QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

α1α3 α2

β2

β1

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

TPD

130 K

145 Kα3

NRA H Depth Distribution of Two Low-T TPD States

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

12 at

230 at

NRA

Absorbed hydrogenα1 Near surface α3 Bulk gt 50 nm

2000 L at Te = 130 K

α1 α3α2

β2

β1

surface

TPD feature Origin Depth extension

[H]avgVolume

ratioTe condition

α1 (170 K) Near surface hydride ~ 10 nm 23 at 30 lt 145 K

α3 (195 K) Bulk hydride gt 50 nm 12 at 2 lt 160 K

LEED NRA TPD Identification of H2Pd(110) desorption features

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

=gt First revelation at Pd(110) TWO absorbed hydride states

300

200

100

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150Temperature [K]

TPD NRA

S Ohno M Wilde K Fukutani J Chem Phys submitted

NEW

pre     postD2 10 L rarr H2 1000 L α1

α3

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Te = 115 K

rArr Two separate absorption pathways exist ()

Near-surface hydride Bulk hydride

Investigation of the H2 Absorption Mechanism

Absorption experiments with isotope labeled surface hydrogen

Analysis of isotope populations (TPD)

=gt Clear difference between near-surface (α1) and bulk (α3) hydride (Also Different normal (H2gtD2) isotope effects in a1 and a3 population speeds)

=gt Absorption near minority sites (defects)

Isotope Population of the Absorbed Hydride States

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre 006 ML

Near-surface hydride (α1)

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

Bulk hydride (α3)

08

1

02

p=0

05

~ 4

Dominant transfer of pre-adsorbed H below the surface

(First observation)

=gt Absorption in regular terrace area ()

p=0~05

Only Pd(110) no lsquobypassingrsquo

p 1-p

lsquobypassingrsquo replacement

Recursive analysis of isotope composition

( )( 1) ( ) (1 )

( )( 1) ( ) (1 )

prepre pre

prepost post

N nN n N n p

N

N nN n N n p

N

Evaluation of lsquobypassingrsquo probability (p)

Stochastic Isotope Population Model for AbsorptionDesorption

(1)

(2)

(p) (1-p)

n+1th absorption eventpost

pre Npre(n)post Npost(n)

rarr uptake rarr desorption (microscopic reversibility)

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 2: Pd(110) 表面における水素吸収の機構

Hydrogen Absorption at Pd Surfaces

Industrial Importance

bull Hydrogen Storage (in hydrides)

bull Hydrogenation Catalysis

Objectives

bull Obtain atomic level understanding of the absorption mechanism

bull Model system H2 rarr Pd(110) (single crystal)

bull Influence of surface structure on absorption properties

=gt Clarify the microscopic pathways of hydrogen surface penetration

H2 z

0H

H2

HSurface

Subsurface

BulkH2

time

[5] Okuyama et al Surf Sci 401 (1998) 344[6] Ohno et al J Chem Phys submitted

Activation Energy Paradox

The actual reaction coordinate of H2 absorption

H

H2

Eabs lt 010 eV[5 6]

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705[2] Ferrin et al Surf Sci 606 679 (2012)[3] Nobuhara et al Surf Sci 566 703 (2004)[4] Ozawa et al J Phys Condens Matter 19 365214 (2007)

Prevailing H absorption model

Absorption activation

Experimental results

Emono = 03 ~ 06 eV[1-4]Monatomic in-diffusion

HPd

Chemi-sorption

Identify

R

Potential Energy

-05 eV

-02 eV-01 eV

Surface of particular interest Pd(110)

Pd(110) single crystal surface

Pd Well-known H absorbing metal

Excellent catalyst for olefin hydrogenation

(110) Single crystal Well-defined structure

Openness Surface atomic density ー 40 vs (111)

H-induced surface reconstruction ldquoProne to hydrogen absorptionrdquo[1]

[1] Christmann Prog Surf Sci 48 15 (1995)

_

[110]

[001]

H2 exposure

Pairing-row (P-R)reconstruction

Second-layer exposed Atomic step-like structure Lateral contraction in paired rows

Pd

(110)

Top view Side view

(1x2)

H2 D

eso

rptio

n s

ign

al

(TD

S)

600500400300200100

Temperature (K)

H2 Desorption signalCombine two hydrogen detection techniques

Experimental Approach TDS + NRA

① Thermal Desorption Spectroscopy (TDS)

rarr H2(D2) exposures at given Te desorption

rarr No of H species desorption activation energy

rarr lacks information on H location (onbelow surface)

H2 D

eso

rptio

n s

ign

al

(TD

S)

600500400300200100

Temperature (K)

Su

rface

ab

sorb

ed

H (N

RA

)

Surface-H signal (Hs) Subsurface-H signal (Hss)

Experimental  

Ei=Eres -detector

N

probing depth

EigtEres

z(Ei)= (Ei-Eres)(dEdz)

[Habsorbed]

15N2+ ion beam

0

[Hsurface]

② Nuclear Reaction Analysis (NRA) via 1H(15N)12C (Eres=6385 MeV =18 keV)

rarr distinguishes surface-adsorbed from absorbed H (~2 nm depth resolution)

300 L H+H2 on Pd(100) at 100 K

15N ion energy [MeV]

