50
© 2010 アンシス・ジャパン株式会社. All rights reserved. 1 ANSYS Japan K.K. . Proprietary © 2010 アンシス・ジャパン株式会社 All rights reserved. 1 ANSYS, Inc. Proprietary Takayuki Sekisue ANSYS Japan K.K. Power supply and power management simulation 2010 / 11/05

Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

  • Upload
    others

  • View
    6

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 1 ANSYS Japan K.K. . Proprietary © 2010 アンシス・ジャパン株式会社 All rights reserved. 1 ANSYS, Inc. Proprietary

Takayuki Sekisue

ANSYS Japan K.K.

Power supply and power

management simulation 2010 / 11/05

Page 2: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 2 ANSYS Japan K.K. . Proprietary

Introduction

• The most important problem for design and

manage power electronics system is…

– Device loss and thermal cycle.

– Surge voltage/current at switching process.

– Conduction noise on power line.

Page 3: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 3 ANSYS Japan K.K. . Proprietary

Contents

• IGBT Device model

– Semiconductor device model on Simplorer

– IGBT Device model : Average / Dynamic

– Capability of IGBTmodel

• Thermal management for Inverter

– Thermal model in Simplorer’s semiconductor model.

– Extract thermal network from ANSYS Icepak

– Heat / Power loss coupling with device model

• Inverter surge and conduction noise

– Extract parasitic LCR from Q3D Extractor

– Inverter surge and conduction noise in Simplorer

Page 4: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 4 ANSYS Japan K.K. . Proprietary

Semiconductor device model in

Simplorer

• Ideal switch model

– ON:short, OFF:open

• Semiconductor system level

– Modeled as nonlinear resistance in consideration of

a static characteristic.

• Semiconductor device level

– Dynamic characteristics, therma and physical

characteristics are modeled. • BJT / MOSFET /JFET / IGBT / Diode / Thysistors…

• SPICE compatible

– spice-3f5 compatible • MOSFET (spice3 Lv.1 - 6, BSIM1 - 4, EKV,JFET)

Page 5: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 5 ANSYS Japan K.K. . Proprietary

IGBT model

1. System model

• Nonlinear resistance

• verification of operation

2. Average model

• Static char. & average loss.

• Heating & temp. rise

3. Basic Dynamic model

• Dynamic char.& Energy

• Switching loss & heating.

4. Advanced Dynamic model

• Detailed dynamic char.

• Inverter surge & noise

1) 2)

3) 4)

Page 6: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 6 ANSYS Japan K.K. . Proprietary

Average IGBT model

• A switching waveform (current and voltage) is systematic.

• Calculate a switching loss for every cycle.

• DC loss and turn ON/OFF loss pulse is an input to a thermal network.

• Losses compute as an averaged rectangle pulse.

• A thermal network is calculable in the independent sampling time.

• PON/POFF – switching loss

• EON/EOFF – switching energy loss

• PDC – conduction loss

• TON/TOFF – turn on , turn off time

• Vce,sat – collector-emitter saturation voltage.

Page 7: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 7 ANSYS Japan K.K. . Proprietary

-231.0n 618.0n0 200.0n 400.0n

-50.0

700.0

0

166.7

333.3

500.0

-172.0n 750.0n0 200.0n 400.0n 600.0n

-50.0

700.0

0

166.7

333.3

500.0

Dynamic IGBT model

• Static characteristic modeled the same as Average model.

• Switching energy is derived by the integration of a current cross voltage

waveform.

• The Dynamic model can obtain an exact switching waveform.

• It can applies also to EMI/EMC and a noise simulation.

(VCE=600V、IC=300A、VGE=15V、T=25℃)

Eoff

Eon

Page 8: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 8 ANSYS Japan K.K. . Proprietary

IGBT device circuit model

Internal equivalent circuit

Internal thermal network

Current, Voltage, Temp., VgeSlope dependency

modeled for each capacitance.

Independent tail current source.

RC snubber are implemented.

Page 9: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 9 ANSYS Japan K.K. . Proprietary

Voltage dependency for

capacitance.

,DIFFV

SHIFTV0ˆ JV

Diff

J

V

VCC

1

1ˆexp1110

0̂JV

DiffJ VVCC

ˆ1

10

の時(エンハンスモード)

(21)

の時(デプレッションモード)

(22)

Each parameter which determines a characteristic curve is an input parameter for a device.

Advanced Dynamic : All parameters are accessible.

