85
Phenomenological Models of Neurons Lecture 5

Phenomenological Models of Neurons Lecture 5labs.seas.wustl.edu/.../Lectures/Lecture5_PhenomenologicalModels.pdf · Phenomenological Models of Neurons!! ... g Matlab demo! 32! Vector/Matrix

  • Upload
    lamhanh

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

1!

Phenomenological Models of Neurons!

!Lecture 5!

2!

Some Linear Algebra First!!

Notes from Eero Simoncelli

3!

Vector Addition!

Notes from Eero Simoncelli

4!

Scalar Multiplication of a Vector!

5!

Vector Norm!

6!

Unit Vector!

7!

Inner Product of Vectors (Dot Product)!

Note cos θ is a measure of similarity of two vectors

8!

Outer Product of Vectors !

9!

Linear Projection!

10!

Linear Projection!

11!

Linear Projection!

12!

Linear Combinations!

13!

Vector Space!

14!

Basis Vectors!

15!

Projection using Basis Vectors!

16!

Projection using Basis Vectors!

17!

Projection using Basis Vectors!

18!

Neural encoding problem!

Notes from John Pillow

19!

Neural encoding problem!

Notes from John Pillow

20!

Naïve Approach: A Huge Look-up Table!

Notes from John Pillow

21!

Naïve Approach: A Huge Look-up Table!

Notes from John Pillow

22!

Classical Approach!

Notes from John Pillow

23!

Classical Approach: Receptive Fields!

Hubel and Weisel, 1968

24!

Classical Approach: Receptive Fields!

Notes from John Pillow Georgopolous, 1982

25!

Classical Approach: Receptive Fields!

Notes from John Pillow

•  does not take time into account

26!

Modern Approach!

Notes from John Pillow

27!

Linear Models!

28!

Linear Models!

29!

Linear Models!

30!

Linear Models!

You know X (Stimulus given)

You know Y (Whether neuron

Fired or not)

Find k

31!

Finding Maxima and Minima!g Matlab demo!

32!

Vector/Matrix Calculus!

lecture notes from Dr. Xia Hong

33!

Vector/Matrix Calculus!

lecture notes from Dr. Xia Hong

34!

Vector/Matrix Calculus!

lecture notes from Dr. Xia Hong

If your notation is such that a is row vector

(some text use this notation)

!g!w

=!(aw)!w

=

a1!am

"

#

$$$$

%

&

''''= aT

35!

Vector/Matrix Calculus!

lecture notes from Dr. Xia Hong

36!

Vector/Matrix Calculus!

lecture notes from Dr. Xia Hong

37!

Vector/Matrix Calculus!

lecture notes from Dr. Xia Hong

38!

Linear Models!

You know X (Stimulus given)

You know Y (Whether neuron

Fired or not)

Find k

39!

Lease Squares Estimate!

Sn!d" kd!1

#

= Rn!1

Find k#

to min imize mean$ squared $ error E = (S " k#

$ R)2

40!

Lease Squares Estimate!

Sn!d

kd!1

"

= Rn!1

Find k"

to min imize mean# squared # error E = (S k"

# R)2

$E

$k" %

$

$k" (S k

"

# R)2

= 0

41!

Lease Squares Estimate!

Sn!d

kd!1

"

= Rn!1

Find k"

to min imize mean# squared # error E = (S k"

# R)2

$E

$k" %

$

$k" (S k

"

# R)2

= 0

%$

$k" (S k

"

# R)T (S k"

# R)&'(

)*+= 0 (AB)T = BTAT

%$

$k" (kT

"

ST # RT )(S k"

# R)&

'(

)

*+= 0

%$

$k" (kT

"

STS k"

# kT"

STR# RTS k"

+ RTR&

'(

)

*+= 0

42!

Lease Squares Estimate!