637 638 639 640 641

ray

yiel

d [c

ts

C]

0

50

100

150

depth [nm]

-4 -2 0 2 4 6 8

15N ion energy (MeV)

Depth (nm)

-yi

eld

(ct

sC

)

M Wilde PRB 78 (2008) 114511

rarr achieves unambiguous TDS peak identifications

0 L (clean) 03 L 05 L

[1] Ledentu et al Surf Sci 411 (1998) 123 [2] Yoshinobu et al Phys Rev B 51 4529 (1995)

(1times1) (2times1) (1times2)

Surface Adsorption Phases (LEED amp TPD) HPd(110)

H2 exposure at Te = 130 K50 L ~

θ=15 MLθ=10 ML

_

[110]

[001] θ=0 ML

[1]

θ= ML

[2]

120

100

80

60

40

20

0Q

MS io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

β1 β2

α2Surface

1 L = 10-6 Torr s1 L = 10-6 Torr s

1 ML = 94 x 1014 atomscm2

1 ML = 94 x 1014 atomscm2

01 L03 L

08 L

03 L

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Surface

α1

α3

200

150

100

50

0

QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

α1α3 α2

β2

β1

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

TPD

130 K

145 Kα3

NRA H Depth Distribution of Two Low-T TPD States

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

12 at

230 at

NRA

Absorbed hydrogenα1 Near surface α3 Bulk gt 50 nm

2000 L at Te = 130 K

α1 α3α2

β2

β1

surface

TPD feature Origin Depth extension

[H]avgVolume

ratioTe condition

α1 (170 K) Near surface hydride ~ 10 nm 23 at 30 lt 145 K

α3 (195 K) Bulk hydride gt 50 nm 12 at 2 lt 160 K

LEED NRA TPD Identification of H2Pd(110) desorption features

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

=gt First revelation at Pd(110) TWO absorbed hydride states

300

200

100

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150Temperature [K]

TPD NRA

S Ohno M Wilde K Fukutani J Chem Phys submitted

NEW

pre     postD2 10 L rarr H2 1000 L α1

α3

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Te = 115 K

rArr Two separate absorption pathways exist ()

Near-surface hydride Bulk hydride

Investigation of the H2 Absorption Mechanism

Absorption experiments with isotope labeled surface hydrogen

Analysis of isotope populations (TPD)

=gt Clear difference between near-surface (α1) and bulk (α3) hydride (Also Different normal (H2gtD2) isotope effects in a1 and a3 population speeds)

=gt Absorption near minority sites (defects)

Isotope Population of the Absorbed Hydride States

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre 006 ML

Near-surface hydride (α1)

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

Bulk hydride (α3)

08

1

02

p=0

05

~ 4

Dominant transfer of pre-adsorbed H below the surface

(First observation)

=gt Absorption in regular terrace area ()

p=0~05

Only Pd(110) no lsquobypassingrsquo

p 1-p

lsquobypassingrsquo replacement

Recursive analysis of isotope composition

( )( 1) ( ) (1 )

( )( 1) ( ) (1 )

prepre pre

prepost post

N nN n N n p

N

N nN n N n p

N

Evaluation of lsquobypassingrsquo probability (p)

Stochastic Isotope Population Model for AbsorptionDesorption

(1)

(2)

(p) (1-p)

n+1th absorption eventpost

pre Npre(n)post Npost(n)

rarr uptake rarr desorption (microscopic reversibility)

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 3: Pd(110) 表面における水素吸収の機構

[5] Okuyama et al Surf Sci 401 (1998) 344[6] Ohno et al J Chem Phys submitted

Activation Energy Paradox

The actual reaction coordinate of H2 absorption

H

H2

Eabs lt 010 eV[5 6]

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705[2] Ferrin et al Surf Sci 606 679 (2012)[3] Nobuhara et al Surf Sci 566 703 (2004)[4] Ozawa et al J Phys Condens Matter 19 365214 (2007)

Prevailing H absorption model

Absorption activation

Experimental results

Emono = 03 ~ 06 eV[1-4]Monatomic in-diffusion

HPd

Chemi-sorption

Identify

R

Potential Energy

-05 eV

-02 eV-01 eV

Surface of particular interest Pd(110)

Pd(110) single crystal surface

Pd Well-known H absorbing metal

Excellent catalyst for olefin hydrogenation

(110) Single crystal Well-defined structure

Openness Surface atomic density ー 40 vs (111)

H-induced surface reconstruction ldquoProne to hydrogen absorptionrdquo[1]

[1] Christmann Prog Surf Sci 48 15 (1995)

_

[110]

[001]

H2 exposure

Pairing-row (P-R)reconstruction

Second-layer exposed Atomic step-like structure Lateral contraction in paired rows

Pd

(110)

Top view Side view

(1x2)

H2 D

eso

rptio

n s

ign

al

(TD

S)

600500400300200100

Temperature (K)

H2 Desorption signalCombine two hydrogen detection techniques

Experimental Approach TDS + NRA

① Thermal Desorption Spectroscopy (TDS)

rarr H2(D2) exposures at given Te desorption

rarr No of H species desorption activation energy

rarr lacks information on H location (onbelow surface)

H2 D

eso

rptio

n s

ign

al

(TD

S)