Basic Dynamic : fixed some parameters as typical value.

Page 10: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 10 ANSYS Japan K.K. . Proprietary

Characteristic extraction of the

device level IGBT

Infineon :

eupec FZ600R12KE3

Parameter extraction tool is used and it is parameter fitting from a data sheet.

Extraction tool

0.00 1.00 2.00 3.00 4.00 5.00Vce.V [V]

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

Ic.I [A

]

x02_OutputOutput Char. @Tj=125c

Curve Info

Ic.ITR

Output Char. Vce-Ic

Vg=17

15

11

9

Data sheet

Page 11: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 11 ANSYS Japan K.K. . Proprietary

IGBT Parameter extraction tool

*.csv

SheetScan tool

Data sheet picture => XY value.

ASCII Data

Page 12: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 12 ANSYS Japan K.K. . Proprietary

Vce – Ic Output characteristics.

Specify the data of

saturation and temperature-

characteristics in nominal

temperatur.

Full saturated

Semi

saturated

= Nominal temperature

Ch.1- 19V – 125°C

Ch.4- 11V – 125°C

= Tdiff Full saturated branch

Semisaturated branch

Not available!

Ch.5- 15V – 25°C

Not Used Point : data sheet

Curve : fitting result.

Page 13: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 13 ANSYS Japan K.K. . Proprietary

Thermal impedance extraction

Infineon :

eupec FZ600R12KE3

Thermal network (IGBT & Diode)

IGBT Diode

ベースプレート

ヒートシンク 熱容量

熱グリス

放熱抵抗

25℃ 雰囲気温度

熱源

特性抽出ツール

Data Sheet

Thermal impedance is also extracted by Extraction tool.

0 650.0 125.0 250.0 375.0 500.0 0

70.00

10.00

20.00

30.00

40.00

50.00

60.00

E=f(Ic)

Eon

Eoff

I [A]

E

[mJ]

1k * igbt_... 1k * igbt_...

Eon = f... Eoff = f...

20.0 140.0 40.0 60.0 80.0 100.0 120.0 15.00

40.00

17.50

20.00

22.50

25.00

27.50

30.00

32.50

35.00

37.50

E=f(Tc)

Eon

Eoff

E

[mJ]

Tc [C]

Extraction tool

Page 14: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 14 ANSYS Japan K.K. . Proprietary

Temperature, current dependency

Current dependency Eon,Eoff

0 650.0 125.0 250.0 375.0 500.0 0

70.00

10.00

20.00

30.00

40.00

50.00

60.00

Switching energy E - Ic

Eon

Eoff

I [A]

E [mJ]

1k * igbt_... 1k * igbt_...

Eon = f... Eoff = f...

20.0 140.0 40.0 60.0 80.0 100.0 120.0 15.00

40.00

17.50

20.00

22.50

25.00

27.50

30.00

32.50

35.00

37.50

Switching energy E- Tjc

Eon

Eoff

E

[mJ]

Tjc [C]

Temperature dependency Eon,Eoff

- The reproducibility and the stability of Irr are very good.

- Correspond to dependency of temperature, current voltage, and Vg slope.

- It is special parameter needlessness by moderate behavioral modelization.

- It is possible to take the temperature change of each device.

Page 15: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 15 ANSYS Japan K.K. . Proprietary

Eon/Eoff sampling for thermal

problem

• Temperature rise simulation.

Basic Dynamic model Average model

Power loss

Power loss

temperature

temperature

Independent sampling time is possible for temperature calculation of Average model.

Page 16: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 16 ANSYS Japan K.K. . Proprietary

Reproducibility of SW waveform

for noise simulation

-231.0n 618.0n0 200.0n 400.0n

-50.0

700.0

0

166.7

333.3

500.0

-172.0n 750.0n0 200.0n 400.0n 600.0n

-50.0

700.0

0

166.7

333.3

500.0

Turn on Turn off

Advanced

Dynamic model

Basic Dynamic

model

Basic Dynamic model

corresponds only to get

td(on), td(off) and slope.

Advanced Dynamic model

corresponds to get correct

memory effect time and

detailed wave form.

Page 17: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 17 ANSYS Japan K.K. . Proprietary

Reverse recovery current.

- determined based on the accumulation electric charge Qrr.

- Specify the position of knee point (1) – (4)

- Specify the rate of each section.

- Choose the type of the interpolation function of each section.

