99
Daftar Isi E T A P (Electrical Transient Analysis Program) PowerStation Pendahuluan Memulai ETAP PowerStation Mempersiapkan Plant Membuat Proyek Baru Menggambar Single Line Diagram Editing Data Peralatan Melakukan Studi/Analisa Menyimpan File Project (Save Project) Membuka File Project (Open Project) Mengcopy / Menyalin File Project Simulasi Load Flow Analysis ETAP PowerStation Studi Aliran Daya (Load Flow Study) Load Flow Analysis Set Up Data Untuk Simulasi Data Untuk Analisa Aliran Daya ToolBar Load Flow Analysis Data Hasil Simulasi ETAP PowerStation Simulasi Short Circuit Analysis ETAP PowerStation Study Case Editor Data Untuk Short Circuit Analysis Memberi Gangguan Pada Bus ToolBar Short circuit Analysis Data Hasil Simulasi ETAP PowerStation Simulasi Transient Stability Analysis ETAP PowerStation Transient Stability Toolbar Transient Stability Study Case Editor Display Options Transient Stability Plots Methode Perhitungan Stabilitas Transient Data Yang Dibutuhkan Transient Stability Output Reports Transient Stability Time-Slider Penggunaan Komputer (Power Plot) Dalam Setting Relay Pengaman Manajemen Power Plot Project Manajemen TCC (Time Current Curve) Menyisipkan Text dan Gambar Dan Tanda Panah Arus Gangguan Memasukkan Data Peralatan Menggunakan Fungsi Penting Lampiran Lampiran 1 : Hasil Loadflow Report Lampiran 2 : Hasil Short Circuit Report 1 3 3 13 14 15 15 15 16 16 17 17 17 20 20 27 28 31 31 37 43 43 45 47 47 50 61 63 65 69 69 76 77 77 80 82 84 87

pelatihan ETAP

Embed Size (px)

DESCRIPTION

pelatihan

Citation preview

  • Daftar Isi

    E T A P (Electrical Transient Analysis Program) PowerStation Pendahuluan

    Memulai ETAP PowerStation Mempersiapkan Plant Membuat Proyek Baru Menggambar Single Line Diagram Editing Data Peralatan Melakukan Studi/Analisa Menyimpan File Project (Save Project) Membuka File Project (Open Project) Mengcopy / Menyalin File Project

    Simulasi Load Flow Analysis ETAP PowerStation Studi Aliran Daya (Load Flow Study) Load Flow Analysis Set Up Data Untuk Simulasi Data Untuk Analisa Aliran Daya ToolBar Load Flow Analysis Data Hasil Simulasi ETAP PowerStation

    Simulasi Short Circuit Analysis ETAP PowerStation Study Case Editor Data Untuk Short Circuit Analysis Memberi Gangguan Pada Bus ToolBar Short circuit Analysis Data Hasil Simulasi ETAP PowerStation

    Simulasi Transient Stability Analysis ETAP PowerStation Transient Stability Toolbar Transient Stability Study Case Editor Display Options Transient Stability Plots Methode Perhitungan Stabilitas Transient Data Yang Dibutuhkan Transient Stability Output Reports Transient Stability Time-Slider

    Penggunaan Komputer (Power Plot) Dalam Setting Relay Pengaman Manajemen Power Plot Project Manajemen TCC (Time Current Curve) Menyisipkan Text dan Gambar Dan Tanda Panah Arus Gangguan Memasukkan Data Peralatan Menggunakan Fungsi Penting

    Lampiran Lampiran 1 : Hasil Loadflow Report Lampiran 2 : Hasil Short Circuit Report

    1

    3 3 13 14 15 15 15 16 16

    17 17 17 20 20 27 28

    31 31 37 43 43 45

    47 47 50 61 63 65 69 69 76

    77 77 80 82 84 87

  • ETAP (Electrical Transient Analysis Program)

    PowerStation

    Pendahuluan

    PowerStation adalah software untuk power system yang bekerja berdasarkan plant (project). Setiap plant harus menyediakan modelling peralatan dan alat - alat pendukung yang berhubungan dengan analisa yang akan dilakukan. Misalnya generator, data motor, data kabel dll. Sebuah plant terdiri dari sub-sistem kelistrikan yang membutuhkan sekumpulan komponen elektris yang khusus dan saling berhubungan. Dalam PowerStation, setiap plant harus menyediakan data base untuk keperluan itu.

    ETAP PowerStation dapat melakukan penggambaran single line diagram secara grafis dan mengadakan beberapa analisa/studi yakni Load Flow (aliran daya), Short Circuit (hubung singkat), motor starting, harmonisa, transient stability, protective device coordination, dan cable derating.

    Catatan Pada Pembahasan ini hanya akan dibahas mengenai studi aliran daya (Load Flow Analysis) dan studi hubung singkat (Short Circuit Analysis)

    ETAP PowerStation juga menyediakan fasilitas Library yang akan mempermudah desain suatu sistem kelistrikan. Library ini dapat diedit atau dapat ditambahkan dengan informasi peralatan bila perlu.

    Beberapa hal yang perlu diperhatikan dalam bekerja dengan ETAP PowerStation adalah :

    One Line Diagram, menunjukkan hubungan antar komponen/peralatan listrik sehingga membentuk suatu sistem kelistrikan.

    Library, informasi mengenai semua peralatan yang akan dipakai dalam sistem kelistrikan. Data elektris maupun mekanis dari peralatan yang detail/lengkap dapaty mempermudah dan memperbaiki hasil simulasi/analisa.

    Standar yang dipakai, biasanya mengacu pada standar IEC atau ANSII, frekuensi sistem dan metode metode yang dipakai.

    1

  • Study Case, berisikan parameter parameter yang berhubungan dengan metode studi yang akan dilakukan dan format hasil analisa.

    Catatan Kelengkapan data dari setiap elemen/komponen/peralatan listrik pada sistem yang akan dianalisa akan sangat membantu hasil simulasi/analisa dapat mendekati keadaan operasional sebenarnya.

    2

  • Memulai ETAP PowerStation

    1. Mempersiapkan Plant Persiapan yang perlu dilakukan dalam analisa / desain dengan bantuan ETAP PowerStation adalah : a. Single Line Diagram b. Data peralatan baik elektris maupun mekanis c. Library untuk mempermudah editing data

    Misalkan akan dibuat plant dengan single line diagram sebagai berikut (lihat print out one line diagram Sistem Tenaga Listrik PT. X :

    Gambar 1. Single Line Diagram Sistem Tenaga Listrik PT. X

    Single Line Diagram tersebut membutuhkan data peralatan sesuai dengan data peralatan baik elektris maupun mekanis sebagai berikut :

    a. Power Grid Adalah suplai yang diambil oleh system sebagai sumber tegangan dalam hal

    ini adalah PLN dengan inputan data sebagai berikut (lihat gambar 2) :

    3

  • Nominal kV Kapasitas Daya dalam MVA

    Nilai X/R

    Mode Swing sebagai referensi

    Gambar 2. Power Grid Editor

    b. Generator Adalah suplai yang diambil oleh system sebagai sumber tegangan yang tersedia

    sebagai back up jika ada gangguan dari PLN dengan inputan data sebagai berikut (lihat gambar 3) :

    Kapasitas Daya dalam MVA

    Nominal kV

    % Power Factor

    Nilai Xd, Xd, Xo dan X/R

    Nilai X2 untuk studi harmonisa

    Hubungan grounding pada generator

    Mode Voltage Control

    4

  • Gambar 3. Synchronous Generator Editor

    c. Bus

    ID Bus

    berupa nomor atau nama bus dari sistem Nominal kV

    adalah tegangan nominal pada bus

    Gambar 4. Bus Editor

    5

  • d. Transformator Data yang diperlukan meliputi :

    ID yaitu identitas transformator

    Rating kVA/MVA , max kVA/MVA

    Rating kV primer serta kV sekunder

    % Z, dan X/R

    Hubungan belitan

    Gambar 5. 2- Winding Transformer Editor

    e. Circuit Breaker Data yang diperlukan meliputi :

    ID yaitu identitas circuit breaker

    Standard yang digunakan ANSI atau IEC

    Nilai dari CB dari Library

    Rating kVA/MVA , max kVA/MVA

    sesuai library atau diberi nilai sendiri

    6

  • Gambar 6. High /voltage Circuit Breaker Editor

    f. Disconect Switch Data yang diperlukan meliputi :

    ID yaitu identitas disconect switch

    Gambar 7. DS Editor

    g. Lumped Load Adalah motor atau beban yang terlumped, data yang diperlukan meliputi :

    ID yaitu identitas lumped load

    Rating kVA dan kV

    Power faktor

    % loading yaitu persen pembebanan pada motor

    7

  • Gambar 8. Lumped Load Editor

    h. Motor Sinkron Data yang diperlukan meliputi :

    ID yaitu identitas motor sinkron

    Rating kW/HP dan kV

    Power faktor dan efisiensi pada pembebanan 100%, 75% dan 50 %

    % loading yaitu persen pembebanan pada motor

    Data kabel motor jika ada Data impedansi untuk studi short circuit

    meliputi Xd, X/R dan Xo Data impedansi untuk studi harmonisa

    meliputi X2

    8

  • Gambar 9. Synchronous Motor Editor

    i. Motor Induksi Data yang diperlukan meliputi :

    ID yaitu identitas motor induksi

    Rating kW/HP dan kV

    Power faktor dan efisiensi pada pembebanan 100%, 75% dan 50 %

    % loading yaitu persen pembebanan pada motor

    Data kabel motor jika ada Data impedansi meliputi X, X2, Xo dan X/R

    Hubungan belitan untuk grounding dari motor

    9

  • Gambar 10. Induction Machine Editor

    j. High Filter Data yang diperlukan meliputi :

    ID yaitu identitas filter

    Type filter antara lain Filter By Pass, High Filter (dumped dan undumped)

    dan single tuned Nilai Capacitor meliputi kVAR, kV dan maksimum kV

    Nilai Induktor meliputi XL, Q Factor (= XL / RL) dan Max. I

    (= Maksimum arus yang melalui induktor )

    Gambar 11. Harmonic Filter Editor

    10

  • k. Capacitor Data yang diperlukan meliputi :

    ID yaitu identitas Capacitor

    Rating Capacitor meliputi kV, maksimum kV, kVAR, dan jumlah

    capacitor bank. % Load dari capacitor

    Gambar 12. Capacitor Editor

    l. Over Current Relay Data yang diperlukan meliputi :

    ID yaitu identitas over current relay

    type relay meliputi Relay, Motor Relay, dan MV Solid State types.

    Gambar 13. Over Current Relay Editor

    11

  • m. Variable Frequency Drive (VFD) Data yang diperlukan meliputi :

    ID yaitu identitas over current relay

    Rating VFD meliputi HP/kW, kV dan % Effisiensi

    * rata rata kapasitas VFD adalah 10 % dari motor yang didrive

    Gambar 14. Variable Frequency Drive Editor

    n. Charger Data yang diperlukan meliputi :

    ID yaitu identitas charger

    Rating AC meliputi kVA, kV, % Eff dan % power factor

    Rating DC meliputi kW, V, FLA (Full Load Ampere), dan Imax

    12

  • Gambar 14. DC Charger Editor

    2. Membuat Proyek Baru a. Klik tombol New atau klik menu File lalu akan muncul kotak dialog sebagai

    berikut :

    Gambar 15. Create New Project File

    b. Lalu ketik nama file project . Misalnya : Pelatihan. Lalu klik Ok atau tekan Enter. c. Akan muncul kotak dialog User Information yang berisi data pengguna software.

    Isikan nama anda dan deskripsi proyek anda. Lalu klik Ok atau tekan Enter.

    13

  • Gambar 16. User Information

    d. Anda telah membuat file proyek baru dan siap untuk menggambar one-line diagram di layar. Lalu buat One-line diagram seperti pada gambar dibawah dan isikan data peralatan.

    3. Menggambar Single Line Diagram Menggambar single line diagram dilakukan dengan cara memilih simbol peralatan

    listrik pada menu bar disebelah kanan layar. Klik pada simbol, kemudian arahkan kursor pada media gambar. Untuk menempatkan peralatan pada media gambar, klik kursor pada media gambar.

