64
Het Falende Hart in Beweging Victor Niemeijer Sportarts, Elkerliek Ziekenhuis Helmond CNE Hartfalen en Hartrevalidatie Nederlandse Vereniging voor Hart en Vaat Verpleegkundigen Dinsdag 21 april 2015

Presentatie V. Niemeijer, Het falende hart in beweging

  • Upload
    lytuyen

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Presentatie V. Niemeijer, Het falende hart in beweging

Het  Falende  Hart  in  Beweging  

Victor  Niemeijer  Sportarts,  Elkerliek  Ziekenhuis  Helmond  

 CNE  Hartfalen  en  Hartrevalidatie  

Nederlandse  Vereniging  voor  Hart  en  Vaat  Verpleegkundigen        

Dinsdag  21  april  2015    

Page 2: Presentatie V. Niemeijer, Het falende hart in beweging

*  Pathofysiologie  

*  Fysieke  Training  

*  Inspanningsdiagnostiek  

Inhoud  

CNE  Hartfalen  en  Hartrevalidatie   2  

Page 3: Presentatie V. Niemeijer, Het falende hart in beweging

Vraag   Score   Antwoord   Verschil  (abs)  

1  

2  

3  

4  

5  

6a  

6b  

som  

Quiz  

CNE  Hartfalen  en  Hartrevalidatie   3  

Page 4: Presentatie V. Niemeijer, Het falende hart in beweging

*  Hoeveel  procent  van  de  patiënten  met  chronisch  hartfalen  is  in  Nederland  vijf  jaar  na  diagnose  overleden?  

Vraag  1  

CNE  Hartfalen  en  Hartrevalidatie   4  

Page 5: Presentatie V. Niemeijer, Het falende hart in beweging

*  Hoeveel  procent  van  de  patiënten  met  chronisch  hartfalen  die  een  indicatie  hebben  voor  hartrevalidatie  krijgt  dit  in  Nederland  daadwerkelijk  aangeboden?  

Vraag  2  

CNE  Hartfalen  en  Hartrevalidatie   5  

Page 6: Presentatie V. Niemeijer, Het falende hart in beweging

*  Hoeveel  procent  van  de  patiënten  met  chronisch  hartfalen  verbeteren  hun  peak  VO2  (>109%)  door  fysieke  training?  

Vraag  3  

CNE  Hartfalen  en  Hartrevalidatie   6  

Page 7: Presentatie V. Niemeijer, Het falende hart in beweging

*  Hoeveel  procent  van  de  patiënten  met  chronisch  hartfalen  valt  gemiddeld  uit  tijdens  een  fysiek  trainingsprogramma  van  12  weken?  

Vraag  4  

CNE  Hartfalen  en  Hartrevalidatie   7  

Page 8: Presentatie V. Niemeijer, Het falende hart in beweging

*  Hoeveel  hartslagen  (/min)  moet  men  bij  inspanning  verwijderd  blijven  van  de  VT-­‐zone  van  de  ICD  van  een  CHF  patiënt?  

Vraag  5  

CNE  Hartfalen  en  Hartrevalidatie   8  

Page 9: Presentatie V. Niemeijer, Het falende hart in beweging

*  Vanaf  welke  waarde  voor  peak  VO2  

*  wordt  een  CHF  patient  geschikt  geacht  voor  hartrevalidatie?  (goed  genoeg)  

*  wordt  een  CHF  patient  geschikt  geacht  voor  harttransplantatie?  (slecht  genoeg)  

Vraag  6  

CNE  Hartfalen  en  Hartrevalidatie   9  

Page 10: Presentatie V. Niemeijer, Het falende hart in beweging

Epidemiologie  Het  Falende  Hart  in  Beweging  

CNE  Hartfalen  en  Hartrevalidatie   10  

Page 11: Presentatie V. Niemeijer, Het falende hart in beweging

Epidemiologie  

CNE  Hartfalen  en  Hartrevalidatie   11  

Page 12: Presentatie V. Niemeijer, Het falende hart in beweging

Pathofysiologie  Het  Falende  Hart  in  Beweging  

CNE  Hartfalen  en  Hartrevalidatie   12  

Page 13: Presentatie V. Niemeijer, Het falende hart in beweging

*  “A  pathophysiological  state  in  which  an  abnormality  of  cardiac  function  is  responsible  for  the  failure  of  the  heart  to  pump  blood  at  a  rate  commensurate  with  the  requirements  of  the  metabolising  tissues”  (Braunwald,  1980)  