600500400300200100

Temperature (K)

Su

rface

ab

sorb

ed

H (N

RA

)

Surface-H signal (Hs) Subsurface-H signal (Hss)

Experimental  

Ei=Eres -detector

N

probing depth

EigtEres

z(Ei)= (Ei-Eres)(dEdz)

[Habsorbed]

15N2+ ion beam

0

[Hsurface]

② Nuclear Reaction Analysis (NRA) via 1H(15N)12C (Eres=6385 MeV =18 keV)

rarr distinguishes surface-adsorbed from absorbed H (~2 nm depth resolution)

300 L H+H2 on Pd(100) at 100 K

15N ion energy [MeV]

637 638 639 640 641

ray

yiel

d [c

ts

C]

0

50

100

150

depth [nm]

-4 -2 0 2 4 6 8

15N ion energy (MeV)

Depth (nm)

-yi

eld

(ct

sC

)

M Wilde PRB 78 (2008) 114511

rarr achieves unambiguous TDS peak identifications

0 L (clean) 03 L 05 L

[1] Ledentu et al Surf Sci 411 (1998) 123 [2] Yoshinobu et al Phys Rev B 51 4529 (1995)

(1times1) (2times1) (1times2)

Surface Adsorption Phases (LEED amp TPD) HPd(110)

H2 exposure at Te = 130 K50 L ~

θ=15 MLθ=10 ML

_

[110]

[001] θ=0 ML

[1]

θ= ML

[2]

120

100

80

60

40

20

0Q

MS io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

β1 β2

α2Surface

1 L = 10-6 Torr s1 L = 10-6 Torr s

1 ML = 94 x 1014 atomscm2

1 ML = 94 x 1014 atomscm2

01 L03 L

08 L

03 L

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Surface

α1

α3

200

150

100

50

0

QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

α1α3 α2

β2

β1

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

TPD

130 K

145 Kα3

NRA H Depth Distribution of Two Low-T TPD States

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

12 at

230 at

NRA

Absorbed hydrogenα1 Near surface α3 Bulk gt 50 nm

2000 L at Te = 130 K

α1 α3α2

β2

β1

surface

TPD feature Origin Depth extension

[H]avgVolume

ratioTe condition

α1 (170 K) Near surface hydride ~ 10 nm 23 at 30 lt 145 K

α3 (195 K) Bulk hydride gt 50 nm 12 at 2 lt 160 K

LEED NRA TPD Identification of H2Pd(110) desorption features

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

=gt First revelation at Pd(110) TWO absorbed hydride states

300

200

100

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150Temperature [K]

TPD NRA

S Ohno M Wilde K Fukutani J Chem Phys submitted

NEW

pre     postD2 10 L rarr H2 1000 L α1

α3

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Te = 115 K

rArr Two separate absorption pathways exist ()

Near-surface hydride Bulk hydride

Investigation of the H2 Absorption Mechanism

Absorption experiments with isotope labeled surface hydrogen

Analysis of isotope populations (TPD)

=gt Clear difference between near-surface (α1) and bulk (α3) hydride (Also Different normal (H2gtD2) isotope effects in a1 and a3 population speeds)

=gt Absorption near minority sites (defects)

Isotope Population of the Absorbed Hydride States

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre 006 ML

Near-surface hydride (α1)

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

Bulk hydride (α3)

08

1

02

p=0

05

~ 4

Dominant transfer of pre-adsorbed H below the surface

(First observation)

=gt Absorption in regular terrace area ()

p=0~05

Only Pd(110) no lsquobypassingrsquo

p 1-p

lsquobypassingrsquo replacement

Recursive analysis of isotope composition

( )( 1) ( ) (1 )

( )( 1) ( ) (1 )

prepre pre

prepost post

N nN n N n p

N

N nN n N n p

N

Evaluation of lsquobypassingrsquo probability (p)

Stochastic Isotope Population Model for AbsorptionDesorption

(1)

(2)

(p) (1-p)

n+1th absorption eventpost

pre Npre(n)post Npost(n)

rarr uptake rarr desorption (microscopic reversibility)

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 4: Pd(110) 表面における水素吸収の機構

Surface of particular interest Pd(110)

Pd(110) single crystal surface

Pd Well-known H absorbing metal

Excellent catalyst for olefin hydrogenation

(110) Single crystal Well-defined structure

Openness Surface atomic density ー 40 vs (111)

H-induced surface reconstruction ldquoProne to hydrogen absorptionrdquo[1]

[1] Christmann Prog Surf Sci 48 15 (1995)

_

[110]

[001]

H2 exposure

Pairing-row (P-R)reconstruction

Second-layer exposed Atomic step-like structure Lateral contraction in paired rows

Pd

(110)

Top view Side view

(1x2)

H2 D

eso

rptio

n s

ign

al

(TD

S)

600500400300200100

Temperature (K)

H2 Desorption signalCombine two hydrogen detection techniques

Experimental Approach TDS + NRA

① Thermal Desorption Spectroscopy (TDS)

rarr H2(D2) exposures at given Te desorption

rarr No of H species desorption activation energy

rarr lacks information on H location (onbelow surface)

H2 D

eso

rptio

n s

ign

al

(TD

S)

600500400300200100

Temperature (K)