    Untuk mempercepat proses penyusunan single line diagram, semua komponen dapat secara langsung diletakkan pada media gambar. Untuk mengetahui kontinuitas

    antar komponen dapat di-cek dengan Continuity Check pada menu bar utama. Pemakaian Continuity Check dapat diketahui hasilnya dengan melihat warna

    komponen/branch. Warna hitam berarti telah terhubung, warna abu-abu berarti belum terhubung.

    Catatan Agar Continuity Check dapat bekerja, pasang satu sumber generator atau pensuplai daya sebagai swing agar dalam sistem terdapat satu referensi.

    14

  • 4. Editing Data Peralatan

    Bus

    Generator

    Cable

    Two Winding Transformator

    Induction Machine

    Static Load

    Circuit Breaker

    Fuse

    Catatan Keterangan yang lebih detail mengenai parameter peralatan kebutuhan editing data pada PowerStation dapat dilihat pada modul editor, One Line Diagram.

    Data Peralatan yang diperlukan oleh PowerStation untuk analisa sangat detail sehingga kadang membuat beberapa pengguna kesulitan dalam memperoleh data tersebut. Untuk mempermudah memasukkan data, maka harus diidentifikasikan terlebih dahulu keperluan data. Sebagai contoh, analisa hubung singkat membutuhkan data yang lebih

    kompleks daripada analisa aliran daya. Jadi tidak perlu memasukkan semua parameter yang diminta pada menu editor komponen oleh ETAP PowerStation.

    5. Melakukan Studi/Analisa Dengan ETAP PowerStation dapat dilakukan beberapa analisa pada sistem kelistrikan yang telah digambarkan dalam single line diagram. Studi-studi tersebut adalah :

    1. Load Flow Analysis (LF) 2. Short Circuit Analysis (SC) 3. Motor Starting Analysis (MS) 4. Transient Stability Analysis (TS) 5. Cable Ampacity Derating Analysis (CD) 6. Power Plot Interface.

    6. Menyimpan File Project (Save Project)

    Masuk menu bar File, pilih Save atau click toolbar

    15

  • 7. Membuka File Project (Open Project) a. Masuk menu bar File, pilih Open File lalu tentukan direktori tempat menyimpan

    filenya (browse) atau click toolbar b. Pilih file yang dituju kemudian click open

    Gambar 17. Membuka File Project

    8. Mengcopy / Menyalin File Project a. Masuk menu bar File, pilih Copy Project To lalu tentukan direktori tempat

    menyimpan filenya (browse) b. Beri nama File Project yang dicopy kemudian click Save

    Gambar 18. Mengcopy / Menyalin File Project

    9. Menutup Project (Close Project)

    Klik menu File lalu klik Close Project atau kill toolbar Close 10. Keluar dari Program (Exit Program)

    Klik menu File lalu klik Exit untuk keluar dari program ETAP.

    16

    .

  • Simulasi Load Flow Analysis

    ETAP PowerStation

    Analisa aliran daya (Load Flow Analysis) dilakukan untuk mengetahui besarnya tegangan bus, faktor daya dari cabang, arus dan aliran daya yang terjadi pada saluran dalam sistem. ETAP PowerStation Load Flow Analysis adalah program simulasi untuk tujuan analisa aliran daya. Sistem yang dapat dianalisa adalah sistem radial maupun loop.

    Studi Aliran Daya (Load Flow Study) Studi aliran daya adalah studi yang memberikan analsis aliran daya pada suatu

    sistem tenaga listrik yang bertujuan untuk : 1. Memeriksa tegangan dan pengaturan tegangan 2. Memeriksa semua peralatan (transformator dan saluran distribusi) apakah mampu

    untuk mengalirkan daya yang diinginkan. 3. Memperoleh kondisi awal (eksisting) untuk memperoleh studi studi : operasi

    ekonomis, hubung singkat, stabilitas dan perencanaan pengembangan sistem.

    Load Flow Analysis Untuk memulai load flow analysis maka single line diagram (SLD) sistem tenaga

    listrik digambarkan terlebih dahulu dengan memperhatikan komponen AC dan DC serta peralatan yang digunakan. SLD biasa digambarkan pada lembar edit (lihat gambar. 1)

    Gambar 19. Lembar kerja ETAP PowerStations

    17

  • Study Case Editor Load Flow Study Case Editor berisi variabel variabel kontrol untuk penyelesaian

    analisa aliran daya dan beberapa pilihan format laporan atau hasil output software (lihat gambar 2), untuk menampilkannya maka pada Window pilih guest (Project Editor) setelah itu pilih studi cases, load flow dan LFDefault. Adapun variabel variabel yang terdapat dalam load flow study case antara lain : 2 Study Case ID

    Nama study case terdapat pada isian ini yang dapat diubah ubah dengan panjang maksimal karakter penamaan sebanyak 12 karakter

    2 Method Terdapat beberapa metode yang digunakan dalam analisa aliran daya yaitu Newton- Raphson, Fast-decoupled, atau Accelerated Gauss-Seidel.

    2 Maximum Iteration Jumlah iterasi disarankan 2000 untuk metode Gauss-Seidel dan 5 untuk Newton- Raphson dan Fast-decoupled.

    2 Precision Menunjukkan ketelitian tiap iterasi dalam satuan p.u. Pada metode Gauss-Seidel ketelitian tegangan 0.000001 p.u volts, dan 0.001 daya untuk Newton-Raphson dan Fast-decoupled.

    2 Acceleration Factor Faktor percepatan ini digunakan pada metode Accelerated Gauss-Seidel. Nilai yang biasa di pakai adalah 1.2 s/d 1.7

    2 Loading Dalam bagian pembebanan load flow study case editor, dapat ditentukan pembebanan operasi dengan pemilihan kategori pembebanan dan faktor perbedaan pembebanan.

    18

  • 2 Category Kategori pembebanan mempunyai sepuluh pilihan. Dengan memilih sebarang kategori, powerstation menggunakan prosentase pembebanan dari motor dan beban statis seperti telah ditentukan.

    2 Normal Pilih normal untuk persen pembebanan untuk setiap beban seperti yang telah dimasukkan untuk loading category yang dipilih

    2 Maximum Jika ini dipilih, maka semua motor dan beban statis yang secara langsung terhubung akan dikalikan dengan faktor diversity maksimum tiap bus.

    2 Minimum Jika ini dipilih, maka semua motor dan beban statis yang secara langsung terhubung akan dikalikan dengan faktor diversity mainimum tiap bus.

    2 Diversity Factor Menunjukkan besarnya pembebanan untuk semua motor dan beban statis

    2 Initial Condition Ada dua keadaan yang bisa dipilih yaitu : a.

    b.

    Use Bus Voltage

    Menggunakan tegangan bus yang telah ditentukan sebelumnya untuk harga awal iterasi. Dengan pilihan ini dapat dilakukan analisa aliran daya dengan harga awal berbeda untuk tegangan tiap bus.

    Use Fixed Value Menggunakan harga awal tegangan bus yang sama untuk semua bus. Dinyatakan dalam persen dari tegangan bus nominal dan sudut tegangan dalam derajat.

    19

  • Gambar 20. Load Flow Study Case Editor

    Setelah studi case editor terisi maka lanjutkan dengan menggambar SLD ke dalam lembar kerja ETAP sesuai komponen dan peralatan yang ada dalam sistem.

    Set Up Data Untuk Simulasi Adapun data data yang perlu diisikan ke software untuk keperluan simulasi load

    flow adalah :

    1. Single line diagram sistem tenaga listrik 2. Data motor

    3. Data impedansi kabel 4. Data Transformator

    Data Untuk Analisa Aliran Daya Data data yang harus dimasukkan untuk studi aliran daya yang disesuaikan

    dengan sistem tenaga listrik yang dianalisa antara lain :

    2 Data Bus Data yang dibutuhkan untuk perhitungan aliran daya meliputi :

    ID Bus

    berupa nomor atau nama bus dari sistem Nominal kV

    adalah tegangan nominal pada bus %V dan sudut (angle)

    jika initial codition di set pada use bus voltage

    20

  • Gambar 21. Bus Editor

    2 Data Branch Data branch (saluran) dimasukkan ke dalam branch editor, yaitu transformator, transmision line, kabel, reaktor, dan impedansi editor. Data yang dibutuhkan dalam aliran daya meliputi :

    Nilai dan besaran, toleransi, temperature dari branch Z, R, X atau X/R

    Panjang dan satuan dari kabel transmisi. Base kV, Impedansi dan base kVA/MVA

    Gambar 22. (kiri) Info page cable (kanan) Impedansi cable

    2 Data Synchronous Generator Data Synchronous Generator (generator sinkron) yang dibutuhkan dalam aliran daya meliputi :

    21

  • Mode Operasi (Swing, Voltage Control atau Mvar Control) kV nominal

    %V dan sudut untuk mode swing

    %V, MW loading, dan limit Mvar (Qmax dan Qmin) untuk operasi mode voltage

    control Pembebanan MW dan Mvar untuk mode Mvar control.

    Gambar 23. (kiri) Info page generator (kanan) rating page generator

    2 Data Motor Induksi dan Motor Sinkron Data yang diperlukan untuk analisa aliran daya meliputi :

    Rating kW/HP dan kV

    Power faktor dan efisiensi pada pembebanan 100%, 75% dan 50 %

    % loading yaitu persen pembebanan pada motor

    Data kabel peralatan

    Gambar 24. (kiri) Info page motor (kanan) name plate page motor

    22

  • 2 Data Beban Statis Data yang diperlukan untuk analisa aliran daya meliputi :

    Identifikasi beban yaitu identitas nama beban

    Rating kVA/MVA dan kV

    Power faktor

    % Loading

    Data kabel peralatan

    Gambar 25. (kiri atas ) Info page static load (kanan atas) loading page static load (bawah)Cable page static load

    2 Data Transformator Data yang diperlukan untuk analisa aliran daya meliputi :

    Identifikasi yaitu identitas transformator

    Rating kVA/MVA , max kVA/MVA

    Rating kV primer serta kV sekunder

    % Z, dan X/R

    23

  • Hubungan belitan Hubungan belitan

    Gambar 26. (kiri atas ) info page transformator (kanan atas) rating page transformator (bawah)Tap transformator page

    2 Data Data Lain Terdapat beberapa data yang berkaitan dengan studi kasus yang juga harus dimasukkan. Data data ini diedit pada load flow study case editor. Hal ini meliputi :

    Metode (Newton-Raphson, Fast-decoupled, atau Accelerated Gauss-Seidel) Maksimum Iterasi

    Ketelitian

    Faktor percepatan untuk metode Accelerated Gauss-Seidel.

    Loading Category

    Report (format laporan) Update (untuk tegangan bus dan load tap changer tranformator yang menggunakan

    hasil aliran daya)

    24

  • Untuk data atau parameter yang diperlukan tetapi tidak tercantum dalam data peralatan, dapat memasukkan parameter dalam software yang diambil data yang disediakan dalam library ETAP PowerStation kemudian data tersebut disesuaikan dengan data peralatan sebenarnya.

    Contoh input dari data data peralatan dan komponen guna simulasi load flow adalah sebagai berikut : 1. Single Line Diagram (SLD) sistem tenaga listrik

    Disesuaikan dengan SLD yang akan dianalisa, dicontohkan adalah sebagai berikut:

    Gambar 27. Single Line Diagram sistem tenaga listrik

    Contoh input data data yang diperlukan dalam simulasi sesuai dengan SLD diatas adalah sebagai berikut :

    Gambar 28. Contoh input data motor

    25

  • Dari gambar 28 diatas terlihat bahwa motor termasuk motor sinkron yang diberi identitas Finish Mill C dengan kapasitas daya 3200 HP. Motor bertegangan 2,4 kV dengan power faktor 0.99 leading pada pembebanan 100%, 75 % dan 50% serta mempunyai load factor 78 %.