*  Etiologie  *  Ischemische  cardiomyopathie  *  Dilaterende  cardiomyopathie  *  Hypertensieve  cardiomyopathie  *  Valvulaire  cardiomyopathie  

Pathofysiologie  CHF  

CNE  Hartfalen  en  Hartrevalidatie   13  

Page 14: Presentatie V. Niemeijer, Het falende hart in beweging

0

50

100

150

200

SV (m

l)

Gezond

0

10

20

30

Car

diac

Out

put (

l/min

)

CHF

0

10

20

30

Car

dia

c O

utp

ut

(L/m

in)

0

50

100

150

200

SV (m

l)

0

50

100

150

200

HF

0

50

100

150

200

HF

CNE  Hartfalen  en  Hartrevalidatie   14  

Page 15: Presentatie V. Niemeijer, Het falende hart in beweging

*  Centraal  *  Afgenomen  cardiac  output  (CO  =  SV  X  HR)  *  Afgenomen  LVEF  (dilatatie)  *  Coronair  perfusie  *  Sympathetic  nerve  activity  (SNA)  *  Systemische  inflammatie  

Pathofysiologie  CHF  

CNE  Hartfalen  en  Hartrevalidatie   15  

Page 16: Presentatie V. Niemeijer, Het falende hart in beweging

*  Perifeer  *  Perifere  vasoconstric.e  (neurohormonaal)  *  Skeletspieratrofie  *  Shi$  vezeltype  (I            IIa/b)  

*  Calciummetabolisme  *  Capillairen  *  verminderde  RBC  flux  

*  Compe..eve  bloedstromen  *  Ademhalingspieren  vs  locomotor  spieren  

Pathofysiologie  CHF  

decrease in muscle pH during exercise, and decreased mitochon-drial density and oxidative enzyme content. Consistent with thehypothesis that the skeletal myopathy in HF limits exercisecapacity, each of these features has been correlated with de-creased exercise capacity in patients with chronic HF.

Controversy in the Role of MitochondrialOxidative Metabolism

Although a compelling and appealing explanation for theexercise dysfunction in HF, the story of the skeletal myopathyof HF as outlined thus far may be incomplete.

Intrinsic Mitochondrial FunctionMettauer et al16 examined the intrinsic mitochondrial functionin situ rather than selective enzyme activity in homogenizedspecimens in intact muscle biopsies from patients withchronic HF on optimal therapy and compared them with truesedentary as well as active control subjects. HF patientscompared with sedentary and active control subjects haddiminished exercise capacity as measured by peak oxygenconsumption and ventilation threshold; selective mitochon-drial enzyme activity was diminished as well. Surprisingly,however, the muscle (mitochondrial) oxidative consumptionwas not different in HF patients compared with the sedentarycontrol subjects(Figure 2). Muscle mitochondrial oxidationwas diminished in both of these groups compared with theactive control group. The investigators point out that themitochondrial oxygen consumption (the tricarboxylic acidcycle) is not limited by a rate limiting enzyme and thatalthough individual enzyme activity levels are diminished inHF, they are apparently still in sufficient quantity to maintainnormal mitochondrial respiration. These findings have beenconfirmed by other investigators.17

These investigators have reopened the question of whatadditional factors in the skeletal musculature, other thanmitochondrial oxidative metabolism, may lead to decreasedexercise capacity in chronic HF patients on optimal therapy.

Skeletal Muscle Excitation-Contraction CouplingAfter depolarization of the sarcolemma, calcium is releasedfrom the intracellular calcium storage site, the sarcoplasmicreticulum(SR), through type 1 ryanodine receptors (RyR1)(Figure 3). Intracellular calcium concentration rapidly in-creases, binding troponin C, allowing myosin and actin crossbridges to form, leading to muscle contraction in a processcalled excitation-contraction (E-C) coupling. Calcium is thenrapidly sequestered in an energy-requiring reaction utilizingthe sarco(endo)plasmic reticulum Ca2!-ATPase (SERCA).Abnormalities of E-C coupling have been identified in HF,although much of the work has focused on cardiac but notskeletal muscle E-C coupling.