Su

rface

ab

sorb

ed

H (N

RA

)

Surface-H signal (Hs) Subsurface-H signal (Hss)

Experimental  

Ei=Eres -detector

N

probing depth

EigtEres

z(Ei)= (Ei-Eres)(dEdz)

[Habsorbed]

15N2+ ion beam

0

[Hsurface]

② Nuclear Reaction Analysis (NRA) via 1H(15N)12C (Eres=6385 MeV =18 keV)

rarr distinguishes surface-adsorbed from absorbed H (~2 nm depth resolution)

300 L H+H2 on Pd(100) at 100 K

15N ion energy [MeV]

637 638 639 640 641

ray

yiel

d [c

ts

C]

0

50

100

150

depth [nm]

-4 -2 0 2 4 6 8

15N ion energy (MeV)

Depth (nm)

-yi

eld

(ct

sC

)

M Wilde PRB 78 (2008) 114511

rarr achieves unambiguous TDS peak identifications

0 L (clean) 03 L 05 L

[1] Ledentu et al Surf Sci 411 (1998) 123 [2] Yoshinobu et al Phys Rev B 51 4529 (1995)

(1times1) (2times1) (1times2)

Surface Adsorption Phases (LEED amp TPD) HPd(110)

H2 exposure at Te = 130 K50 L ~

θ=15 MLθ=10 ML

_

[110]

[001] θ=0 ML

[1]

θ= ML

[2]

120

100

80

60

40

20

0Q

MS io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

β1 β2

α2Surface

1 L = 10-6 Torr s1 L = 10-6 Torr s

1 ML = 94 x 1014 atomscm2

1 ML = 94 x 1014 atomscm2

01 L03 L

08 L

03 L

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Surface

α1

α3

200

150

100

50

0

QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

α1α3 α2

β2

β1

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

TPD

130 K

145 Kα3

NRA H Depth Distribution of Two Low-T TPD States

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

12 at

230 at

NRA

Absorbed hydrogenα1 Near surface α3 Bulk gt 50 nm

2000 L at Te = 130 K

α1 α3α2

β2

β1

surface

TPD feature Origin Depth extension

[H]avgVolume

ratioTe condition

α1 (170 K) Near surface hydride ~ 10 nm 23 at 30 lt 145 K

α3 (195 K) Bulk hydride gt 50 nm 12 at 2 lt 160 K

LEED NRA TPD Identification of H2Pd(110) desorption features

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

=gt First revelation at Pd(110) TWO absorbed hydride states

300

200

100

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150Temperature [K]

TPD NRA

S Ohno M Wilde K Fukutani J Chem Phys submitted

NEW

pre     postD2 10 L rarr H2 1000 L α1

α3

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Te = 115 K

rArr Two separate absorption pathways exist ()

Near-surface hydride Bulk hydride

Investigation of the H2 Absorption Mechanism

Absorption experiments with isotope labeled surface hydrogen

Analysis of isotope populations (TPD)

=gt Clear difference between near-surface (α1) and bulk (α3) hydride (Also Different normal (H2gtD2) isotope effects in a1 and a3 population speeds)

=gt Absorption near minority sites (defects)

Isotope Population of the Absorbed Hydride States

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre 006 ML

Near-surface hydride (α1)

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

Bulk hydride (α3)

08

1

02

p=0

05

~ 4

Dominant transfer of pre-adsorbed H below the surface

(First observation)

=gt Absorption in regular terrace area ()

p=0~05

Only Pd(110) no lsquobypassingrsquo

p 1-p

lsquobypassingrsquo replacement

Recursive analysis of isotope composition

( )( 1) ( ) (1 )

( )( 1) ( ) (1 )

prepre pre

prepost post

N nN n N n p

N

N nN n N n p

N

Evaluation of lsquobypassingrsquo probability (p)

Stochastic Isotope Population Model for AbsorptionDesorption

(1)

(2)

(p) (1-p)

n+1th absorption eventpost

pre Npre(n)post Npost(n)

rarr uptake rarr desorption (microscopic reversibility)

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 5: Pd(110) 表面における水素吸収の機構

H2 D

eso

rptio

n s

ign

al

(TD

S)

600500400300200100

Temperature (K)

H2 Desorption signalCombine two hydrogen detection techniques

Experimental Approach TDS + NRA

① Thermal Desorption Spectroscopy (TDS)

rarr H2(D2) exposures at given Te desorption

rarr No of H species desorption activation energy

rarr lacks information on H location (onbelow surface)

H2 D

eso

rptio

n s

ign

al

(TD

S)

600500400300200100

Temperature (K)

Su

rface

ab

sorb

ed

H (N

RA

)

Surface-H signal (Hs) Subsurface-H signal (Hss)

Experimental  

Ei=Eres -detector

N

probing depth

EigtEres

z(Ei)= (Ei-Eres)(dEdz)

[Habsorbed]

15N2+ ion beam

0

[Hsurface]

② Nuclear Reaction Analysis (NRA) via 1H(15N)12C (Eres=6385 MeV =18 keV)

rarr distinguishes surface-adsorbed from absorbed H (~2 nm depth resolution)

300 L H+H2 on Pd(100) at 100 K

15N ion energy [MeV]

637 638 639 640 641

ray

yiel

d [c

ts

C]