    Gambar 29. Contoh input data impedansi kabel dari library ETAP PowerStation

    Dari gambar 29. diatas terlihat bahwa impedansi menggunakan kabel dengan data pada library ETAP PowerStation. Jenis kabel adalah tembaga (Cu) dengan kapasitas tegangan 5 kV berukuran 750 MCM.

    Gambar 30. Contoh input data impedansi kabel

    Dari gambar 30. diatas terlihat bahwa impedansi menggunakan data kabel dimana nilai resistansi 0.0215/km dan reaktansi 0.029/km. Jenis kabel adalah tembaga (Cu) dengan kapasitas tegangan 5 kV berukuran 500 MCM

    26

  • Gambar 31. Contoh input data transformator

    Dari gambar 31. diatas terlihat bahwa Tansformator mempunyai tegangan pada sisi primer 70 kV dan pada sisi sekunder 20 kV. Kapasitas tansformator adalah 20 MVA dengan %Z sebesar 9%. Transformator beridentitas 71-PDT-03 TAKAOKA. Tansformator

    mempunyai hubungan belitan Y - yang dapat dilihat pada gambar 32.

    Gambar 32. Contoh input data hubungan belitan pada transformator

    ToolBar Load Flow Analysis Adapun toolbar load flow analysis adalah sebagai berikut :

    Run Load Flow Studies : untuk menjalankan (running) program setelah SLD dan data seluruh peralatan telah dimasukkan

    Update Cable Load Current: untuk merubah kapasitas arus pada kabel sebelum load flow di running Load Flow Display Options: untuk mengatur hasil load flow yang ditampilkan sesuai dengan peralatan yang operasi.

    Load Flow Report Manager: untuk menampilkan hasil load flow

    27

  • Halt Current Calculation: untuk menghentikan proses running load flow

    Get Online Data: untuk menyalin data online jika computer interkoneksi dengan menggunakan PSMS (online feature) Get Archived Data: untuk menyalin data online jika computer terinterkoneksi.

    Data Hasil Simulasi ETAP PowerStation Hasil dari load flow dapat diketahui melalui Load Flow Report Manager dimana

    data keluaran yang dapat diketahui meliputi :

    Gambar 33. (kiri atas ) complete page LF Report Manager (kanan atas) Input LF Report Manager (kiri bawah ) result page LF Report Manager (kanan bawah) summary LF Report Manager

    28

  • 2 Complete Data yang tersedia berupa keseluruhan data yang dimasukkan ke dalam system dan hasil running program.

    2 Input Data yang tersedia berupa masukkan data kita pada peralatan yang ada dalam sistem tenaga listrik antara lain :

    1. Branch

    Saluran yang ada dalam sistem tenaga listrik sesuai design yang tergambar beserta impedansinya dan saluran tersebut terhubung dari bus ke bus.

    2. Bus

    Jumlah bus dengan identitasnya masing masing, tipe bus dan tegangan nominal bus.

    3. Cable Dapat diketahui nilai resistansi, reaktansi dan library yang telah dimasukkan.

    4. Cover Berisi informasi keseluruhan mengenai system seperti jumlah bus, jumlah kabel, penggunaan metode dalam menganalisa aliran daya.

    5. Eqcable Adalah equipment cable yang diinputkan ke dalam sistem yang menjelaskan jenis dari kabel seperti ukuran, nilai R dan X, panjang kabel juga temperature maksimal dari kabel.

    6. XFMR&X Berisi data transformator lengkap dengan kapasitas, tegangan dan nilai impedansi yang dimasukkan ke dalam system beserta hubungan belitannya.

    2 Result Data yang tersedia sesuai dengan study case yang dipilih yaitu load flow sehingga hasilnya adalah :

    LF report

    Berisi aliran daya yang terjadi dalam sistem tenaga listrik yang di desain dan.dapat diketahui pula faktor daya dan arus pada peralatan.

    29

  • 2 Summary Terdapat data data sebagai berikut : 1. Loading

    Pembebanan yang ditanggung oleh tiap transformator. 2. Losses

    Rugi rugi yang ada pada sistem terlihat di setiap saluran antara bus ke bus dan dapat diketahui total rugi keseluruhan sistem.

    3. Summary Menunjukan data hasil running yang berhubungan dengan kestabilan system dimana akan ditunjukkan hasil sistem yang mengalami drop tegangan dan tegangan lebih pada bus

    4. UnderOver

    Output sistem yang mengalami drop tegangan dan tegangan lebih pada bus jika terjadi kelebihan beban.

    Contoh hasil Loadflow Report dapat dilihat pada Lampiran -1

    30

  • Simulasi Short Circuit Analysis ETAP PowerStation

    Short-Circuit Analysis pada Etap PowerStation menganalisa gangguan hubung singkat tiga phasa, satu phasa ke tanah, antar phasa dan dua phasa ke tanah pada sistem tenaga listrik. Program Short-Circuit Analysis Etap PowerStation menghitung arus total hubung singkat yang terjadi. Etap PowerStation versi 3.0.2 menggunakan standar ANSI/IEEE (seri C37) dan IEC (IEC 909 dan lainnya) dalam menganalisa gangguan hubung singkat yang bisa dipilih sesuai dengan keperluan.

    Untuk memulai Short-Circuit Analysis maka single line diagram (SLD) sistem tenaga listrik digambarkan terlebih dahulu dengan memperhatikan komponen AC dan DC serta peralatan yang digunakan. SLD biasa digambarkan pada lembar edit (lihat gbr. 34)

    Gambar 34. Lembar kerja ETAP PowerStations

    Study Case Editor Short-Circuit Analysis Study Case Editor berisi variabel variabel kontrol untuk

    penyelesaian analisa hubung singkat dan beberapa pilihan format laporan atau hasil output software (lihat gambar 2), untuk menampilkannya maka pada Window pilih guest (Project Editor) setelah itu pilih studi cases, short circuit dan SC - Default

    31

  • Adapun variabel variabel yang terdapat dalam Short-Circuit Analysis study case editor antara lain :

    2 Study Case ID Nama study case terdapat pada isian ini yang dapat diubah ubah dengan panjang maksimal karakter penamaan sebanyak 12 karakter

    2 Standard Standar ANSI dan IEC dapat dilakukan untuk studi hubung singkat. Kedua standar mempunyai variable yang berbeda.

    2 XFMR Tap Terdapat tiga metode yang disediakan untuk model seting tap off-nominal transformator.

    2 Adjust Base kV Tegangan tegangan bus dihitung mengguankan perbandingan belitan yang meliputi rating kV trafo.

    2 Adjust XFMR Z Impedansi transformator disesuaikan untuk seting tap off-nominal untuk mengikuti perubahan transformator begitu juga dengan setting pada tap.

    2 Use Nominal Tap Rating kV transformator digunakan sebagai perbandingan belitan untuk perhitungan tegangan base dari bus bus, yakni semua seting tap off-nominal diabaikan dan

    impedansi transformator tidak disesuaikan.

    32

  • 2 Report Beberapa pilihan untuk laporan output dari studi hubung singkat adalah : a. Contribution Level

    Dapat dipilih sampai sejauh mana arus kontribusi dari setiap bus individual ke masing-masing bus yang terganggu dengan menyatakan jumlah level bus dalam bagian tersebut.

    b. Marginal Device Limit PowerStation akan menandai semua peralatan pengaman yang mempunyai

    momentary duty dan interrupting duty melebihi kemampuannya dengan tanda berwarna merah. Dalam laporan outputnya peralatan ini akan ditandai untuk membedakan dengan peralatan yang masih dalam batas kemampuannya.

    c. Individual LV Motor Contribution Pilihan ini menyediakan studi aliran daya yang lebih detail pada sistem tergantung rendah. Dengan memilih hal ini, kontribusi setiap motor tegangan rendah akan dicetak pada laporan output.

    d. Bus Selection PowerStation mempunyai kemampuan untuk melakukan perhitungan gangguan pada satu bus atau semua bus sekaligus (tetapi tidak simultan). Tergantung pada tipe gangguan yang diinginkan, program akan menerapkan gangguan tiga fasa, line to line, line to ground dan line to line to ground pada setiap bus yang ditentukan untuk studi hubung singkat.

    e. Cable/OL Heater Dengan pilihan ini, program akan memasukkan impedansi kabel peralatan dan

    pemanasan karena overload dalam studi hubung singkat.

    f. Prefault Voltage ANSI Standard Dengan pilihan ini dapat dimasukkan keadaan awal hubung singkat untuk semua bus.

    33

  • Cycle Network 1 - 4 Cycle Network

    Input Xsc 15 25

    Input X/R 10 10

    Terhitung Ra 1.5 2.5

    g. Fixed Prefault Voltage Menentukan besarnya tegangan sebelum gangguan dalam persen tegangan bus

    nominal atau base kV bus

    h. Variabel Prefault Voltage Program juga dapat menentukan nilai tegangan sebelum gangguan untuk setiap bus, sehingga dapat dilakukan studi hubung singkat dengan harga tegangan bus sebelum gangguan yang berbeda

    i. Machine X/R ANSI Standard Pilihan X/R mesin yang tetap dan variabel tersedia dalam perhitungan hubung

    singkat. Untuk catatan, pemilihan X/R mesin tetap atau variabel hanya berpengaruh pada perhitungan interrupting (1 - 4 cycle) duty dari circuit breaker tegangan tinggi.

    j. Fixed X/R PowerStation menggunakan rasio X/R mesin (=X/Ra) yang ditentukan untuk cycle dan 1 - 4 cycle. Titik berat pilihan ini adalah untuk memberikan keleluasan

    bahwa standar ANSI tidak mempertimbangkan rasio X/R mesin yang variable.

    Contoh perhitungan Ra jika X/R fixed :

    34

  • Cycle Network 1 - 4 Cycle Network

    Given Xsc 15 25

    Given X/R 10 --

    Terhitung Ra 1.5 1.5

    Final X/R 10 16.7

    k. Variabel X/R PowerStation menggunakan rasio X/R mesin yang ditentukan dan reaktansi

    subtransient (X) untuk menghitung resistansi jangkar (Ra). Resistansi ini selanjutnya digunakan untuk cycle network dan 1 - 4 cycle network.

    Contoh perhitungan Ra dan X/R jika X/R variable dipertimbangkan :

    l. Prefault Voltage IEC Standard Faktor C digunakan sebagai Cmax yang ditentukan dalam standa IEC 909. Ekivalen sumber tegangan yang digunakan dalam perhitungan hubung singkat IEC akan default C factor untuk tegangan Standar IEC 909 : 230 V & 400 V < 1001 V sampai dengan 35000 V > 35000 V

    C Factor = 1.0 C Factor = 1.05 C Factor = 1.1 C Factor = 1.1

    m. Calculation Method IEC Standard Peak X/R Method

    Method A menggunakan rasio X/R yang seragam dalam perhitungan arus

    puncak Method B menggunakan rasio X/R pada lokasi hubung singkat dalam

    perhitungan arus puncak Method C menggunakan ekivalen frekuensi dalam perhitungan arus puncak

    35

  • n. Breaking kA Breaking duty dari CB dan fuse dihitung berdasarkan dua metode :

    No Mtr Decay Penurunan motor induksi tidak dimasukkan dalam perhitungan

    With Mtr Decay Penurunan motor induksi dimasukkan dalam perhitungan

    o. Steady State kA Arus hubung singkat steady state adalah dalam harga rms yang tersisa dari penurunan pada fenomena transient.

    Max Value : Faktor-faktor yang digunakan untuk arus hubung singkat steady

    state yang mencerminkan nilai maksimum ketidakakuratan pemodelan. Nilai ini digunakan untuk menentukan rating minimum peralatan.

    Min Value : Faktor-faktor yang digunakan untuk arus hubung singkat steady state

    yang mencerminkan nilai minimum ketidakakuratan pemodelan. Nilai ini digunakan untuk tujuan koordinasi relay.

    p. Motor Contribution Based On Pilihan yang berhubungan dengan berbagai macam motor yang mendukung dalam analisa short-circuit.

    i. Motor Status Analisa akan dilakukan berdasarkan data motor yang diinputkan.

    ii. Loading Category

    Pembebanan akan diikutsertakan dalam analisa hubung singkat dengan pemilihan jenis beban.

    iii. Both

    * Untuk keadaan default maka pilih motor status

    q. Bus Selection adalah lembar yang berisi daftar bus yang yang mengalami gangguan.