60

40

20

00 10 15 20 25

Peak VO2 (ml/kg/min)

Fibe

r Typ

e I (

%)

r = 0.68p<.01

20

10

00 10 15 20 25

Peak VO2 (ml/kg/min)Fi

ber T

ype

IIB (%

) r = -0.81p<.01

50

40

30

20

10

0 1 2 3 4 5 6 7 8 9Volume Density of Mitochondria

Peak

VO

2(m

l/min

/kg)

HFNL

p<0.0001r = 0.57n = 60

A

B

Figure 1. A, Fiber type shift correlates with decreased exercisecapacity. Morphometric analyses of muscle biopsies from HFpatients have revealed a shift in fiber type, from slow-twitch,oxidative type I fibers to fast-twitch, glycolytic type IIb fibers.The shift in fiber type correlates with diminished exercise capac-ity as estimated by peak oxygen consumption. B, Decreasedmitochondrial density correlates with decreased exercise capac-ity. Quantified by electron microscopy, volume density of themitochondrial in HF is significantly diminished compared withcontrol subjects. See text for discussion. Filled squares indicateHF and open squares, control subjects. Reprinted with permis-sion from Woltersk Kluwer/Lippincott Williams & Wilkins.9

141210

86420

0 10 20 30 40 50 60VO2 peak (ml/min-1/kg-1)

Mus

cle

Oxi

dativ

e C

apac

ity(V

max

mol

O2/

min

-1/g

-1 d

w))

0 10 20 30 40VO2 at VT (ml/min-1/kg-1)

A B

Exercise Capacity

CHF r = 0.46 p = 0.09C r = 0.68 p = 0.0008

CHF r = 0.44 p = 0.1C r = 0.69 p = 0.0005

Figure 2. Correlation between exercise capacity and muscleoxidative capacity. HF patients have lower exercise capacity butsimilar muscle oxidative capacity compared with sedentary con-trol subjects; both exercise capacity and muscle oxidativecapacity are lower in these groups compared with active controlsubjects. The decreased exercise capacity in HF, therefore, can-not be entirely attributed to decreased muscle oxidative capac-ity. Open circles indicate HF; open triangles, sedentary controlsubjects; and closed triangles, active control subjects. Modifiedfrom Reference 16.

538 Circ Heart Fail July 2010

by guest on November 18, 2011circheartfailure.ahajournals.orgDownloaded from

CNE  Hartfalen  en  Hartrevalidatie   16  

Page 17: Presentatie V. Niemeijer, Het falende hart in beweging

*  Coordinated  adaptation  

Pathofysiologie  CHF  

Exercise necessitates adequate oxygen transport and deliv-ery to meet the increased oxygen requirements in exercisingmuscle. Oxygen transport is a multistep pathway in which thecardiovascular system works alongside the pulmonary, hema-tologic, and metabolic systems to ensure adequate oxygentransport. According to the theory of coordinated adaptation,when an acute, primary cardiac disorder becomes chronic,such as when an acute myocardial infarction progresses tochronic systolic dysfunction, the reserves of oxygen transportcapacity in the periphery are unused and superfluous. In thissetting, maintaining an excessive oxidative muscle mass in apatient with a severely limited cardiac output might imposelarge energetic requirements to maintain a reserve capacityunlikely ever to be utilized. Thus, a system governed bycoordinated adaptation ensures that the overall efficiency ofthe system is optimized by matching all steps at a lowerfunctional level (Figure 5).

The chronic condition of COPD may be an additionalexample of coordinated adaptation,6 in which a skeletalmyopathy, sharing many of the features of the skeletalmyopathy of HF, is present.3,26 Chronic renal failure, al-though more heterogeneous, may be yet another example.27

In these chronic conditions, reduced muscle mass, fiber

atrophy and switch from oxidative to glycolytic fiber types,decreased oxidative enzyme content and mitochondrial den-sity have all been described.

How is the Downregulation of All SystemsInvolved in Oxygen Transport Signaled and

Coordinated Throughout the Body?All of these chronic conditions, HF, COPD, and chronic renaldisease, share the common feature of a stressed system. Ineach case, SNA is chronically elevated, approaching achronic flight or fight condition. Although acutely life-saving, chronic activation of the sympathetic nervous systemhas many deleterious consequences. In chronic HF, I hypoth-esize that sympathetic excitation provides an important signalto the skeletal musculature that there has been a primarycardiac injury (Figure 6). SNA may directly and indirectly,through cytokine release, then lead to the coordinated, sec-ondary downregulation of the other steps in oxygen transport,especially downregulation of the skeletal muscle capacity.

In summary, increased SNA during acute cardiac injurybecomes chronic and may be the signal to other organs andtissues to decrease oxygen transport capacity.