0

50

100

150

depth [nm]

-4 -2 0 2 4 6 8

15N ion energy (MeV)

Depth (nm)

-yi

eld

(ct

sC

)

M Wilde PRB 78 (2008) 114511

rarr achieves unambiguous TDS peak identifications

0 L (clean) 03 L 05 L

[1] Ledentu et al Surf Sci 411 (1998) 123 [2] Yoshinobu et al Phys Rev B 51 4529 (1995)

(1times1) (2times1) (1times2)

Surface Adsorption Phases (LEED amp TPD) HPd(110)

H2 exposure at Te = 130 K50 L ~

θ=15 MLθ=10 ML

_

[110]

[001] θ=0 ML

[1]

θ= ML

[2]

120

100

80

60

40

20

0Q

MS io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

β1 β2

α2Surface

1 L = 10-6 Torr s1 L = 10-6 Torr s

1 ML = 94 x 1014 atomscm2

1 ML = 94 x 1014 atomscm2

01 L03 L

08 L

03 L

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Surface

α1

α3

200

150

100

50

0

QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

α1α3 α2

β2

β1

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

TPD

130 K

145 Kα3

NRA H Depth Distribution of Two Low-T TPD States

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

12 at

230 at

NRA

Absorbed hydrogenα1 Near surface α3 Bulk gt 50 nm

2000 L at Te = 130 K

α1 α3α2

β2

β1

surface

TPD feature Origin Depth extension

[H]avgVolume

ratioTe condition

α1 (170 K) Near surface hydride ~ 10 nm 23 at 30 lt 145 K

α3 (195 K) Bulk hydride gt 50 nm 12 at 2 lt 160 K

LEED NRA TPD Identification of H2Pd(110) desorption features

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

=gt First revelation at Pd(110) TWO absorbed hydride states

300

200

100

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150Temperature [K]

TPD NRA

S Ohno M Wilde K Fukutani J Chem Phys submitted

NEW

pre     postD2 10 L rarr H2 1000 L α1

α3

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Te = 115 K

rArr Two separate absorption pathways exist ()

Near-surface hydride Bulk hydride

Investigation of the H2 Absorption Mechanism

Absorption experiments with isotope labeled surface hydrogen

Analysis of isotope populations (TPD)

=gt Clear difference between near-surface (α1) and bulk (α3) hydride (Also Different normal (H2gtD2) isotope effects in a1 and a3 population speeds)

=gt Absorption near minority sites (defects)

Isotope Population of the Absorbed Hydride States

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre 006 ML

Near-surface hydride (α1)

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

Bulk hydride (α3)

08

1

02

p=0

05

~ 4

Dominant transfer of pre-adsorbed H below the surface

(First observation)

=gt Absorption in regular terrace area ()

p=0~05

Only Pd(110) no lsquobypassingrsquo

p 1-p

lsquobypassingrsquo replacement

Recursive analysis of isotope composition

( )( 1) ( ) (1 )

( )( 1) ( ) (1 )

prepre pre

prepost post

N nN n N n p

N

N nN n N n p

N

Evaluation of lsquobypassingrsquo probability (p)

Stochastic Isotope Population Model for AbsorptionDesorption

(1)

(2)

(p) (1-p)

n+1th absorption eventpost

pre Npre(n)post Npost(n)

rarr uptake rarr desorption (microscopic reversibility)

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 6: Pd(110) 表面における水素吸収の機構

0 L (clean) 03 L 05 L

[1] Ledentu et al Surf Sci 411 (1998) 123 [2] Yoshinobu et al Phys Rev B 51 4529 (1995)

(1times1) (2times1) (1times2)

Surface Adsorption Phases (LEED amp TPD) HPd(110)

H2 exposure at Te = 130 K50 L ~

θ=15 MLθ=10 ML

_

[110]

[001] θ=0 ML

[1]

θ= ML

[2]

120

100

80

60

40

20

0Q

MS io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

β1 β2

α2Surface

1 L = 10-6 Torr s1 L = 10-6 Torr s

1 ML = 94 x 1014 atomscm2

1 ML = 94 x 1014 atomscm2

01 L03 L

08 L

03 L

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Surface

α1

α3

200

150

100

50

0

QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

α1α3 α2

β2

β1

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

TPD

130 K

145 Kα3

NRA H Depth Distribution of Two Low-T TPD States

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

12 at

230 at

NRA

Absorbed hydrogenα1 Near surface α3 Bulk gt 50 nm

2000 L at Te = 130 K

α1 α3α2

β2

β1

surface

TPD feature Origin Depth extension

[H]avgVolume

ratioTe condition

α1 (170 K) Near surface hydride ~ 10 nm 23 at 30 lt 145 K

α3 (195 K) Bulk hydride gt 50 nm 12 at 2 lt 160 K

LEED NRA TPD Identification of H2Pd(110) desorption features

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

=gt First revelation at Pd(110) TWO absorbed hydride states

300

200

100

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150Temperature [K]

TPD NRA

S Ohno M Wilde K Fukutani J Chem Phys submitted

NEW

pre     postD2 10 L rarr H2 1000 L α1

α3

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Te = 115 K

rArr Two separate absorption pathways exist ()