    * Untuk keadaan default maka kosongkan, dan ganguan pada bus bisa dilakukan dengan cara klik kanan pada mouse dan pilih option fault

    36

  • Info Page Short-Circuit Analysis Study Case Editor 2 Standard

    Ada dua pilihan standar yang diberikan oleh Etap PowerStation yaitu ANSI dan IEC standards tergantung dengan short circuit analysis yang dilakukan. * Untuk keadaan default maka pilih standar yang diinginkan ANSI/IEEE atau IEC tanpa melakukan perubahan pada option yang lain (prefault voltage)

    2 Line to Ground Fault adalah option dimana bisa menginputkan nilai impedansi tanah jika terjadi gangguan pada sistem ke tanah.

    Gambar 35. (kiri) info page (kanan) standard page SC-Study Case Editor

    Data Untuk Short Circuit Analysis Data data yang harus diperlukan untuk analisa hubung singkat antara lain :

    2 Data Bus

    Data yang dibutuhkan untuk perhitungan hubung singkat meliputi :

    ID Bus

    berupa nomor atau nama bus dari sistem Nominal kV

    adalah tegangan nominal pada bus

    37

  • %V dan sudut (angle) jika initial codition di set pada use bus voltage

    Gambar 36. Bus Editor

    2 Data Branch Data branch (saluran) dimasukkan ke dalam branch editor, yaitu transformator,

    transmision line, kabel, reaktor, dan impedansi editor. Data yang dibutuhkan dalam hubung singkat meliputi :

    Nilai dan besaran, toleransi, temperature dari branch Z, R, X atau X/R

    Panjang dan satuan dari kabel transmisi. Base kV, Impedansi dan base kVA/MVA

    Gambar 37. (kiri) info page cable (kanan) impedansi cable

    38

  • 2 Data Synchronous Generator Data Synchronous Generator (generator sinkron) yang dibutuhkan dalam hubung

    singkat meliputi :

    Mode Operasi (Swing, Voltage Control atau Mvar Control) kV nominal

    %V dan sudut untuk mode swing

    %V, MW loading, dan limit Mvar (Qmax dan Qmin) untuk operasi mode

    voltage control Pembebanan MW dan Mvar untuk mode Mvar control.

    Gambar 38. (kiri) info page generator (kanan) rating page generator

    2 Data Motor Induksi dan Motor Sinkron Data yang diperlukan untuk analisa hubung singkat meliputi :

    Rating kW/HP dan kV

    Power faktor dan efisiensi pada pembebanan 100%, 75% dan 50 %

    % loading yaitu persen pembebanan pada motor

    Data kabel peralatan

    39

  • Gambar 39. (kiri) info page motor (kanan) name plate page motor

    2 Data Beban Statis Data yang diperlukan untuk analisa hubung singkat meliputi :

    Identifikasi beban yaitu identitas nama beban

    Rating kVA/MVA dan kV

    Power faktor

    % Loading

    Data kabel peralatan

    Gambar 40. (kiri atas ) info page static load (kanan atas) loading page static load

    40

  • Gambar 41. Cable page static load

    2 Data Transformator Data yang diperlukan untuk analisa hubung singkat meliputi :

    Identifikasi yaitu identitas transformator

    Rating kVA/MVA, max kVA/MVA

    Rating kV primer serta kV sekunder

    % Z, dan X/R

    Hubungan belitan

    Hubungan belitan

    Gambar 42. (kiri atas ) info page transformator (kanan atas) rating page transformator

    41

  • Gambar 43. Tap page transformator

    2 Data Data Lain Terdapat beberapa data yang berkaitan dengan studi kasus yang juga harus

    dimasukkan. Data-data ini diedit pada short circuit study case editor. Hal ini meliputi :

    Metode (Newton-Raphson, Fast-decoupled, atau Accelerated Gauss-Seidel) Maksimum Iterasi

    Ketelitian

    Faktor percepatan untuk metode Accelerated Gauss-Seidel.

    Loading Category

    Report (format laporan) Update (untuk tegangan bus dan load tap changer tranformator yang

    menggunakan hasil hubung singkat)

    Untuk data atau parameter yang diperlukan tetapi tidak tercantum dalam data peralatan, dapat memasukkan parameter dalam software yang diambil data yang disediakan dalam library ETAP PowerStation kemudian data tersebut disesuaikan dengan data peralatan sebenarnya.

    42

  • 3phasa ke tanah , antar phasa, dua phasa ke tanah dan 3 phasa antara 1,5 sampai 4 cycle

    Memberi Gangguan Pada Bus Untuk dapat melakukan analisa hubung singkat ini maka pada bus yang akan

    dianalisa harus diberi gangguan dengan cara pada bus yang diinginkan ada gangguan di

    klik kanan setelah itu pilih option fault, jika ingin mengembalikan seperti semula pilih option dont fault (lihat gambar 44.)

    gangguan

    normalisasi

    Gambar 44. page gangguan pada bus

    ToolBar Short circuit Analysis Adapun toolbar short circuit analysis ada dua macam sesuai dengan standar yang

    dipilih. 1. Toolbar ANSI Standard

    3Phase Fault Device Duty : untuk menganalisa gangguan 3 phasa sesuai dengan sistem.

    3-Phase Faults - 30 Cycle Network : untuk menganalisa gangguan 3 phasa pada system dengan waktu 30 cycle.

    LG, LL, LLG, & 3-Phase Faults - Cycle: untuk menganalisa gangguan satu phasa ke tanah , antar phasa, dua phasa ke tanah dan 3 phasa selama cycle

    LG, LL, LLG, & 3-Phase Faults - 1.5 to 4 Cycle: untuk menganalisa gangguan satu Phase Fault Device Duty : untuk menganalisa gangguan 3 phasa sesuai dengan

    sistem.

    43

  • LG, LL, LLG, & 3-Phase Faults - 30 Cycle: untuk menganalisa gangguan satu phasa ke tanah , antar phasa, dua phasa ke tanah dan 3 phasa selama 30 cycle

    Save Fault kA for PowerPlot: untuk studi lebih lanjut dengan program powerplot yang berhubungan dengan koordinasi.

    Short circuit Display Options: untuk mengatur hasil short circuit yang ditampilkan sesuai dengan peralatan yang operasi.

    Short circuit Report Manager: untuk menampilkan hasil short circuit

    Halt Current Calculation: untuk menghentikan proses running short circuit

    Get Online Data: untuk menyalin data online jika computer interkoneksi dengan menggunakan PSMS (online feature)

    Get Archived Data: untuk menyalin data online jika computer terinterkoneksi.

    2. Toolbar IEC Standard

    3-Phase Faults - Device Duty (IEC909): untuk menganalisa gangguan 3 phasa sesuai standar IEC 909.

    LG, LL, LLG, & 3-Phase Faults (IEC 909) : untuk menganalisa gangguan satu phasa ke tanah , antar phasa, dua phasa ke tanah dan 3 phasa dengan standar IEC 909

    3-Phase Faults - Transient Study (IEC 363): untuk menganalisa gangguan satu phasa ke tanah , antar phasa, dua phasa ke tanah dan 3 phasa dengan standar IEC 363

    Save Fault kA for PowerPlot: untuk studi lebih lanjut dengan program powerplot yang berhubungan dengan koordinasi.

    Short circuit Display Options: untuk mengatur hasil short circuit yang ditampilkan sesuai dengan peralatan yang operasi.

    Short circuit Report Manager: untuk menampilkan hasil short circuit

    Halt Current Calculation: untuk menghentikan proses running short circuit

    Get Online Data: untuk menyalin data online jika computer interkoneksi dengan menggunakan PSMS (online feature)

    44

  • Get Archived Data: untuk menyalin data online jika computer terinterkoneksi.

    Data Hasil Simulasi ETAP PowerStation Hasil dari short circuit dapat diketahui melalui Short circuit Report Manager

    dimana data keluaran yang dapat diketahui meliputi :

    Gambar 45. (kiri atas ) Complete page (kanan atas) Input page (kiri bawah ) Result page (kanan bawah) Summary page SC Report Manager

    * untuk mengetahui hasil keseluruhan running program maka pilih TextReport

    45

  • 2 Complete Data yang tersedia berupa keseluruhan data yang dimasukkan ke dalam system dan hasil running program.

    2 Input Data yang tersedia berupa masukkan data kita pada peralatan yang ada dalam sistem tenaga listrik antara lain :

    1. Bus

    2. Cable 3. Cover 4. Generator

    5. Loads 6. Reactor 7. Transformer

    8. UPS 9. Utility

    2 Result Data yang tersedia sesuai dengan study case yang dipilih yaitu short circuit sehingga hasilnya adalah :

    SC report

    Berisi data hubung singkat yang terjadi dalam sistem tenaga listrik yang di desain dan.dapat diketahui pula power faktor dan arus pada peralatan.

    2 Summary Menunjukan data hasil running yang berhubungan dengan kestabilan system dimana akan ditunjukkan hasil sistem yang mengalami gangguan.

    Contoh hasil Short Circuit Report dapat dilihat pada Lampiran -2

    46

  • Simulasi Transient Stability Analysis ETAP PowerStation

    Program Transient Stability Analysis PowerStation digunakan untuk menyelidiki batas kestabilan sistem tenaga sebelum, selama dan setelah terdapat perubahan sistem atau terdapat gangguan. Program ini memodelkan karakteristik dinamis sistem tenaga,

    menerapkan events dan tindakan yang diinginkan user, menyelesaikan persamaan sistem dan persamaan turunan mesin untuk mengetahui respon sistem dan mesin dalam daerah waktu. Dari respon ini user dapat menentukan sifat transient sistem, membuat perkiraan kestabilan, men-setting peralatan pengaman dan melakukan perbaikan stabilitas sistem.

    1. Transient Stability Toolbar Transient Stability Toolbar akan tampak dilayar ketika anda didalam mode Studi Transient Stability.

    Gambar 62. Transient Stability Analysis ETAP PowerStation

    Run Transient Stability Study Pilih studi kasus dari Study Case Toolbar lalu klik tombol Run Transient Stability. Kotak dialog akan mucul yang menanyakan nama file output.

    Transient Stability Display Options Klik tombol Transient Stability Display Options untuk mengatur pilihan one-line diagram pada mode studi transient stability dan dapat mengatur tampilan hasil perhitungan.

    47

  • Transient Stability Report Manager Untuk menampilkan isi dari output report terakhir klik icon Report Manager pada toolbar.

    Nama file output ditampilkan toolbar Study Case.

    Gambar 63. Transient Stability Report Manager

    Anda juga dapat melihat output report dengan meng-klik tombol View Output File pada toolbar Study Case Toolbar. Untuk menampilkan daftar output report, klik nama output report dan klik tombol View output File.

    Daftar ini berisi semua file output pada folder proyek yang bersangkutan dengan ektensi file yang bersangkutan. Untuk mengubah ekstensi file output, klik tombol List Output Reports didekat kotak daftar Output Report.

    48

  • Gambar 64. List Output Report

    Output report studi transient stability studies memiliki ekstensi .tsr.

    Text output report PowerStation dapat diperlihatkan oleh pengolah kata seperti Notepad, Wordpad, dan Microsoft Word. Default-nya, output report ditampilkan di Notepad.

    Transient Stability Plots Klik tombol Transient Stability Plots untuk memilih dan mem-plot kurva dari file plot terakhir. Nama file plot ditampilkan pada toolbar Study Case. File plot transient stability memiliki ekstensi .tsp.

    Halt Current Calculation Tanda Stop normalnya tidak aktif. Ketika perhitungan transient stability diaktifkan maka

    tombol ini menjadi aktif dan menunjukkan tanda merah. Klik tombol ini akan menghentikan perhitungan yang sedang berjalan.

    Get Online Data Jika keylock ETAP dikomputer anda memiliki fasilitas online, anda dapat menyalin data online dari presentasi online ke presentasi bersangkutan.