Charge Qrr is operatable by a parameter of the

life time of minor carrier.

Waveform is dependent on current, voltage

and temperature, and a drive condition. dt

dQdId

0QIQ PNd

(30)

Page 18: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 18 ANSYS Japan K.K. . Proprietary

Contents

• IGBT Device model

– Semiconductor device model on Simplorer

– IGBT Device model : Average / Dynamic

– Capability of IGBTmodel

• Thermal management for Inverter

– Thermal model in Simplorer’s semiconductor model.

– Extract thermal network from ANSYS Icepak

– Heat / Power loss coupling with device model

• Inverter surge and conduction noise

– Extract parasitic LCR from Q3D Extractor

– Inverter surge and conduction noise in Simplorer

Page 19: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 19 ANSYS Japan K.K. . Proprietary

Thermal characteristic + cooling

conditions of a device

IGBT Diode

ベースプレート

ヒートシンク 熱容量

熱グリス

放熱抵抗

25℃ 雰囲気温度

熱源

thermal dissipation Rth

Heat sink Cth

Thermal characteristics of device

QRTH

cVCTH

Thermal

resistance

Thermal

Capacitance

ARth

1

A

LRth

34

1

mfATRth

Conduction

Convection

Radiation

Page 20: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 20 ANSYS Japan K.K. . Proprietary

Inverter loss and temperature problem.

The conventional simulation

Parasitic LCR Device Char.

0.00 0.50 1.00 1.50 2.00 2.50Time [ms]

0.00

1000.00

2000.00

3000.00

3673.95

Y1

Ansoft LLC Sheet4_TR_Y_static_dtimePowerLossesCurve Info

Diode601.PELTR

NIGBT_AdvDyn1.POWER_TTR

Switching loss in device

0.00 0.50 1.00 1.50 2.00 2.50Time [ms]

27.00

27.05

27.10

27.14

Y1

Ansoft LLC Sheet4_TR_Y_static_dtimeTemperature RiseCurve Info

Diode601.TEMPJNCTTR

NIGBT_AdvDyn1.TEMPJ_TTR

Temperature rise on device

- more concrete cooling conditions into

consideration.

- Derivation of module composition to a

heat circuit is serious.

Page 21: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 21 ANSYS Japan K.K. . Proprietary

Extraction and link of a thermal

network (technical background)

• The temperature rise in the arbitrary points in a system is the

independent sum of a temperature rise by each heat source.

• Assumptions

– The temperature change from heat source is a linea.

– Steady flow. Also density, specific heat changes as linear.

Simplorer

ANSYS Icepak

Project name is

only specified.

Page 22: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 22 ANSYS Japan K.K. . Proprietary

What is Icepak ?

Thermo fluid dynamics simulation software for electronic

device engineers.

A tool for the electronic device designer to do a thermal design

easily.

It focuses on "the cooling analysis of an electronic device", and

can carry out modeling, mesh generation, calculation, and post

processing quickly.

Page 23: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 23 ANSYS Japan K.K. . Proprietary

Inverter package thermal model.

• Parallel 3Ph inverter system.

• Air cooling : 18[CFM] const.

1T

2T

3

4

1D

2D

1 module

Heat source on

Each device

Observation point

on each device

->

Thermal terminal

1T 1D 2T 2D

3 4

Page 24: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 24 ANSYS Japan K.K. . Proprietary

Parametric on Icepak

⇒ import Simplorer

geometry parametric

Θ(t) ⇒ Zth

Thermal

network

Fitting

P

TT

P

T)t(Z ref

th

Automatically

computation with

parametrized

heat source

Automation

Import Icepak

project

Simplorer ANSYS Icepak

)(t

Page 25: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 25 ANSYS Japan K.K. . Proprietary

Thermal network

Tn21

nn2n1n

n22221

n11211

n

2

1

)t(h)t(h)t(h

)t()t()t(

)t()t()t(

)t()t()t(

)t(T

)t(T

)t(T

Foster RC network

Each matrix element consists of Foster circuits which

express transient response.