Untrainedperson

Olympicathlete

PulmonaryDiffusion

CardiovascularDelivery

MuscleExtraction

OxidativePhosphorylation

ChronicLungDisease

ChronicHeartFailure

Capacity

+ + + +

0 ++ ++ ++

+ + + +

+ + + +

∆ flux∆ capacity

Figure 5. Coordinated adaptation in oxy-gen transport. Arrow size indicatescapacity; shaded arrows indicate sites ofgreatest limitation. The number of plussigns indicates the effect of changingcapacity on changing maximal oxygenflux. The athlete has matched capacitiesat all steps. The untrained person is lim-ited by cardiovascular delivery and mus-cle extraction. The patient with chroniclung disease is limited by pulmonary dif-fusion. In chronic HF, the limited maxi-mal cardiac output leads to downregula-tion of muscle oxygen extraction andmitochondrial utilization. Modified fromReference 6.

Figure 6. Mechanisms by which SNAmay contribute to the skeletal myopathyof HF. See text for discussion.

540 Circ Heart Fail July 2010

by guest on November 18, 2011circheartfailure.ahajournals.orgDownloaded from

CNE  Hartfalen  en  Hartrevalidatie   17  

Page 18: Presentatie V. Niemeijer, Het falende hart in beweging

Fysieke  training  Het  Falende  Hart  in  Beweging  

CNE  Hartfalen  en  Hartrevalidatie   18  

Page 19: Presentatie V. Niemeijer, Het falende hart in beweging

Centrale  effecten  reverse  remodelling  

CNE  Hartfalen  en  Hartrevalidatie   19  

Page 20: Presentatie V. Niemeijer, Het falende hart in beweging

CNE  Hartfalen  en  Hartrevalidatie   20  

Page 21: Presentatie V. Niemeijer, Het falende hart in beweging

Centrale  effecten  reverse  remodelling  

CNE  Hartfalen  en  Hartrevalidatie   21  

`````````  

`````````````````  

Page 22: Presentatie V. Niemeijer, Het falende hart in beweging

Centrale  effecten  coronaire  perfusie  

CNE  Hartfalen  en  Hartrevalidatie   22  

Page 23: Presentatie V. Niemeijer, Het falende hart in beweging

CNE  Hartfalen  en  Hartrevalidatie   23  

Page 24: Presentatie V. Niemeijer, Het falende hart in beweging

Perifere  effecten  skeletspierdoorbloeding  

24  CNE  Hartfalen  en  Hartrevalidatie  

Page 25: Presentatie V. Niemeijer, Het falende hart in beweging

Perifere  effecten  skeletspiermetabolisme  

CNE  Hartfalen  en  Hartrevalidatie   25  

Page 26: Presentatie V. Niemeijer, Het falende hart in beweging

Perifere  effecten  neurohormonaal  

CNE  Hartfalen  en  Hartrevalidatie   26  

crine hyperactivity associated with CHF, but the neurohor-monal activation in response to strenuous exercise stressappears to be unaltered.

Neurohormone concentrations in health and disease.The neurohormone assays used in the present study havebeen used reliably in our laboratory for numerous experi-ments with human subjects (24–26). Thus, intralaboratorycomparisons are possible that are not limited by the con-founding problems associated with interlaboratory compar-isons of biochemical data. In an attempt to interpret thephysiologic significance of the relative reductions in plasmaneurohormone levels in our trained CHF patients, wecompared results from the present study with neurohor-mone levels in two reference groups: 1) age-matchedhealthy subjects, and 2) age-matched orthotopic hearttransplant recipients recently studied in our laboratory (Figs.2 and 3). The 16-week exercise training period used in ourCHF patients was associated with reductions in concentra-tions of ANG II, ALDO and AVP to levels that arecomparable (p ! 0.05) with those observed in age-matchedsedentary reference subjects (no medications) and stableheart transplant recipients (“standard transplant care”) (Figs.2 and 3). Plasma ANP in trained CHF patients was alsoreduced to levels observed in age-matched healthy subjects(p ! 0.05) (Fig. 3).

Mechanism of neuroendocrine activation in CHF. Twoprincipal mechanisms are recognized in neurohormonalactivation in CHF patients, and both may be modulated byendurance exercise training. One contends that neuroendo-crine hyperactivity in CHF is triggered by baroreflex dys-function in association with a prolonged exposure to lowcardiac output and reduced blood pressure. Sinoaortic andcardiac baroreceptors normally exert a tonic inhibitoryinfluence on resting sympathetic activity, the kidney RAAS,and AVP release (27). In CHF patients, tonic inhibitorybaroreflexes are depressed and contribute to sympathetic

excitation and elevated circulating neurohormone levels(27–33).