    49

  • Get Archived Data Jika keylock ETAP dikomputer anda memiliki fasilitas online, anda dapat menyalin data

    archived ke presentasi bersangkutan.

    2. Transient Stability Study Case Editor Transient Stability Study Case Editor berisi solusi variable kontrol, kondisi pembebanan, event dan aksi spesifik untuk output report dan plot. Anda dapat membuat dan menyimpan studi kasus yang tidak terbatas. Ketika pada mode Transient Stability Analysis anda dapat menjalankan Transient Stability Study Case Editor dengan meng-klik tombol study case pada toolbar Transient Stability.

    Untuk membuat studi kasus baru, tampilkan Project View, klik kanan pada folder Transient Stability Study Case dan pilih Create New.

    Gambar 65. Project Editor

    Transient Stability Study Case Editor berisi Info Page, Events Page, Dyn Model Page dan Plot Page.

    50

  • 2.1. Info Page

    Gambar 66. Transient Stability Study Case

    Study Case ID ID studi kasus bisa dinamakan sampai 12 karakter.

    Initial Load Flow Anda dapat merubah parameter solusi untuk perhitungan awal aliran daya pada transient stability analysis.

    Max Iteration Nilai yang disarankan dan default adalah 2000.

    Solution Precision Nilai ini menentukan berapa presisi perhitungan anda. Nilai default adalah 0.000001.

    Accel. Factor Nilai tipikal adalah antara 1.2 dan 1.7. Nilai default 1.45.

    51

  • Solution Parameters

    Simulation Time Step Nilai ini merupakan step waktu dan harus diisikan lebih kecil daripada time constant terendah didalam sistem sehingga anda dapat melihat semua respon exciter dan governor. Nilai yang disarankan adalah 0.001 detik. Jika anda ingin resolusi yang lebih tinggi, kurangi nilai ini.

    Plot Time Step Nilai ini menentukan seberapa sering PowerStation harus merekam hasil simulasi untuk diplot. Nilai default adalah 20 sehingga setiap 20 step waktu simulasi akan diplot.

    Misalkan bila step waktu simulasi 0.001 maka step waktu plot adalah 0.02 detik. Dengan nilai step waktu yang lebih rendah maka hasil plot akan semakin halus tetapi juga menambah besar file plot di harddisk.

    Initial Loading Pada bagian ini anda dapat menentukan operasi beban awal sistem dengan memilih loading

    category dan diversity factors.

    Category Dengan memilih berbagai kategori, PowerStation menggunakan persen pembebanan motor dan beban statis seperti pada categori yang terpilih.

    Normal Pilih normal untuk menggunakan persen pembebanan masing-masing beban seperti yang telah dimasukkan pada Loading Category yang terpilih yaitu tidak ada faktor diversity yang dipertimbangkan.

    Maximum Ketika pilihan pembebanan maksimum bus terpilih, pembebanan semua motor dan beban statis akan dikalikan dengan faktor diversity maksimum dari bus yang terhubung ke beban.

    52

  • Dengan pilihan ini anda dapat mendefinisikan pembebanan awal untuk studi transient stability dimana setiap bus memiliki faktor diversity maksimum.

    Minimum Ketika pembebanan minimum bus terpilih, pembebanan semua motor dan beban statis akan dikalikan dengan faktor diversity minimum dari bus yang terhubung ke beban. Dengan pilihan ini, anda dapat mendefinisikan pembebanan awal untuk studi transient stability dimana setiap bus memiliki faktor diversity minimum yang berbeda. Pilihan ini dapat digunakan untuk melihat efek tap transformator dan kapasitor (jika ada) pada tegangan sistem pada kondisi pembebanan minimum.

    Global Diversity Factor Ketika terpilih maka PowerStation akan mengalikan semua motor dan beban statis dari kategori pembebanan yang terpilih dengan nilai yang dimasukkan. Dengan pilihan ini anda dapat mendefinisikan pembebanan awal untuk studi transient stability dengan faktor diversity tetap untuk semua beban. Catatan : semua motor akan dikalikan dengan 125% yang menandakan beban motor di semua bus naik 25% diatas nilai yang tercantum pada kaategori pembebanan yang terpilih. Nilai ini bisa lebih kecil atau lebih besar dari 100%.

    Operating P & Q Cek pilihan ini untuk menggunakan P dan Q seperti yang tercantum pada editor komponen.

    Charger Loading

    Load Category Pilihan ini digunakan untuk memilih P dan Q seperti yang terdapat pada bagian Loading Category dari Charger Editor untuk charger.

    53

  • Operating Load Pilihan ini digunakan untuk memilih P dan Q seperti yang terdapat pada bagian Operating Load dari Charger Editor untuk charger. Jika pilihan ini terpilih maka pertama perlu

    dijalankan perhitungan aliran daya DC supaya dapat memperkirakan beban charger.

    Remarks 2nd Line Anda dapat memasukkan 120 karakter di kotak keterangan. Informasi yang dimasukkan dilokasi ini akan diprint pada baris kedua daari informasi header pada setiap halaman output report. Keterangan ini dapat berisi informasi mendetail dan kondisi setiap studi kasus.

    2.2. Events Page Bagian ini digunakan untuk mendesain dan menyimpan studi transient stability dengan even yang di skenario.

    Gambar 67. Event page Transient Stability Analysis ETAP PowerStation

    Events Daftar ini berisi semua even yang ditampilkan dalam orde watu yang menggambarkan urutan even didalam studi. Even yang aktif ditandai oleh * dan diurutkan dulu lalu diikuti oleh even yang tidak aktif.

    54

  • Event ID Maksimum 12 karakter.

    Time Adalah waktu ketika even tersebut terjadi. Satuannya detik.

    Add (Event) Even baru dapat ditambahkan dengan meng-klik pada Add (Event) dan membuka Event Editor.

    Gambar 68. Event editor

    Active untuk membuat event aktif. Hanya even yang aktif akan dimasukkan dalam studi.

    Edit (Event) Klik tombol Edit (Event) untuk membuka Event Editor dan mengubah even yang ada. Anda juga dapat men-double klik pada even untuk mengaktifkan Event Editor.

    Delete (Event) Menghapus even yang ada dari daftar.

    Actions Setiap even dapat berisi beberapa aksi (perubahan sistem atau gangguan). Ketika anda memilih even dengan meng-klik nya di daftar Event, aksi even yang bersangkutan akan ditampilkan di daftar Actions.

    Device Type Tipe peralatan yang akan diberi aksi.

    55

  • Device ID ID dari peralatan yang akan diberi aksi. Aksi yang akan dilakukan pada peralatan dan tipe

    peralatan yang bersangkutan. Berikut ini akan diberikan tipe peralatan dan aksinya.

    Device Type

    Bus

    Circuit Breaker SPST Switch Fuse

    Generator

    Utility

    Syn. Motor Ind. Motor MOV None

    Actions

    Fault / Clear Fault Open / Close Open / Close Open / Close Ref. Machine / Delete / Droop / Isoch / Start

    Ref. Machine / Delete Delete

    Accelerate / Delete Start Load Flow (no action, print load flow at the event time)

    Add (Action) Aksi baru dapat ditambahkan dengan meng-klik tombol Add (Action) dan membuka Action Editor. Pilih tipe peralatan dari list Device Type. Pilih peralatan dari list Device ID lalu pilih aksi dari list Action.

    Edit (Action) Klik tombol Edit (Action) untuk mengedit aksi yang telah ada.

    Gambar 69. Action Editor

    56

  • Delete (Action) Menghapus aksi yang telah ada.

    Total Simulation Time Total waktu simulasi untuk studi transient stability. Satuannya detik.

    2.3. Dyn Model Page Bagian ini digunakan untuk memodelkean motor sinkrun dan induksi secara dinamis didalam sistem.

    Gambar 70. Dyn Model pageTransient Stability Study Case

    Motor akan dimodelkan dinamis jika anda telah menerapkan model dinamis didalam Motor Editor dan anda memilih mengglobalkan model group motor tersebut di bagian ini.

    Catatan : semua generator sinkrun dimodelkan secara dinamis.

    Machine Type

    Syn. Motors, MV Group mesin terdiri dari semua motor sinkrun yang bertegangan menengah (rating 1 kV dan diatasnya).

    Syn. Motors, LV Group mesin terdiri dari semua motor sinkrun yang bertegangan rendah (rating dibawah 1 kV).

    57

  • Ind. Machines, MV Group mesin terdiri dari semua motor induksi dan generator yang bertegangan menengah

    (rating 1 kV dan diatasnya).

    Ind. Machines, LV Group mesin terdiri dari semua motor induksi dan generator yang bertegangan rendah (rating dibawah 1 kV).

    Dynamic Modeling

    Do Not Model Jika dipilih, group mesin yang bersangkutan tidak akan dimodelkan secara dinamis pada studi transient stability tanpa memperhatikan model dinamis untuk mesin individual.

    Model Machines Larger or Equal To Jika dipilih, mesin-mesin yang terdapat pada group mesin dan yang dirating lebih besar daripada yang disebutkan di bagian HP/kW akan dimodelkan secara dinamis dan mesin dalam satu grup yang dirating kurang dari ukuran yang diberikan tidak akan dimodelkan

    secara dinamis.

    HP/kW Tetapkan ukuran mesin (dalam HP or kW) untuk grup mesin yang terpilih untuk dimodelkan secara dinamis.

    Starting Load for Accelerating Motors

    Tetapkan dasar torsi beban vs slip model yang digunakan untuk accelerasi motor.

    Based on Motor Electrical Rating Torsi beban vs. kurva slip didefinisikan berdasarkan rating motor listrik yaitu torsi beban vs. kurva slip akan diskala sampai 100% pada kecepatan sinkrun merujuk pada 100% rating motor listrik.

    58

  • Based on Motor Mechanical Load Torsi beban vs. kurva slip didefinisikan berdasarkan beban motor mekanis yaitu torsi

    beban vs kurva slip tidak akan diskala.

    Generator Start-Up Tetapkan model ketergantungan frekuensi untuk melakukan studi Start-up Generator.

    Frequency Dependent Models for Network, Motors, & Generators Jaringan, motor dan generator akan dimodelkan tergantung pada frekuensi. Pilihan ini harus dicek untuk melakukan studi Start-up Generator.

    2.4. Plot Page Bagian ini digunakan untuk memilih peralatan yang akan diplot untuk menampilkan hasil studi transient stability.

    Gambar 71. Plot page Transient Stability Study Case

    Device Type Pilih tipe peralatan.

    Syn. Generators Group mesin berisi semua generator sinkrun.

    Syn. Motors, MV Group mesin yang berisi semua motor sinkrun dengan rating 1 kV dan diatasnya.

    59

  • Syn. Motors, LV Grup mesin yang terdiri dari semua motor sinkrun dengan rating kurang dari 1 kV.

    MV Ind. Machines Grup mesin yang terdiri dari semua motor induksi dan generator dengan rating 1 kV dan diatasnya.

    LV Ind. Machines Grup mesin yang terdiri dari semua motor induksi dan generator dengan rating kurang dari 1 kV.

    Buses Grup peralatan yang terdiri dari semua bus.

    Plot Options Ketika grup mesin atau peralatan telah terpilih, semua peralatan dalam grup itu akan ditampilkan di daftar Plot Options sehingga dapat dipilih.

    Device ID ID peralatan untuk mesin yang terpilih atau grup peralatan kecuali mesin-mesin yang tidak dimodelkan secara dinamis.

    Plot/Tabulation (column) Anda dapat meng-klik kolom ini untuk memilih atau tidak pilihan plot/tabulation untuk berbagai peralatan. Ketika dipilih, tanda X akan terlihat dikolom disamping peralatan yang dipilih dan informasi peralatan yang terpilih akan ditabulasikan pada akhir output report dari studi transient stability dan disimpan di file plot.

    Plot/Tabulation (check box) Check box ini merupakan cara lain untuk mengeset pilihan plot/tabulation untuk peralatan yang terpilih.

    60

  • 3. Display Options Pilihan tampilan terdiri atas Results page dan tiga halaman berisi informasi AC, AC-DC

    dan DC. Perhatikan bahwa warna dan tampilan yang dipilih untuk setiap studi adalah

    spesifik untuk studi tersebut.