Sn!d

kd!1

"

= Rn!1

Find k"

to min imize mean# squared # error E = (S k"

# R)2

$E

$k" %

$

$k" (S k

"

# R)2

= 0

%$

$k" (kT

"

STS k"

# k1!d

T"

STd!n

Rn!1# RT

n!1Sn!d

kd!1

"

+ RTR&

'(

)

*+= 0

%$

$k" (kT

"

STS k"

# 2 Rn!1

T Sn!d

kd!1

"

+ RTR&

'(

)

*+= 0

43!

Lease Squares Estimate!Sn!d

kd!1

"

= Rn!1

Find k"

to min imize mean# squared # error E = (S k"

# R)2

$E

$k" %

$

$k" (S k

"

# R)2

= 0

%$

$k" (kT

"

STS k"

# 2RT

n!1Sn!d

kd!1

"

+ RTR&

'(

)

*+= 0

% STS k"

+ (STS)T k"

# 2STR) = 0

% 2STS k"

= 2STR

% k"

= (STS)#1STPseudo#inverse! "# $# R

d

d x! A x

!

= AT"

#$$

%

&''

A has row vectors

d

d x! x

!T

A x!

= AT x!

+ A x!"

#$$

%

&''

44!

Over determined systems!

from Wikipedia

45!

Pseudo-inverse intuition!

46!

Linear Model!

47!

Covariance!g A measure of how two variables vary

together!

48!

Linear Model!

Notes from John Pillow

49!

An Example: Homework problem!

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2x 104

2

4

6

8

10

12

14

16

Time (ms)

Tria

ls 1

5Stimulus: Olfactometer Valve Turning On

Response: Sensory Neuron Firing

50!0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

2

4

6

8

10

12

14

16

Time (ms)

Tria

ls 1

5Stimulus: Olfactometer Valve Turning On

Response: Sensory Neuron Firing

Populate Matrices S and R!2 sec stimulus history

100 ms time bins

51!

Populate Matrices S and R!

S R (# spikes)

52!

Best Linear Filter Model!

2101

0.5

0

0.5

1

1.5

2

Lag (Time in Seconds)

Lag (Time in Seconds)

Wei

ghtin

g of

the

Stim

ulus

!

" k#

= (STS)$1STPseudo$ inverse! " # $ # R

53!

Predicted Response Vs Actual Response!

0 100 200 300 400 500 600 700 800 9001

0

1

2

3

4

5

6

7

8

9

Actual Response in different time binsPredicted Response

54!

2D – Flickering Bars!

55!

Spike Triggered Average!

56!

Spike Triggered Average!

57!

Spike Triggered Average!

58!

Spike Triggered Average!

59!

Spike Triggered Average!

60!

Spike Triggered Average!

61!

Spike Triggered Average!

62!

Spike Triggered Average!

63!

Spike Triggered Average!

64!

Spike Triggered Average!

65!

Spike Triggered Average!

66!

Spike Triggered Average!

67!

Spike Triggered Average!

68!

Spike Triggered Average!

69!

Back to our homework!

Spikes

No Spikes

70!

Spike Triggered Average!

21040

20

0

20

40

60

80

100

120

Lag (Time in Seconds)

Wei

ghtin

g of

the

Stim

ulus

71!

Spike Triggered Average!

P(Stim, Spikes)

P(Stimulus)

Projection along STA axis

72!

Polynomial Model!

73!

Polynomial Model!

74!

For Homework Problem:!

Spike Triggered Average Spike Triggered Covariance

75!

Linear-Nonlinear-Poisson Cascade Model !

76!

Linear-Nonlinear-Poisson Cascade Model !

Notes from John Pillow

77!

Linear-Nonlinear-Poisson Cascade Model !

Notes from John Pillow

78!

Linear-Nonlinear-Poisson Cascade Model !

79!

Linear-Nonlinear-Poisson Cascade Model !

80!

When does STA fail?!

81!

Suppressive interactions !

82!

Other Modifications!

83!

Multi-neuron GLM!

84!

Multi-neuron GLM!

JW Pillow et al. Nature 000, 1-5 (2008) doi:10.1038/nature07140!

85!