Page 26: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 26 ANSYS Japan K.K. . Proprietary

IGBT Thermal model

blue:Icepak red:fitting result

2.5

NODE 1T:self thermal impedance NODE 2T to 1T : Zth

NODE 3T to 1T NODE 4T to 1T

0.8

0.8 0.5

Page 27: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 27 ANSYS Japan K.K. . Proprietary

IGBT inverter design

Circuit design (loss) + thermal model

Line current

1T, 1D SW loss + DC loss

1T, 1D

junction

temperature

Package

temperature

Examination of

temperature cycle

1T 1D

Ambient temperature = 20 cel

Page 28: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 28 ANSYS Japan K.K. . Proprietary

-231.0n 618.0n0 200.0n 400.0n

-50.0

700.0

0

166.7

333.3

500.0

Simplorer + Icepak

= Detailed modeling of thermal system

Simplorer

ANSYS Icepak Q3D Extractor

Parasitism LCR

extraction

Device property and

loss consultation

CAD Import

Design of the cooling

technique and

arrangement

Design of substrate radiating route

The simulation in consideration

of change of detailed

temperature environment

Page 29: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 29 ANSYS Japan K.K. . Proprietary

Contents

• IGBT Device model

– Semiconductor device model on Simplorer

– IGBT Device model : Average / Dynamic

– Capability of IGBTmodel

• Thermal management for Inverter

– Thermal model in Simplorer’s semiconductor model.

– Extract thermal network from ANSYS Icepak

– Heat / Power loss coupling with device model

• Inverter surge and conduction noise

– Extract parasitic LCR from Q3D Extractor

– Inverter surge and conduction noise in Simplorer

Page 30: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 30 ANSYS Japan K.K. . Proprietary

Basic information

• Inductive load coil

– IPMSM

– Ground resistance is not considered.

• Inverter drive

– 200VDC

– Line current limit 22[Arms]

• Triangular-wave PWM

– Carrier frequency : 20[kHz]

– A modulated wave is 200 [Hz] : from motor 3000[RPM]/PolePairs.

– Duty : 0.95

– Consider dead time as 1[us]

270mm

Page 31: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 31 ANSYS Japan K.K. . Proprietary

Basic model topology

Coil : 178[mohm]

2.46[mH] Vcc 200[V]

Carrier 20kHz

Modulated wave 200Hz

Duty 0.95

Dead time 1[us]

Page 32: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 32 ANSYS Japan K.K. . Proprietary

Line current on basic model.

IA.I [A

]

IB.I [A

]

IC.I [A

]

-60.00

60.00

-40.00

-20.00

0

20.00

40.00

0 80.00m50.00m

IA.I [A

]

IB.I [A

]

IC.I [A

]

-35.00

35.00

-20.00

0

20.00

75.00m 80.00m78.00m

IA.I [A

]

IB.I [A

]

IC.I [A

]

0

35.00

10.00

20.00

30.00

76.99m 78.75m

The harmonics

by a career are

seen.

Page 33: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 33 ANSYS Japan K.K. . Proprietary

IGBT switching wave form

(DC characterization only)

Ideal turn-on, off wave form

Since the ideal circuit model & device model

is used, it becomes a beautiful waveform.

It corresponds to the design of a control

algorithm in an enough and high-speed

simulation.

Page 34: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 34 ANSYS Japan K.K. . Proprietary

Distortion by a parasitism

ingredient

An Electrical structure

"Form" affects an electrical property.

Functional

Chips

In Out

Functional

Chip

Package structure

- Parasitism ingredient

- Heat characteristic

- Structural factor

Ideal character

Page 35: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 35 ANSYS Japan K.K. . Proprietary

IPM parasitism extraction model

(a part ofsingle phase)

16

mm

P terminal

N terminal

U terminal

diode

IGBT

Each bus bar and a base plate are copper.

A bonding wire is aluminum. 2 parallel operation Equivalent circuit

Page 36: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 36 ANSYS Japan K.K. . Proprietary

A setup of Q3D Extractor:

Specification of material

Q3D Extractor GUI

Terminal, plate

Cooper

Bonding wire

aluminum.

Base

Al2O3

Select geometry, Apply materials from database

𝜎 = 3.8𝑒7 𝑆 𝑚

𝜖𝑟 = 9.8 −

𝜎 = 5.8𝑒7 𝑆 𝑚

Page 37: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 37 ANSYS Japan K.K. . Proprietary

A setup of Q3D Extractor :

Network specification

P to Collector surface Emitter junction to N CE surface to U

A network is automatic recognition.

The input-and-output side of current is specified.