    Results Page Anda dapat menentukan pilihan tampilan untuk hasil perhitungan one-line diagram. Hasil ini dapat ditampilkan untuk setiap plot step waktu. Hasilnya meliputi tegangan bus dan frekuensi, sudut daya mesin sinkrundan frekuensi, kecepatan motor induksi dan aliran daya ke mesin.

    Gambar 72. Disply option Transient Stability

    Color Pilih warna untuk hasil transient stability yang akan ditampilkan pada one-line diagram.

    Show Units Pilih checkbox tersebut untuk menampilkan unit dari hasil yang ditampilkan.

    Bus

    Voltage Pilih kV atau % untuk tampilan tegangan pada one-line diagram dari daftar.

    61

  • Frequency Pilih Hz atau % untuk frekuensi bus yang ditampilkan pada one-line diagram dari daftar.

    Syn. Machines

    Power Angle Pilih Deg atau Rad untuk sudut (rotor) daya mesin sinkrun yang akan ditampilkan pada one-line diagram. Catatan : sudut daya adalah relatif berdasarkan referensi sudut daya mesin yang diset nol.

    Frequency Pilih Hz atau % untuk frekuensi mesin sinkrun yang akan ditampilkan pada one-line

    diagram dari daftar. Frekuensi mesin sebanding dengan kecepatan mesin.

    Ind. Machines

    Speed Pilih RPM atau %Slip untuk tampilan kecepatan mesin induksi pada one-line diagram.

    Dimana : %Slip = 100x s M s

    Machine Flows

    Unit Tentukan satuan aliran daya (kVA atau MVA).

    kW + jkvar Pilih satuan aliran daya P + jQ untuk menampilkan (kW+jkvar atau MW+jMvar)

    kVA Pilih tombol kVA untuk menampilkan aliran daya dalam kVA atau MVA.

    62

  • Amp Pilih tombol arus untuk menampilkan aliran arus dalam ampere.

    4. Transient Stability Plots Klik tombol Transient Stability Plots pada Transient Stability Toolbar kemudian akan muncul kotak dialog untuk pilihan Transient Stability Plot seperti yang terlihat dibawah sehingga anda dapat menentukan peralatan dan tipe plot yang akan ditampilkan.

    Gambar 73. Transient Stability Plot Selection

    Device Type Pilih tipe peralatan yang akan diplot.

    Device ID Dari daftar, pilih peralatan yang akan diplot (sampai 16 peralatan pada waktu bersamaan). Daftar ini berisi peralatan yang telah dipilih untuk diplot dari Study Case Editor.

    Plot Type Pilih jenis plot, tiap peralatan memiliki tipe plot yang berbeda.

    63

  • Syn. Generators - Power Angle sudut daya generator sinkrun dalam derajat. - Frequency frekuensi generator sinkrun dalam Hz

    - MWm daya mekanis generator sinkrun dalam MW - Mwe daya pembangkitan generator sinkrun dalam MW - Current arus terminal generator sinkrun dalam Amp - Efd tegangan medan generator sinkrun dalam per unit

    Syn. Motors, MV (medium voltage motors) - Power Angle sudut daya motor sinkrun dalam derajat - Frequency frekuensi motor sinkrun dalam Hz

    - MWm daya mekanis motor sinkrun dalam MW - MWe daya elektris motor sinkrun dalam MW - Current arus terminal motor sinkrun dalam Amp - Voltage tegangan bus yg terhubung ke motor sinkrun dalam % kV nominal bus

    Syn. Motors, LV (low voltage motors) - Power Angle susut daya motor sinkrun dalam derajat - Frequency frekuensi motor sinkrun dalam Hz - MWm daya mekanis motor sinkrun dalam MW - Mwe daya elektris motor sinkrun dalam MW

    - Current synchronous motor terminal current in Amp - Voltage tegangan bus yg terhubung ke motor sinkrun dalam % kV nominal bus

    Ind. Motors, MV (medium voltage machines) - Slip slip mesin induksi dalam % - Accel Torque daya akselerasi mesin induksi dalam MW

    - MWm daya mekanis mesin induksi dalam MW - Mwe daya elektris mesin induksi dalam MW - Current arus terminal mesin induksi dalam Amp

    - Voltage tegangan bus yg terhubung ke mesin induksi dalam % kV nominal bus

    64

  • Ind. Motors, LV (low voltage machines) - Slip slip mesin induksi dalam %

    - Accel Torque daya akselerasi mesin induksi dalam MW

    - MWm daya mekanis mesin induksi dalam MW - Mwe daya elektris mesin induksi dalam MW - Current arus terminal mesin induksi dalam Amp - Voltage tegangan bus yg terhubung ke mesin induksi dalam % kV nominal bus

    Buses - Voltage Angle sudut tegangan bus dalam degree - Frequency frekuensi bus dalam % frequency sistem

    - MW daya nyata pembebanan bus dalam MW - Mvar daya rektif pembebanan bus dalam Mvar - Voltage/Hz bus voltage per Hz in volt/Hz - Voltage magnitudo tegangan bus dalam % kV nominal bus

    5. Methods Perhitungan Stabilitas Transient Untuk mengenal studi stabilitas transient dalam sistem tenaga maka dibutuhkan pengetahuan tentang model dinamis mesin, model kontrol mesin (seperti sistem eksitasi dan automatic voltage regulators, governor, dan sistem turbin dan power system stabilizers), perhitungan numerik dan fenomena keseimbangan elektromekanis dari sistem tenaga. Pada bagian ini akan diberikan prinsip dasar studi stabilitas transient dalam sistem tenaga yang akan diaplikasikan pada PowerStation.

    Tujuan Studi Stabilitas Transient Keandalan dinamis sangat penting dalam mendesain dan mengoperasikan sistem tenaga. Studi stabilitas transient memberikan sudut daya mesin dan simpangan kecepatan,

    frekuensi sistem, aliran daya aktif dan reaktif dari mesin, aliran daya saluran dan transformator serta level tegangan dari bus dalam sistem. Kondisi sistem ini menyediakan perkiraan stabilitas sistem. Hasilnya akan ditampilkan pada one-line diagram dan dapat

    diprint atau diplot. Untuk studi stabilitas transient anda perlu memodelkan berbagai grup mesin dalam sistem yang memiliki pengaruh penting dalam operasi sistem tenaga.

    65

  • Definisi Stabilitas Sistem Tenaga Stabilitas sistem tenaga merupakan parameter dalam sistem tenaga yang dapat

    mempertahankan keseimbangan elektromekanis pada kondisi operasi normal dan abnormal. Karena stabilitas dalam sistem tenaga adalah fenomena electromekanis maka dapat digunakan sebagai indikasi bahwa desain mesin sinkrun dalam sistem tetap sinkrun satu sama lain selama gangguan pada berbagai lokasi dalam sistem. Juga dapat digunakan sebagai indikasi kemampuan motor induksi dalam sistem tetap dibeban selama gangguan ini.

    Sudut rotor Mesin Sinkrun Mesin sinkrun berperan penting dalam stabilitas sistem tenaga karena selama dan setelah gangguan, sudut rotornya akan berosilasi yang dapat mengakibatkan osilasi aliran daya dalam sistem. Berdasarkan level osilasi ini, keseimbangan elektromekanis dalam sistem dapat hilang dan ketidakstabilan dapat terjadi. Sehingga stabilitas sistem tenaga kadang- kadang ditujukan pada kestabilan sudut rotor mesin sinkrun.

    Dua persamaan berikut sering dijadikan acuan dalam studi stabilitas transient dalam sistem tenaga.

    Torque Equation (Generator Case)

    T =

    Dimana T

    P

    fair

    Fr

    d

    p 2 8

    =

    =

    =

    =

    =

    air Fr sin

    torsi mekanis poros jumlah kutub fluks di celah udara MMF medan rotor sudut daya (rotor)

    Persamaan torsi mendefinisikan hubungan antara torsi mekanis poros, tegangan stator, eksitasi sistem dan sudut rotor. Perubahan salah satu darinya akan mengakibatkan sudut

    rotor berada pada posisi yang baru dengan sendirinya.

    66

  • dt

    Swing Equation (Generator Case)

    M d 2 2

    + D d dt

    = Pmech Pelec

    Dimana

    M

    D

    =

    =

    konstanta inersia

    konstanta damping Pmech =

    Pelec =

    daya mekanis input daya elektris output

    Persamaan ayunan menunjukkan sudut rotor sebagai fungsi dari keseimbangan antara daya mekanis dan daya elektris. Setiap perubahan dalam sistem yang merusak keseimbangan ini

    akan mengakibatkan sudut rotor menuju posisi baru pada kondisi osilasi. Osilasi ini biasa disebut swing sudut rotor.

    Batas Kestabilan Ada dua tipe batas stabilitas sistem tenaga yaitu batas stabilitas steady-state dan batas stabilitas transient.

    Batas Stabilitas Steady-State Stabilitas Steady-State adalah stabilitas sistem pada kondisi bertahap atau perubahan kecil

    dalam sistem. Kestabilan ini dapat ditemukan dengan perhitungan aliran daya untuk operasi steady-state atau ditentukan dengan studi stabilitas transient bila ada perubahan sistem atau ada gangguan. Sistem dikatakan stabil steady-state bila selama gangguan kecil atau bertahap, semua mesin sinkrun pada kondisi steady-state identik dengan kondisi operasi sebelum gangguan. Batas stabilitas steady-state untuk semua mesin sinkrun adalah

    ketika sudut rotor kurang dari 900.

    67

  • Batas Stabilitas Transient Stabilitas transient atau dinamis adalah kestabilan sistem selama dan sesudah perubahan

    mendadak pada beban dan saluran yang terganggu. Sistem dikatakan stabil transient bila

    selama beberapa gangguan, semua mesin sinkrun beroperasi pada kondisi steady-state tanpa memperpanjang rugi sinkrunisasi atau keluar dengan mesin yang lain.

    Penyebab Masalah Ketidakstabilan - Hubung singkat - Rugi koneksi tie pada sistem utility - Rugi sebagian plant pada co-generation (penolakkan generator) - Starting motor yang relatif besar dibandingkan kapasitas pembangkitan sistem

    - Operasi Switching dari saluran, kapasitor dll - Dampak pembebanan (motor and beban statis) - Perubahan besar dan mendadak dari beban atau pembangkitan

    Pengaruh Masalah Ketidakstabilan - Pemadaman total pada area yang lebar - Pemutusan beban

    - Tegangan rendah - Kerusakkan pada peralatan - Tidak berfungsinya relay dan peralatan pengaman

    Perbaikan Stabilitas Sistem Tenaga - Tergantung pada sebab dari ketidakstabilan, beberapa perbaikan dapat dilakukan untuk

    meningkatkan stabilitas sistem, diantaranya : - Memperbaiki konfigurasi dan desain sistem

    - Increase synchronizing power.

    - Desain dan pilih mesin-mesin berputar gunakan motor induksi, naikkan momen inersia, kurangi reaktansi transient, perbaiki regulator tegangan dan karakteristik

    exciter.

    - Gunakan Power System Stabilizers (PSS) - Tambah sistem proteksi penghilangan gangguan dengan cepat, pemisahan sistem dll

    68

  • - Tambahkan load shedding Tetapi anda anda perlu berhati-hati dalam menerapkan hal-hal diatas dan perlu menjalan studi sistem kembali karena perubahan hal-hal diatas akan merubah aliran daya sistem,

    hubung singkat dan starting motor.

    6. Data Yang Dibutuhkan Untuk menjalankan studi stabilitas transient maka anda perlu memasukkan data yang dibutuhkan untuk perhitungan aliran daya. Umumnya data yang dibutuhkan sama dengan data untuk studi aliran daya tetapi dengan tambahan perlu memasukkan data model dinamis dari mesin, data model beban dan unit kontrol seperti exciter dan data governor.

    7. Transient Stability Output Reports PowerStation menyediakan hasil yang berbeda untuk berbagai tingkat detail tergantung pada kebutuhan anda. Hasil akan ditampilkan dalam tiga format yang berbeda yaitu text output report, tampilan one-line dan plots.