An alternative but physiologically related mechanism forneuroendocrine hyperactivity in CHF is associated with theexcitatory effects of circulating ANG II. Plasma ANG IIlevels initially become elevated owing to renal underperfu-sion, the primary stimulus for ANG II production by therenal RAAS. Elevated ANG II exerts excitatory effects atthe level of the brain (34), ganglionic transmission (35) andat adrenergic nerve terminals (36,37).

Exercise and baroreflex sensitivity. The present study wasnot designed to investigate the possible mechanisms respon-sible for neuroendocrine modulation in heart failure, butseveral studies have suggested that strenuous enduranceexercise may improve baroreflex sensitivity. Convertino etal. (19,20) have repeatedly observed that a single bout ofintense dynamic exercise increased the sensitivity ofbaroreceptor-cardiac reflexes (i.e., heart rate regulation) andbaroreceptor-vascular reflexes (i.e., peripheral vascular resis-tance regulation), independent of blood volume changes.Pagani et al. (21) used a crossover design to investigate theeffects of exercise training (6 months of jogging) and nottraining (4 months without jogging) on baroreceptor sensi-tivity in 11 subjects with mild hypertension. The authors

Figure 1. Relative changes in angiotensin II (ANG II), aldoste-rone (ALDO), arginine vasopressin (AVP), and atrial natriureticpeptide (ANP) after four months of endurance exercise training orcontrol period. Data are mean ! SEM. *p " 0.05 After trainingversus before training.

Figure 2. Angiotensin II (top panel) and aldosterone (bottompanel) concentrations drawn at rest in the standing posture forage-matched healthy control subjects; heart transplant recipients;heart failure patients before four months’ exercise training; andheart failure patients after four months’ exercise training. Data aremean ! SEM. *p " 0.05 heart failure before training versus theother three groups. †p " 0.05 versus heart failure after training andnormal control group.

1173JACC Vol. 34, No. 4, 1999 Braith et al.October 1999:1170–5 Neurohormones in Heart Failure

by on November 24, 2010 content.onlinejacc.orgDownloaded from

used IV phenylephrine to study the effects of training on theheart rate–blood pressure relationship and reported a netimprovement in the tonic inhibitory activity of the majorconstituents of the sympathetic-vagal balance. The mecha-nism responsible for exercise-induced improvements inbaroreflex sensitivity is not understood. Investigators havestudied all components of the reflex arc, but specific mech-anisms have not been identified because of the complexity ofthe neural circuitry.

Baroreflex sensitivity and exercise capacity and survivalrate are also improved in CHF patients by administration ofACE inhibitors (9,11,12,37,38). In aggregate, theangiotensin-converting enzyme (ACE) inhibitor data sug-gest that ANG II plays an important role in the centralintegration of baroreflex information. Grassi et al. (9)recently provided the first direct evidence, via muscle mi-croneurography, that chronic ACE inhibitor treatment inCHF patients caused both a reduction in central sympa-thetic nerve traffic and an improved baroreceptor restrainton sympathetic traffic. Thus, a reduction in circulatingANG II achieved through exercise training may act favor-ably on baroreflex control of sympathetic activity (9,39).

Cardiac output and renal perfusion. The exercise-induced reduction of plasma neurohormones observed inthe present study could possibly be taken as a marker ofimproved cardiac pump function. Certainly increased car-

diac output would augment renal perfusion and therebydiminish the primary stimulus for activation of the kidneyRAA system. Although we did not measure cardiac outputin the present study, results from previous long-term train-ing studies in CHF patients do not reveal evidence ofincreased cardiac output. Sullivan et al. (40) reported a 23%increase in VO2peak in patients with CHF (left ventricularejection fraction [LVEF] 24 ! 10%) after four months ofexercise training, but there were no changes in rest orexercise stroke volume, cardiac output or LVEF. Mostexercise training studies in CHF patients reporting im-provements in VO2peak observe no changes in rest orexercise measurements of left ventricular performance orcentral hemodynamics. Rather, the beneficial elements ofthe training response are attributed to peripheral adapta-tions (41,42).

Study limitations. This study was limited by small samplesize, relatively brief duration of exercise training and absenceof outcome data. In addition, the study would be strength-ened by inclusion of either direct (intraneural recordings) orindirect (plasma norepinephrine or epinephrine data) in-dexes of efferent sympathetic nerve traffic at study entry andafter 16 weeks. Finally, the CHF patients in the presentstudy were carefully selected, and they received very expertheart failure and exercise training care that may not begeneralized.