Near-surface hydride Bulk hydride

Investigation of the H2 Absorption Mechanism

Absorption experiments with isotope labeled surface hydrogen

Analysis of isotope populations (TPD)

=gt Clear difference between near-surface (α1) and bulk (α3) hydride (Also Different normal (H2gtD2) isotope effects in a1 and a3 population speeds)

=gt Absorption near minority sites (defects)

Isotope Population of the Absorbed Hydride States

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre 006 ML

Near-surface hydride (α1)

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

Bulk hydride (α3)

08

1

02

p=0

05

~ 4

Dominant transfer of pre-adsorbed H below the surface

(First observation)

=gt Absorption in regular terrace area ()

p=0~05

Only Pd(110) no lsquobypassingrsquo

p 1-p

lsquobypassingrsquo replacement

Recursive analysis of isotope composition

( )( 1) ( ) (1 )

( )( 1) ( ) (1 )

prepre pre

prepost post

N nN n N n p

N

N nN n N n p

N

Evaluation of lsquobypassingrsquo probability (p)

Stochastic Isotope Population Model for AbsorptionDesorption

(1)

(2)

(p) (1-p)

n+1th absorption eventpost

pre Npre(n)post Npost(n)

rarr uptake rarr desorption (microscopic reversibility)

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 7: Pd(110) 表面における水素吸収の機構

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

α1α3 α2

β2

β1

300

200

100

0

QM

S io

n cu

rren

t [a

u]

400350300250200150

Temperature [K]

TPD

130 K

145 Kα3

NRA H Depth Distribution of Two Low-T TPD States

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

12 at

230 at

NRA

Absorbed hydrogenα1 Near surface α3 Bulk gt 50 nm

2000 L at Te = 130 K

α1 α3α2

β2

β1

surface

TPD feature Origin Depth extension

[H]avgVolume

ratioTe condition

α1 (170 K) Near surface hydride ~ 10 nm 23 at 30 lt 145 K

α3 (195 K) Bulk hydride gt 50 nm 12 at 2 lt 160 K

LEED NRA TPD Identification of H2Pd(110) desorption features

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

=gt First revelation at Pd(110) TWO absorbed hydride states

300

200

100

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150Temperature [K]

TPD NRA

S Ohno M Wilde K Fukutani J Chem Phys submitted

NEW

pre     postD2 10 L rarr H2 1000 L α1

α3

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Te = 115 K

rArr Two separate absorption pathways exist ()

Near-surface hydride Bulk hydride

Investigation of the H2 Absorption Mechanism

Absorption experiments with isotope labeled surface hydrogen

Analysis of isotope populations (TPD)

=gt Clear difference between near-surface (α1) and bulk (α3) hydride (Also Different normal (H2gtD2) isotope effects in a1 and a3 population speeds)

=gt Absorption near minority sites (defects)

Isotope Population of the Absorbed Hydride States

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre 006 ML

Near-surface hydride (α1)

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

Bulk hydride (α3)

08

1

02

p=0

05

~ 4

Dominant transfer of pre-adsorbed H below the surface

(First observation)

=gt Absorption in regular terrace area ()

p=0~05

Only Pd(110) no lsquobypassingrsquo

p 1-p

lsquobypassingrsquo replacement

Recursive analysis of isotope composition

( )( 1) ( ) (1 )

( )( 1) ( ) (1 )

prepre pre

prepost post

N nN n N n p

N

N nN n N n p

N

Evaluation of lsquobypassingrsquo probability (p)

Stochastic Isotope Population Model for AbsorptionDesorption

(1)

(2)

(p) (1-p)

n+1th absorption eventpost

pre Npre(n)post Npost(n)

rarr uptake rarr desorption (microscopic reversibility)

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 8: Pd(110) 表面における水素吸収の機構

2000 L at Te = 130 K

α1 α3α2

β2

β1

surface

TPD feature Origin Depth extension

[H]avgVolume

ratioTe condition

α1 (170 K) Near surface hydride ~ 10 nm 23 at 30 lt 145 K

α3 (195 K) Bulk hydride gt 50 nm 12 at 2 lt 160 K

LEED NRA TPD Identification of H2Pd(110) desorption features

600

500

400

300

200

100

0

-yi

eld

[co

un

ts

C]

20151050-5

Depth [nm]

64664464264063815

N ion energy [MeV]

10 L at 170 K 2000 L at 130 K 2000 L at 145 K

=gt First revelation at Pd(110) TWO absorbed hydride states

300

200

100

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150Temperature [K]

TPD NRA

S Ohno M Wilde K Fukutani J Chem Phys submitted

NEW

pre     postD2 10 L rarr H2 1000 L α1

α3

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Te = 115 K

rArr Two separate absorption pathways exist ()

Near-surface hydride Bulk hydride

Investigation of the H2 Absorption Mechanism

Absorption experiments with isotope labeled surface hydrogen

Analysis of isotope populations (TPD)

=gt Clear difference between near-surface (α1) and bulk (α3) hydride (Also Different normal (H2gtD2) isotope effects in a1 and a3 population speeds)

=gt Absorption near minority sites (defects)

Isotope Population of the Absorbed Hydride States

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre 006 ML

Near-surface hydride (α1)

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

Bulk hydride (α3)

08

1

02

p=0

05

~ 4

Dominant transfer of pre-adsorbed H below the surface

(First observation)