Page 38: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 38 ANSYS Japan K.K. . Proprietary

A setup of Q3D Extractor :

Solution setup / Matrix output

Required computation time (Q3D v8) RealTime CPUTime UsageMemory

Capacitance : 00:24:17 00:40:52 252MB

DC Resistance/Inductance : 00:01:25 00:01:22 255MB

AC Resistance/Inductance : 00:54:40 00:54:06 1.21GB

Core2Duo 2.8GHz / RAM 3.5GB

Solution setup

Capacitance between conductors DC resistance/Inductance between ports

Page 39: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 39 ANSYS Japan K.K. . Proprietary

A result of Q3D Extractor:

The current distribution

AC 22[Arms]: 300MHz DC 22[A] ON state

In AC-300MHz, it arranges so that current may concentrate on one side purposely.

Page 40: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 40 ANSYS Japan K.K. . Proprietary

Coupling with Q3D Extractor and

Simplorer

Equivalent circuit

- DC or AC

Static

Equivalent circuit

- DC or AC

State Space

- Frequency sweep

Inverse FFT

- Frequency sweep

Dynamic

ECE File

Project info

Q3D Extractor Simplorer

The frequency

characteristic of R/L

DC ECE model

AC ECE model

State space / Inverse FFT model

In an equivalent circuit model, the

value in DC or specific frequency is

used.

A state space model carries out fitting

of the frequency characteristic.

Page 41: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 41 ANSYS Japan K.K. . Proprietary

Verification :

Turn on current

Half bridge : inductive load model

0 - 1ms

Simplorer 8.1

DC ECE model Hmin = 1ns

RealTime 00:01:33

Inverse FFT model Hmin = 0.02ns

RealTime 42:15:19

AC ECE model Hmin = 1ns

RealTime 00:02:30

Red : parallel 1 side

Blue : parallel 2 side

State space model Hmin = 1ns

RealTime 00:01:58

A state space model is the best for simulate a surge waveform.

Page 42: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 42 ANSYS Japan K.K. . Proprietary

Simplorer operation

Importing Q3D project

Simplorer Circuit/ Add Subcircuit / Q3D Dynamic component

Design name

Project file name

Drag & Drop the registered component

onto schematic.

Arrange terminal position using symbol editor.

Page 43: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 43 ANSYS Japan K.K. . Proprietary

Applied example

Busbar

IPM Gate drive

Motor windings

Page 44: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 44 ANSYS Japan K.K. . Proprietary

IGBT switching wave form

(with dynamic characterization)

Device dynamic char. + parasitism : turn-on, turn-off wave form

Detailed surge

waveform and

ringing by a

reflection are shown.

Page 45: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 45 ANSYS Japan K.K. . Proprietary

A similar problem checked by

HFSS. (20cm shield box)

25MHz E field 78MHz E field

Impedance 3m: E field

SW power supp GND plate

20cm box

1m cable

1uH,1uF

Current source

-> (Voltage noise)

=> CM noise

In 78 MHz, the behavior of a capacity electric field is seen between case to GND.

Page 46: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 46 ANSYS Japan K.K. . Proprietary

Ground loop and stray capacitance

required to CM noise simulation.

Power cable 1.5m

LISN

Motor

Capacitance between

winding to stator

3ph shielding cable

To LISN

From motor A cable and a GND plane are modeled in Q3D.

Page 47: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 47 ANSYS Japan K.K. . Proprietary

Separation of the CM/DM voltage

by LISN

Weve form

CM voltage: Vcm

VM voltage: Vdm

Common mode voltage(Vcm) & differential mode voltage(Vdm)

CM voltage and DM voltage waveform which were obtained by LISN

Page 48: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 48 ANSYS Japan K.K. . Proprietary

A noise ingredient is extracted

using FFT.

- without ground loop

Page 49: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 49 ANSYS Japan K.K. . Proprietary

A noise ingredient is extracted

using FFT.

When a grand loop is taken into consideration, it has big influence on CM noise.

Page 50: Power supply and power management simulationregister.ansys.com.cn/.../document/s02_IGBT_summary_02.pdf · 2016-08-07 · • IGBT Device model – Semiconductor device model on Simplorer

© 2010 アンシス・ジャパン株式会社. All rights reserved. 50 ANSYS Japan K.K. . Proprietary

Conclusion

• Introduction of the IGBT device model of

Simplorer.

• Cooperates an IGBT heat model and the heat

model of cooling structure.

• Extraction of an electric equivalent circuit

model, and the simulation of the stable surge

waveform .

• Extraction of a conduction noise, and

influence of a grand loop .