Conclusions. It is generally believed that the neurohor-monal activation in heart failure has an adverse prognosticsignificance and that reduction in circulating neurohor-monal levels by treatment represents a favorable therapeuticeffect. Thus, demonstration that endurance exercise trainingis accompanied by a marked reduction ("25% to 30%) inresting levels of plasma ANG II, ALDO, AVP, and ANPhas clinical implications. Currently, this demonstration hasonly been provided in one small cohort of CHF patientswho trained for a period of 16 weeks.

AcknowledgmentThe authors wish to acknowledge the late Michael L.Pollock, PHD, for his contributions in the design andimplementation of this study.

Reprint requests and correspondence: Dr. Randy W. Braith,P.O. Box 118206, Center for Exercise Science, University ofFlorida, Gainesville, Florida 32611. E-mail: [email protected].

REFERENCES

1. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as aguide to prognosis in patients with chronic congestive heart failure.N Engl J Med 1984;311:819–23.

2. Francis GS, Benedict C, Johnstone DE, et al., for SOLVD Investi-gators. Comparison of neuroendocrine activation in patients with leftventricular dysfunction with and without congestive heart failure.Circulation 1990;82:1724–9.

3. Packer M. The neurohormonal hypothesis: a theory to explain the

Figure 3. Arginine vasopressin (top panel) and atrial natriureticpeptide (ANP) (bottom panel) concentrations drawn at rest in thestanding posture for age-matched healthy control subjects; hearttransplant recipients; heart failure patients before four months’exercise training; and heart failure patients after four months’exercise training. Data are mean ! SEM. *p ! 0.05 heart failurebefore training versus the other three groups. †p ! 0.05 versusheart failure after training and normal control group.

1174 Braith et al. JACC Vol. 34, No. 4, 1999Neurohormones in Heart Failure October 1999:1170–5

by on November 24, 2010 content.onlinejacc.orgDownloaded from

Page 27: Presentatie V. Niemeijer, Het falende hart in beweging

*  Inspanningscapaciteit  

*  Kwaliteit  van  leven  

*  Prognose  

Fysieke  training  

CNE  Hartfalen  en  Hartrevalidatie   27  

Page 28: Presentatie V. Niemeijer, Het falende hart in beweging

CNE  Hartfalen  en  Hartrevalidatie   28  

Page 29: Presentatie V. Niemeijer, Het falende hart in beweging

CNE  Hartfalen  en  Hartrevalidatie   29  

Page 30: Presentatie V. Niemeijer, Het falende hart in beweging

HF-­‐ACTION  (Flynn  2009  JAMA)  

CNE  Hartfalen  en  Hartrevalidatie   30  

Fysieke  training  kwaliteit  van  leven  

CHANGE  (Wielenga  2008  Heart  Fail  Rev)  

Page 31: Presentatie V. Niemeijer, Het falende hart in beweging

CNE  Hartfalen  en  Hartrevalidatie   31  

Fysieke  training  prognose  

Training  3-­‐7x  /  week  8  weken  –  1  jaar  60-­‐80%  peak  VO2  /  HF    Interventie:  88  overleden  (mediane  tijd  tot  

event:  618  dagen)  

Controle:  105  overleden  (mediane  tijd  tot  

event:  421  dagen)  

NNT:  17  (2  jaar)  

Page 32: Presentatie V. Niemeijer, Het falende hart in beweging

CNE  Hartfalen  en  Hartrevalidatie   32  

Training  5x  /  week,  na  3  maanden  home-­‐based  60%  heart  rate  reserve,  3x30  min    

Page 33: Presentatie V. Niemeijer, Het falende hart in beweging

*  Aerobe  en  interval  training  

*  Krachttraining  

*  Inspiratory  muscle  training  

Trainingsvormen  

CNE  Hartfalen  en  Hartrevalidatie   33  

Page 34: Presentatie V. Niemeijer, Het falende hart in beweging

*  HF-­‐ACTION  (2009)  *  Moderate  Intensity  Continuous  Training  (MIT  of  CT)  

*  Meyer  (1996)  *  Supra  Hoog-­‐intensieve  Interval  Training  (HIIT)  

*  Wisløff  (2007)  *  Aerobe  Interval  Training  (AIT)  

Aerobe  en  interval  training  maakt  intensiteit  uit?  