=gt Absorption in regular terrace area ()

p=0~05

Only Pd(110) no lsquobypassingrsquo

p 1-p

lsquobypassingrsquo replacement

Recursive analysis of isotope composition

( )( 1) ( ) (1 )

( )( 1) ( ) (1 )

prepre pre

prepost post

N nN n N n p

N

N nN n N n p

N

Evaluation of lsquobypassingrsquo probability (p)

Stochastic Isotope Population Model for AbsorptionDesorption

(1)

(2)

(p) (1-p)

n+1th absorption eventpost

pre Npre(n)post Npost(n)

rarr uptake rarr desorption (microscopic reversibility)

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 9: Pd(110) 表面における水素吸収の機構

pre     postD2 10 L rarr H2 1000 L α1

α3

120

100

80

60

40

20

0QM

S io

n cu

rren

t [1

0-12 A

]

400350300250200150

Temperature [K]

Te = 115 K

rArr Two separate absorption pathways exist ()

Near-surface hydride Bulk hydride

Investigation of the H2 Absorption Mechanism

Absorption experiments with isotope labeled surface hydrogen

Analysis of isotope populations (TPD)

=gt Clear difference between near-surface (α1) and bulk (α3) hydride (Also Different normal (H2gtD2) isotope effects in a1 and a3 population speeds)

=gt Absorption near minority sites (defects)

Isotope Population of the Absorbed Hydride States

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre 006 ML

Near-surface hydride (α1)

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

Bulk hydride (α3)

08

1

02

p=0

05

~ 4

Dominant transfer of pre-adsorbed H below the surface

(First observation)

=gt Absorption in regular terrace area ()

p=0~05

Only Pd(110) no lsquobypassingrsquo

p 1-p

lsquobypassingrsquo replacement

Recursive analysis of isotope composition

( )( 1) ( ) (1 )

( )( 1) ( ) (1 )

prepre pre

prepost post

N nN n N n p

N

N nN n N n p

N

Evaluation of lsquobypassingrsquo probability (p)

Stochastic Isotope Population Model for AbsorptionDesorption

(1)

(2)

(p) (1-p)

n+1th absorption eventpost

pre Npre(n)post Npost(n)

rarr uptake rarr desorption (microscopic reversibility)

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 10: Pd(110) 表面における水素吸収の機構

=gt Absorption near minority sites (defects)

Isotope Population of the Absorbed Hydride States

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre 006 ML

Near-surface hydride (α1)

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

Bulk hydride (α3)

08

1

02

p=0

05

~ 4

Dominant transfer of pre-adsorbed H below the surface

(First observation)

=gt Absorption in regular terrace area ()

p=0~05

Only Pd(110) no lsquobypassingrsquo

p 1-p

lsquobypassingrsquo replacement

Recursive analysis of isotope composition

( )( 1) ( ) (1 )

( )( 1) ( ) (1 )

prepre pre

prepost post

N nN n N n p

N

N nN n N n p

N

Evaluation of lsquobypassingrsquo probability (p)

Stochastic Isotope Population Model for AbsorptionDesorption

(1)

(2)

(p) (1-p)

n+1th absorption eventpost

pre Npre(n)post Npost(n)

rarr uptake rarr desorption (microscopic reversibility)

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 11: Pd(110) 表面における水素吸収の機構

p 1-p

lsquobypassingrsquo replacement

Recursive analysis of isotope composition

( )( 1) ( ) (1 )

( )( 1) ( ) (1 )

prepre pre

prepost post

N nN n N n p

N

N nN n N n p

N

Evaluation of lsquobypassingrsquo probability (p)

Stochastic Isotope Population Model for AbsorptionDesorption

(1)

(2)

(p) (1-p)

n+1th absorption eventpost

pre Npre(n)post Npost(n)

rarr uptake rarr desorption (microscopic reversibility)

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 12: Pd(110) 表面における水素吸収の機構

Absorption mechanism Bypassing or Replacement

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

Bulk hydride (α3)

Near-surface hydride (α1)

08

1

02

05

08

1

02

p=0

05

p=0

Dominant absorption mechanism

Compatible Incompatible

p=0 Replacement p=1 Bypassing

Replacement

S Ohno M Wilde K Fukutani J Chem Phys submitted

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 13: Pd(110) 表面における水素吸収の機構

What is the Rate Determining Step (RDS)

H2 absorption Eabs lt 01 eV[1 2]

H

H2

timesExperiment Prevailing model

Possible rate determining steps

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Ohno et al J Chem Phys submitted [3] Padama et al J Phys Soc Jpn 81 (2012) 114705 [4] Ferrin et al Surf Sci 606 (2012) 679

Emono = 03 ~ 06 eVMonatomic in-diffusion

HPd

Chemi-sorption

R

Potential Energy

-05 eV

-02 eV-01 eV

1)

2)

3)

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 14: Pd(110) 表面における水素吸収の機構

RDS H2 Dissociation (at large H) or Concerted Penetration

[1] Rendulic Surf Sci 208 (1989) 404 [2] Groszlig ChemPhysChem 11 (2010) 1374 [3] Sakong ChemPhysChem 13 3467

bull H2 dissociation is non-activated (Ediss = 0) at bare Pd surfaces[1]

bull Dissociation becomes weakly activated (at high H-coverages)[2]