    Transient Stability Report Manager Klik tombol View Output File pada Transient Stability Toolbar untuk membuka Transient Stability Report Manager. Transient Stability Report Manager menyediakan format yang berbeda baik text dan Crystal Reports dan terdiri empat halaman.

    Complete Page Dibagian ini anda dapat memilih format yang memberikan anda output report secara lengkap. Hanya format TextRept yang tersedia.

    69

  • Gambar 74. Transient Stability Report Manager

    Input Page Bagian ini menyediakan format untuk berbagai data input. Format pada bagian ini tidak tersedia untuk studi stabilitas transient.

    Result Page Bagian ini menyediakan format untuk hasil perhitungan yang berbeda. Format pada bagian ini tidak tersedia untuk studi stabilitas transient.

    Summary Page Bagian ini menyediakan ringkasan baik data input dan hasil perhitungan. Format pada bagian ini tidak tersedia untuk studi stabilitas transient.

    70

  • Transient Stability Text Report Output report text dapat diperlihatkan dengan mengklik tombol View Output File pada

    Study Case Toolbar atau dari Transient Stability Report Manager dengan memilih

    TextRept dan mengklik Ok. output report analisa stabilitas transient terdiri dari beberapa bagian dan diringkas sebagai berikut :

    Summary Page Bagian ini berisi informasi jumlah bus, jumlah cabang, jumlah mesin, parameter sistem seperti kategori pembebanan awal, frekuensi dan sistem unit; parameter solusi seperti maksimum iterasi dan presisi; parameter studi seperti step waktu dan step waktu plot serta nama file output dan plot.

    DYNAMIC STABILITY ANALYSIS --------------------------

    Swing -----

    Gen. -----

    Load -----

    Total -----

    Number of Buses: 1 1 6 8

    XFRM

    -----

    XFRM3

    -----

    React.

    -----

    Line

    -----

    Imp.

    -----

    C.B.

    -----

    SPDT

    -----

    Total

    -----

    Number of Branches: 3 1 0 2 0 0 0 6

    Synch. Synch. Ind. Uti-

    Gen.

    -----

    Motor

    -----

    Motor

    -----

    lity

    -----

    Total

    -----

    Number of Machines: 1 2 2 1 6

    Initial Loading: Maximum Number of Iterations:

    Solution Precision for the Initial LF:

    Acceleration Factor for the Initial LF:

    Design 2000

    0.00000100

    1.45

    Time Increment for Integration Steps:

    Time Increment for Plots:

    System Frequency:

    0.0010

    0.0200

    60.0

    Sec.

    Sec.

    Hz

    Unit System:

    Data Filename:

    English

    EXAMPLE

    Bus Input Data Bagian ini berisi informasi semua bus dalam sistem termasuk ID bus, tipe bus (swing, generator atau beban), tegangan nominal, magnitudo dan sudut tegangan awal, MW dan Mvar pembangkitan, batas Mvar, MW dan Mvar beban motor, MW dan Mvar beban statis dll. Data-data ini sama seperti pada aliran daya.

    71

  • Branch Input Data Bagian ini berisi informasi semua cabang di sistem termasuk ID cabang, R, X, Y, X/R, tap

    transformator dan LTC, hubungan cabang dan semua informasi yang berhubungan dengan

    impedansi cabang. Data ini sama seperti pada output report aliran daya.

    Power Grid, Synchronous Machine Data Bagian ini berisi informasi semua power grid, generator sinrun dan model dinamis dari motor sinkrun dalam sistem termasuk ID mesin, ID bus yang terhubung ke generator, tipe mesin dan tipe model, kV rating dan faktor saturasi. Untuk motor sinkrun, juga berisi informasi model beban dan parameternya.

    Conned Bus

    ============

    Synch. GEN./MTR

    ======================

    Rating (base)

    ===============

    Machine Impedance ( % )

    ==============================================================

    Bus ID

    ------------

    Sub 2B

    Machine ID

    ------------

    Gen1

    TYP

    ---

    GEN

    MDL

    ---

    4

    kV

    ------

    13.800

    MVA

    -------

    8.824

    Ra

    ------

    1.0 0

    Xd"

    ------

    24.00

    Xd'

    ------

    37.00

    Xd

    ------

    115.00

    Xq"

    ------

    34.00

    Xq'

    ------

    75.00

    Xq

    ------

    75.00

    Xl

    ------

    15.00

    Main Bus Utility UTL 0 34.500 1500.000 2.22 99.98

    Sub 2B

    Bus3

    Syn1

    Syn4

    MTR

    MTR

    4

    4

    13.200

    13.200

    1.170

    2.982

    0.56

    0.33

    15.38

    15.38

    23.00

    23.00

    110.00

    110.00

    12.00

    12.00

    23.00

    23.00

    108.00

    108.00

    11.00

    11.00

    Synch. GEN./MTR

    ======================

    Time Constant (sec)

    ==============================

    H(sec), D(MWpu/Hz) & Sat.

    ==========================

    Gen./Loading

    ==============

    Machine ID

    ------------

    Gen1

    Syn1

    Syn4

    TYP

    ---

    GEN

    MTR

    MTR

    MDL

    ---

    4

    4

    4

    Tdo"

    ------

    0.030

    0.002

    0.002

    Tdo'

    ------

    5.000

    5.600

    5.600

    Tqo"

    ------

    0.050

    0.002

    0.002

    Tqo'

    ------

    3.700

    3.700

    3.700

    H

    -----

    1.200

    1.000

    1.000

    % D

    -----

    5.0 0

    2.0 0

    2.0 0

    S100

    -----

    1.070

    1.070

    1.070

    S120

    -----

    1.180

    1.180

    1.180

    MW

    ------

    6.300

    0.995

    2.770

    Mvar

    ------

    0.000

    -0.617

    1.105

    Synch. MTR

    ======================

    Load Model

    ================================================

    Machine ID

    ------------

    Syn1

    Syn4

    TYP

    ---

    MTR

    MTR

    MDL

    ---

    4

    4

    Model ID

    ------------

    COMP CENT

    Centr. Comp

    A0

    ------

    10.00

    10.00

    A1

    ------

    -91.00

    -91.00

    A2

    ------

    321.00

    328.00

    A3

    ------

    -147.00

    -147.00

    Exciter/AVR Data Bagian ini berisi informasi semua exciter yang terpasang dalam sistem termasuk ID generator tempat exciter terpasang, tipe exciter, gain, konstanta waktu dan parameter yang

    lain.

    Generator

    ==============

    Type

    ========

    Time Constants (Sec.) and Parameters

    ==================================================================================================

    1,2,3&1S KA KE KF TR TA TE TF/TF1 TF2/XL VRmax VRmin SEm/KP SE7/KI Efd/VB

    DC1 &DC2 KA KE KF TA TB TC TE TF TR VRmax VRmin SEmax SE75 Efd

    DC3

    KE

    KV

    TE

    TR

    TRH

    VRmax VRmin

    SEmax

    SE75

    Efd

    ST1, ST2 KA KC KE/KG KF/KJ KI KP KPreal KPimg TA TB TC TE TF TR

    & ST3 XL VGmax VImax VImin VRmax VRmin SEmax SE7 5 Efdmax

    AC1 &AC4 KA KC KD KE KF TA TB TC TE TF TR

    VAmax

    VAmin

    VImax

    VImin

    VRmax

    VRmin

    SEmax

    SE75

    Efd

    72

  • AC2 &AC3

    KA

    KB/KR

    KC

    KD

    KE

    KF

    KH/KN

    KL(V)

    TA

    TB

    TC

    TE

    TF

    TR

    VLR VLV Efd n VAmax VAmin VRmax VRmin SEmax SE75 Efd

    SR8F KA KF TR TA TB TF1 TF2 VRmax VRmin

    HPC 840

    C

    D

    Kpow

    KQ

    KE

    Bmax

    Bmin

    Amax

    Amin

    VRmax

    VRmin

    SEmax

    SE75

    Efd

    Te T4 TI TD TF Tdsty TP TQ CtlBus

    AC5A KA KE KF VRmax VRmin SEm/KP SE7/KI Efd/VB

    TA1 TA2 TA3 TE TF1 TF2 TF3 TR

    JEUM

    Ar1

    Ar2

    Ku1

    Ku2

    Kif

    Kae

    Ke

    Vres

    Vsup

    SEm

    SE7

    Efdmax

    Te

    Max1 Min1 Max2 Min2 Max3 Min3 Max4 Min4 Max5 Min 5 Max6 Min6 Max7 Min7

    Av1 Av2 Av3 Av4 Av5 Av6 Av7 Av8 Av9 Av1 0 Av11

    ID Ai1 Ai2 Ai3 Ai4 Ai5 Ai6 Ai7 Ai8 Ai9 Ai1 0 Ai11 Ai12

    --------------

    --------

    ------- ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------

    Gen1 1 250.00 1.000 0.060 0.005 0.030 1.250 1.000 17.50 -15.50 1.650 1.130 6.600

    Governor/Turbine Data Bagian ini berisi informasi semua governor yang terpasang dalam sistem termasuk ID

    generator tempat dimana governor terpasang, tipe governor, mode, gain, konstanta waktu dan parameter lain.

    Type

    ======

    Operation

    =============

    Limits

    ==============

    Time Constants(Sec.) and Parameters

    ====================================================================

    All ST %Droop Mode Pmax Pmin Tsr Tc Tch Trh1 Trh2 Tco Fhp Fvhp Fip

    GT&GP %Droop Mode Pmax Pmin Tsr Tc Tt Tdrp Ta

    DT,GTF

    %Droop

    Mode

    Pmax

    Pmin

    T1

    T2

    T3

    T4

    T5

    T6

    T7

    T8

    T9

    &STM

    UG8

    %Droop Mode

    Mode

    Pmax

    Pmax

    Pmin

    Pmin

    K1/Kr

    A1

    K2/Kf

    A2

    K3/KD

    A3

    K4/Ff

    B1

    K5

    B2

    K6

    C1

    K7

    K1

    DB

    Ad

    UO/VU

    T7

    UC/VL

    T8

    Generator GTH& Ki Mode Max. Min. X Y Z A/a B/b C/c D Kf T.Ctl A.Ctl

    GTS

    Tf/R

    Tcr/S

    Tcd/T

    Ttd

    T

    Tt

    Tr

    ID

    505E Mode P1

    HPa

    I1

    HPb

    SDr 1

    HPc

    L1

    HPmax

    L2

    Sa

    Ta1

    Sb

    Tm1

    Sc

    Ts

    Smax

    Prior

    EFmax

    Ramp

    P2 I2 SDr2 L3 L4 Ta2 Tm2 EP EF

    2301A

    %Droop

    Mode

    eMax

    eMin

    Alpha

    Beta

    Rho

    K1

    Tao

    T1

    T2

    LS GP

    MARS %Droop Mode T1 T2 T3 T5 T6 T7 Ks Kt Ko Ku

    Kl MaxGv MinGv Maxo Mino Max2 Min2 Max3 Min3

    DDEC

    GHH

    %Droop Mode Pmax Pmin K1

    VLmax

    PHmax

    m2

    Pe

    LF2

    K2

    VLmin

    PHmin

    m3

    Pf

    LF3

    R1

    VMmax

    Kp1

    e1

    LFa

    FL0

    Ts

    VMmin

    Kp2

    e2

    LFc

    KFL0

    T1

    VHmax

    Kp3

    HP

    LFd

    FL1

    T2

    VHmin

    Kp4

    MP

    EX2f

    FM0

    T3

    PLmax

    GL

    Pa

    LFV1

    KFM0

    PLmin

    GM

    Pb

    LFV2

    FM1

    PMmax

    GH

    Pc

    LFV3

    Tn1

    PMmin

    m1

    Pd

    LF1

    Tn2

    Tn3 Tn5 Tn6 TL TM TH Esf1 Esf2

    ============ ------ ------ ----- ------ ------ ----- ----- ----- ----- ----- ----- ----- ----- ----- -----

    Gen1 ST1 5.0 Droop 8.33 0.00 0.100 0.100 0.150 5.000 0.700

    Induction Machine Data Bagian ini berisi informasi model dinamis dari mesin induksi dalam sistem termasuk ID

    mesin, ID bus yang terhubung ke mesin, rating kV dan MVA, tipe model dan parameter model, model beban dan parameter model, inersia, MW dan MVar pembebanan awal dan

    slip.