CNE  Hartfalen  en  Hartrevalidatie   34  

Page 35: Presentatie V. Niemeijer, Het falende hart in beweging

CT  (HF-­‐ACTION)  

CNE  Hartfalen  en  Hartrevalidatie   35  

Page 36: Presentatie V. Niemeijer, Het falende hart in beweging

HIIT  (Meyer)  

Interval  training  in  pa-ents  with  severe  chronic  heart  failure:  analysis  and  recommenda-ons  for  exercise  procedures.  MEYER,  KATHARINA;  SAMEK,  LADISLAUS;  SCHWAIBOLD,  MATTHIAS;  WESTBROOK,  SAMUEL;  HAJRIC,  RAMIZ;  BENEKE,  RALPH;  LEHMANN,  MANFRED;  ROSKAMM,  HELMUT    Medicine  &  Science  in  Sports  &  Exercise.  29(3):306-­‐312,  March  1997.    

CNE  Hartfalen  en  Hartrevalidatie   36  

Page 37: Presentatie V. Niemeijer, Het falende hart in beweging

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

%V

O2

max

afg

elei

d ve

rmog

en

Tijd (min)

AIT  (Wisløff)  

CNE  Hartfalen  en  Hartrevalidatie   37  

Page 38: Presentatie V. Niemeijer, Het falende hart in beweging

AIT  (Wisløff)  

CNE  Hartfalen  en  Hartrevalidatie   38  

Page 39: Presentatie V. Niemeijer, Het falende hart in beweging

Hoe  werkt  AIT?  

CNE  Hartfalen  en  Hartrevalidatie   39  

Page 40: Presentatie V. Niemeijer, Het falende hart in beweging

Hoe  werkt  AIT?  Oxidatieve  capaciteit  

CNE  Hartfalen  en  Hartrevalidatie   40  

Page 41: Presentatie V. Niemeijer, Het falende hart in beweging

Hoe  werkt  AIT?  Exitatie  –  Contractie  Koppeling  

CNE  Hartfalen  en  Hartrevalidatie  

Page 42: Presentatie V. Niemeijer, Het falende hart in beweging

Hoe  werkt  AIT?  Hartspierfunctie  

CNE  Hartfalen  en  Hartrevalidatie   42  

Page 43: Presentatie V. Niemeijer, Het falende hart in beweging

Hoe  werkt  AIT?  Hartspierfunctie  

CNE  Hartfalen  en  Hartrevalidatie  

Page 44: Presentatie V. Niemeijer, Het falende hart in beweging

Hoe  werkt  AIT?  Hartspiermetabolisme  

CNE  Hartfalen  en  Hartrevalidatie   44  

Page 45: Presentatie V. Niemeijer, Het falende hart in beweging

Vergelijking  HIT  

CNE  Hartfalen  en  Hartrevalidatie   45  

Page 46: Presentatie V. Niemeijer, Het falende hart in beweging

HIT  vs  beweegadvies  

CNE  Hartfalen  en  Hartrevalidatie   46  

Page 47: Presentatie V. Niemeijer, Het falende hart in beweging

HIT  vs  MIT  /  CT  

CNE  Hartfalen  en  Hartrevalidatie   47  

Page 48: Presentatie V. Niemeijer, Het falende hart in beweging

Randomized trial of progressive resistance trainingto counteract the myopathy of chronic heart failure

CHARLES T. PU,1,2,3 MEREDITH T. JOHNSON,1,3 DANIEL E. FORMAN,3,4

JEFFREY M. HAUSDORFF,5 RONENN ROUBENOFF,1 MONA FOLDVARI,1ROGER A. FIELDING,1,6 AND MARIA A. FIATARONE SINGH1,3,7

1Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer United States Departmentof Agriculture, Human Nutrition Research Center on Aging, Tufts University, Boston 02111;2Brockton West Roxbury Veterans Affairs Medical Center, Division on Aging, Harvard MedicalSchool, Boston 02132; 3Hebrew Rehabilitation Center for Aged, Division on Aging, Harvard MedicalSchool, Boston 02131; 6Department of Health Sciences, Sargeant College of Health RehabilitationSciences, and 4Department of Cardiology, Boston University, and 5Gerontology Division, Beth IsraelDeaconess Hospital, Boston, Massachusetts 02215; and 7School of Exercise and Sport Science,University of Sydney, Sydney, Australia 2141Received 25 April 2000; accepted in final form 10 January 2001