05 ML HPd(100)

Consider processes with activation energies compatible to Eabs (le01 eV)

rarr H2 dissociation (Ediss) concerted penetration (Ec-pen)

H2 dissociation at a H mono-vacancy

Ediss = 01 eV[23]

Excess H atom[2] (He)

Concerted penetration

Ec-pen asymp 006 eV[23]

He + Hs rarr Hs + Hss

bull The activation barrier of penetration can be drastically lowered when it occurs concertedly with stabilization of excess H atoms

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 15: Pd(110) 表面における水素吸収の機構

Influence of Surface Structure on H2 dissociation (at large H)

Peculiarity of Pd(110) Terrace-related H2 absorption (not on Pd(111) and (100))[1 2]

- Possible explanation -

[1] Gdowski et al J Vac Sci Technol A 5 1103 (1987) [2] Okuyama et al Surf Sci 401 344 (1998)[3] Maringrtensson et al Phys Rev Lett 57 (1986) 2045 [4] Schmidt et al Phys Rev Lett 87 096103 (2001)[5] Ahmed et al Appl Surf Sci 257 10503 (2011) [6] Busnengo et al Phys Rev Lett 93 236103 (2004) (1x1)

constitute precursor statesfor H2 dissociation[4 5]

Top view Side view[5]

Step edge-like structures stabilize molecular H2 chemisorption states

step-likePd(322)

Ni(510)[3] Pd(210)[4] Pd(322)[5]

Theoretical prediction[6] H2 may exist at Pd(110)

bull H-vacancy-mediated dissociation vac = exp(-GsbkBT) = 2x10-8 at 145 K

bull Pabs max (Model) = Pdiss vac ltlt Pabs (Experiment) = Rabs2Zw = 5x10-4 at 145 K

bull =gt Direct gas phase H2 impact not sufficient =gt Involvement of mobile H2 precursors ()

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 16: Pd(110) 表面における水素吸収の機構

Influence of Surface Structure on H vacancy generation

Defect-enhanced H2 absorption Terrace-related H2 absorption ( gt 24 x per site vs regular terraces) (peculiar vs Pd(100) (111) (311))

H2 dissociation may require H-vacancies

bull Rate of H-vacancy generation[1] Rvac = 1013 s-1 exp(-EssskBT) asymp 103 at 145 K

bull =gt enhanced at defects due to additional lsquoopennessrsquo May also stabilize H2

bull Widened penetration channels at defects and in troughs between paired Pd rows in

Pd(110)(1x2)-(PR)

Side view

(1x2)

Top view

Widened interstitial channels (in [001])

[1] Padama et al J Phys Soc Jpn 81 (2012) 114705 Esss = 027 eV (110) cf Pd(111) (04 eV) Pd(100) (041 eV) (Ferrin)

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 17: Pd(110) 表面における水素吸収の機構

Summary amp Conclusions

H2 absorption mechanism at Pd(110)-(1x2) (paired-row)

Two hydride states exist with different depth distributions

Two H absorption channels (defects + terrace Pd(110) only)

Hs is replaced (not bypassed) no simple in-diffusion Eabslt01 eV

RDS H2 dissociation (H-saturated Pd) or concerted penetration

Influence of Surface Structure H2 absorption enhanced by

ldquoOpenrdquo penetration channels (accelerate H-vacancy generation)

Stabilization of H2 precursors (at step edge-like structures)

D

H2H2

H

H2

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 18: Pd(110) 表面における水素吸収の機構

α1 α3

α2

β1 β2

H2 TDS (Te=90 K)

Activation energy for hydrogen absorption at Pd(110)

rarr Activation Energy H 1 003 eV

3 006 eV D 3 007 eV

Much smaller than expected for monatomic H surface-to-subsurface

diffusion (03~04 eV)

Arrhenius plot of1 3 population (Pa)

peak area vs exposure

lt01 eV

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 19: Pd(110) 表面における水素吸収の機構

Only ~ 4 of surface area is affected by isotope exchange rarr Absorption at minority sites rarr defects

Isotope Population of the Near Surface Hydride (α1)

Langmuir 2003 19 6750

AFM image of hydride grown on Pd thin film

003

002

001

000

Isot

ope

com

posi

tion

[ML]

005004003002001000Total amount of 1 [ML]

06

04

02

00Isot

ope

com

posi

tion

[ML]

06040200

Total amount of 1 [ML]

Post

Pre

Post

Pre

006 ML

darrα1

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
Page 20: Pd(110) 表面における水素吸収の機構

06

04

02

00Isot

ope

com

posi

tion

[ML]

0806040200Total amount of 3 [ML]

darr

Post

Pre

H2 absorption takes place in the regular terrace area of Pd(110) ()

Isotope Population of the Bulk Hydride (α3)

Dominant transfer of pre-adsorbed H below the surface

cf) Pre-adsorbed H remains intact on Pd(111)[1] and (100)[2] (rarr ldquoBypassingrdquo)

[1] Okuyama et al Surf Sci 401 (1998) 344 [2] Gdowski et al J Vac Sci Technol A 5 1103 (1987)

(First observation at a Pd single crystal surface)

α3

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20