    73

  • Conned Bus

    Ind. Motor

    Rating (base)

    Eqiv. Model (%Z

    & seconds)

    CKT or Double Cage Models (% impedance)

    ============ ================ ============== =========================== ================================================

    Bus ID Machine ID MDL kV MVA Ra Xlr Xoc Tdo' Rs Xs Xm Rrfl,1 Rrlr,2 Xrfl,1 Xrlr,2

    ------------ ------------ --- ------ ------- ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------

    Bus3

    Mtr2

    CKT 2

    13.200

    0.649

    3 .8 3

    10.29 365.20

    1.52

    1 .2 3

    11.67

    9.30

    Sub3 Swgr Pump 1 CKT1 4.000 0.434 3.8 3 19.36 375.50 0.81

    Conned Bus

    ============

    Ind. Motor

    ============

    H(sec)

    ======

    Load Model

    ================================================

    Normal Loading

    ==============================

    Bus ID

    ------------

    Bus3

    Sub3 Swgr

    Machine ID

    ------------

    Mtr2

    Pump 1

    H

    ------

    0.310

    0.200

    Model ID

    ------------

    a k***3

    FAN

    A0

    ------

    0.00

    10.00

    A1

    ------

    0.00

    -91.00

    A2

    ------

    100.00

    321.00

    A3

    ------

    0.0 0

    -147.00

    % Slip

    ------

    1.4 1

    1.1 8

    MW

    ------

    0.599

    0.400

    Mvar

    ------

    0.297

    0.188

    % Load

    ------

    0.0

    30.0

    Initial Load Flow Report Studi aliran daya awal digunakan untuk menentukan senua setting awal untuk mesin, exciters/AVRs dan governors/turbines dengan kondisi pembebanan awal yang telah ditentukan. Hasilnya dapat digunakan untuk melihat kondisi operasi sebelum even. Format report aliran daya awal sama seperti pada output report aliran daya.

    Load Flow Report @ T=*.* Bagian ini adalah report pada kejadian even yang ditentukan yang berisi daftar even secara rinci. Setiap event berhubungan dengan report aliran daya sebelum even.

    Format bagian ini sama dengan output report aliran daya.

    Event/Action Data Bagian ini berisi daftar rinci setiap aksi yang terdapat dalam even. Bagian ini muncul setelah report aliran daya ditunjukkan sebelum even ini dan aksi yang bersangkutan terjadi.

    Bus / Machine Revision (Modification) =====================================

    Bus/Mach ID Existing Type New Type ------------ ------------- ----------

    Main Bus Swing Bus Faulted

    This page indicates bus/machine revisions occurring at simulation time T = 0.1000 seconds.

    Final Load Flow Report Bagian ini berisi aliran daya yang dilaporkan pada akhir simulasi. Format bagian ini sama dengan output report aliran daya.

    74

  • Tabulated Simulation Result Bagian ini menabulasikan setiap peralatan yang dipilih ditabelkan dalam studi kasus, hasil

    simulasi ditampilkan sebagai fungsi waktu pada step waktu plot yang ditentukan. Tipe

    hasil tabulasi sama seperti kurva plot seperti yang dijelaskan pada pilihan plot.

    Gen.

    (Gen1

    )

    Syn. MT

    (Syn1

    )

    Syn. MT

    (Syn4

    )

    ====== ================================== ================================== ==================================

    Time

    (Sec.)

    ------

    0.000

    0.020

    0.040

    0.060

    0.080

    0.100

    0.101

    0.121

    0.141

    0.161

    0.181

    0.201

    0.221

    0.241

    0.261

    0.281

    0.301

    0.321

    Ang .

    (deg)

    -----

    30.92

    30.92

    30.91

    30.91

    30.91

    30.90

    30.90

    31.92

    35.00

    40.15

    47.31

    56.39

    64.76

    69.21

    69.32

    65.30

    57.95

    48.44

    Freq.

    (Hz)

    -----

    60.00

    60.00

    60.00

    60.00

    60.00

    60.00

    60.01

    60.28

    60.57

    60.86

    61.13

    61.38

    60.91

    60.32

    59.72

    59.19

    58.80

    58.59

    Mech.

    (MW)

    -----

    6 .3 4

    6 .3 4

    6 .3 4

    6 .3 4

    6 .3 4

    6 .3 4

    6 .3 4

    6 .3 4

    6 .3 4

    6 .3 3

    6 .3 2

    6 .3 0

    6 .2 6

    6 .2 1

    6 .1 6

    6 .1 0

    6 .0 5

    6 .0 2

    Elec.

    (MW)

    -----

    6.3 0

    6.3 0

    6.3 0

    6.3 0

    6.3 0

    6.3 0

    0.5 3

    0.4 8

    0.5 1

    0.5 6

    0.6 1

    12.44

    15.28

    16.48

    16.13

    14.40

    11.67

    8.5 3

    Term.

    I (A)

    ------

    265.1

    265.1

    265.0

    265.0

    265.0

    264.9

    1202.6

    998.3

    908.8

    877.5

    869.6

    756.5

    756.7

    769.4

    732.8

    639.6

    508.4

    366.8

    Ang .

    (deg)

    -----

    -27.60

    -27.60

    -27.60

    -27.60

    -27.60

    -27.60

    -27.60

    -28.86

    -32.82

    -39.25

    -47.87

    -58.48

    -65.16

    -60.51

    -45.69

    -24.93

    -5.05

    6 .9 0

    Freq.

    (Hz)

    -----

    60.00

    60.00

    60.00

    60.00

    60.00

    60.00

    59.99

    59.62

    59.26

    58.93

    58.65

    58.44

    59.93

    61.48

    62.64

    62.99

    62.29

    60.79

    Mech.

    (MW)

    -----

    0 .9 9

    0 .9 9

    0 .9 9

    0 .9 9

    0 .9 9

    0 .9 9

    0 .9 9

    0 .9 8

    0 .9 7

    0 .9 7

    0 .9 6

    0 .9 6

    0 .9 9

    1 .0 2

    1 .0 4

    1 .0 4

    1 .0 3

    1 .0 1

    Elec.

    (MW)

    -----

    0.9 9

    0.9 9

    0.9 9

    0.9 9

    0.9 9

    0.9 9

    0.3 7

    0.3 7

    0.4 2

    0.4 9

    0.5 5

    4.3 3

    4.2 2

    3.8 9

    2.6 9

    0.7 3

    -1.25

    -2.35

    Term.

    I (A)

    ------

    48. 9

    48. 9

    48. 9

    48. 9

    48. 9

    48. 9

    328.9

    231.1

    233.1

    235.3

    239.0

    264.8

    195.3

    176.2

    117.3

    35. 6

    54. 2

    99. 7

    A ng .

    (deg)

    -----

    -55.88

    -55.88

    -55.88

    -55.88

    -55.88

    -55.88

    -55.87

    -58.01

    -64.69

    -75.83

    -91.32

    -111.07

    -127.85

    -132.76

    -126.29

    -109.13

    -82.88

    -51.73

    Freq.

    (Hz)

    -----

    60.00

    60.00

    60.00

    60.00

    60.00

    60.00

    59.98

    59.35

    58.73

    58.12

    57.52

    56.99

    58.58

    60.20

    61.73

    63.14

    64.16

    64.33

    Mech.

    (MW)

    -----

    2 .7 6

    2 .7 6

    2 .7 6

    2 .7 6

    2 .7 6

    2 .7 6

    2 .7 6

    2 .7 3

    2 .6 9

    2 .6 5

    2 .6 2

    2 .5 8

    2 .6 7

    2 .7 7

    2 .8 5

    2 .9 3

    2 .9 8

    2 .9 9

    Elec.

    (MW)

    -----

    2.7 7

    2.7 7

    2.7 7

    2.7 7

    2.7 7

    2.7 7

    -0.79

    -0.30

    -0.31

    -0.29

    -0.26

    9.2 3

    11.12

    10.88

    10.58

    9.5 9

    6.5 6

    1.2 2

    Term.

    I (A)

    ------

    123.6

    123.6

    123.6

    123.6

    123.6

    123.6

    834.8

    495.4

    491.0

    485.6

    479.2

    837.0

    689.2

    706.9

    656.7

    533.6

    331.3

    105.3

    TS Action Summary Bagian ini berisi semua aksi dalam studi termasuk Transient Stability Study Case Editor yang telah ditentukan dan permulaan aksi relay.

    Device ============

    Main Bus Main Bus

    Action ==========

    Faulted Normal

    Time ========

    0.100 0.200

    One-Line Diagram Display Sebagai tambahan text report, PowerStation menampilkan perhitungan hasil stabilitas transient pada one-line diagram. Ketika anda menggerakkan pointer sepanjang slider, tampilan hasil akan berubah secara bersamaan yang memberikan kemudahan menguji hasil perhitungan. Berikut ini ditunjukkan contoh tampilan one-line diagram untuk studi stabilitas transient.

    75

  • Gambar 75. Transient Stability Study Few

    8. Transient Stability Time-Slider Ketika studi stabilitas stransient telah selesai, Transient Stability Time-Slider seperti yang terlihat dibawah akan tampak disamping Configuration & Mode Toolbar. Range slider dari nol sampai total waktu simulasi. Awalnya, pointer berada pada t=0 detik. Anda dapat men-

    drag slider sesuai keinginan anda.

    Gambar 76. Transient Stability Time Slider

    Tampilan one-line diagram hanya menampilkan peralatan yang telah dipilih pada plot options.

    76

  • PENGGUNAAN KOMPUTER (POWER PLOT) DALAM SETTING RELE PENGAMAN

    1. Manajemen Power Plot Project Sekarang akan dibahas tentang bagaimana melakukan fungsi-fungsi utama dalam

    power plot seperti membuat membuat project baru, membuka project yang sudah ada, menutup project dll. Gambar 1 menunjukkan tampilan layar utama dengan menu file.

    Gambar 1. Layar utama dengan menu File diklik

    Membuat Project Baru

    Klik tombol File pada tool bar, kemudian pilih tombol New Project maka akan muncul layar baru yang dapat digunakan untuk menggambarkan koordinasi rele

    Membuka Project

    Bila sudah mempunyai project lama maka dapat mengambil project tersebut dengan meng-klik tombol File pada tool bar, setelah itu dilanjutkan dengan menekan tombol Open Project. Setelah itu muncul layar dimana dapat dipilih file power plot yang diinginkan.

    77

  • Menutup Project

    Menutup Project dapat dilakukan dengan mengklik tombol File pada tool bar, setelah itu dilanjutkan dengan mengklik tombol Close Project.

    Menyimpan Project

    Menyimpan Project dapat dilakukan dengan mengklik tombol File pada tool bar, setelah itu dilanjutkan dengan mengklilk tombol Save Project As. Dan apabila sudah pernah menyimpan file maka dapat mengklik tombol Save. Setelah itu akan muncul layar Save As seperti yang terlihat pada gambar 2.

    Gambar 2. Layar Save As Project.

    Mengeset Pencetakkan

    Mengeset pencetakkan TCC dapat dilakukan dengan mengklik tombol File pada tool bar, setelah itu dilanjutkan dengan mengklik tombol Print Setup, maka akan muncul window Print Setup seperti yang terlihat pada gambar 3. Di sini dapat diset ukuran kertas yang dipakai dan arah kertas yang dipakai.

    78

  • Gambar 3. Layar Print Setup

    Mencetak

    Mencetak TCC dapat dilakukan dengan mengklik tombol File pada tool bar, setelah itu dilanjutkan dengan mengklik tombol Print, maka akan muncul window Print seperti yang terlihat pada gambar 4 Kemudian tekan OK untuk mencetak.

    Gambar 4. Layar Print

    79

  • 2.

    Ma