Pu, Charles T., Meredith T. Johnson, Daniel E. For-man, Jeffrey M. Hausdorff, Ronenn Roubenoff, MonaFoldvari, Roger A. Fielding, and Maria A. FiataroneSingh. Randomized trial of progressive resistance trainingto counteract the myopathy of chronic heart failure. J ApplPhysiol 90: 2341–2350, 2001.—Chronic heart failure (CHF)is characterized by a skeletal muscle myopathy not optimallyaddressed by current treatment paradigms or aerobic exer-cise. Sixteen older women with CHF were compared with 80age-matched peers without CHF and randomized to progres-sive resistance training or control stretching exercises for 10wk. Women with CHF had significantly lower musclestrength (P , 0.0001) but comparable aerobic capacity towomen without CHF. Exercise training was well toleratedand resulted in no changes in resting cardiac indexes in CHFpatients. Strength improved by an average of 43.4 6 8.8% inresistance trainers vs. 21.7 6 2.8% in controls (P 5 0.001),muscle endurance by 299 6 66% vs. 1 6 3% (P 5 0.001), and6-min walk distance by 49 6 14 m (13%) vs. 23 6 19 m (23%)(P 5 0.03). Increases in type I fiber area (9.5 6 16%) andcitrate synthase activity (35 6 21%) in skeletal muscle wereindependently predictive of improved 6-min walk distance(r2 5 0.78; P 5 0.0024). High-intensity progressive resistancetraining improves impaired skeletal muscle characteristicsand overall exercise performance in older women with CHF.These gains are largely explained by skeletal muscle and notresting cardiac adaptations.

exercise; aging; type I fibers

CHRONIC SYSTOLIC HEART FAILURE (CHF) is the only car-diac diagnosis that is continuing to increase in preva-lence in the United States due to the prolonged sur-vival of those with hypertension and ischemic heartdisease, as well as improved average life span of the

population (35, 42). The clinical hallmark of the dis-ease is exercise intolerance, manifested as fatigue anddyspnea during increasingly minimal activities (21).

Mounting evidence suggests that peripheral skeletalmuscle abnormalities figure prominently in the exer-cise intolerance associated with CHF (15–17, 26, 40,53, 54), whereas central hemodynamic parameters,such as ejection fraction, are far less predictive ofclinical symptoms or mortality (34). These peripheralabnormalities include a skeletal muscle myopathycharacterized by preferential loss and atrophy of type I(slow, oxidative) fibers, decreased oxidative enzymecapacity and mitochondrial volume density, early acti-vation of glycolytic pathways of ATP generation duringwork, and reduced muscle endurance, strength, power,and overall exercise tolerance compared with healthy,age-matched individuals (39). The selective loss of ox-idative fibers distinguishes this condition from type IIfiber selectivity of muscle atrophy common to agingand disuse syndromes (29, 47, 66) and suggests that adifferent pathogenetic mechanism may be operative.

The degree of exercise intolerance in CHF correlatesstrongly with both mortality and quality of life (69, 70);yet current medical therapies often fail to specificallyaddress many of the potential mechanisms that under-lie these symptoms (25). Aerobic exercise interventionshave been shown to be tolerable in middle-aged andyoung-old patients with stable CHF and result in im-proved aerobic capacity without improving central he-modynamic features (contractility, stroke volume, ejec-tion fraction, chamber diameter, filling times) of thedisease (1, 18–20, 24, 62), as well as improved survival,quality of life, and reduced rate of hospitalizations (5,27). However, the limited experience reported from the

Address for reprint requests and other correspondence: M. A. F.Singh, Nutrition, Exercise Physiology and Sarcopenia Laboratory,Jean Mayer USDA Human Nutrition Research Center on Aging atTufts Univ., 711 Washington St., Boston, MA 02111 (E-mail:[email protected]).

The costs of publication of this article were defrayed in part by thepayment of page charges. The article must therefore be herebymarked ‘‘advertisement’’ in accordance with 18 U.S.C. Section 1734solely to indicate this fact.

J Appl Physiol90: 2341–2350, 2001.

8750-7587/01 $5.00 Copyright © 2001 the American Physiological Societyhttp://www.jap.org 2341

on Novem

ber 24, 2010 jap.physiology.org

Dow

nloaded from

Krachttraining  

CNE  Hartfalen  en  Hartrevalidatie   48  

Effect of Resistance Exercise on SkeletalMuscle Myopathy in Heart

Transplant RecipientsRandy W. Braith, PhD, Peter M. Magyari, PhD, Gary L. Pierce, MS,David G. Edwards, PhD, James A. Hill, MD, Lesley J. White, PhD,

and Juan M. Aranda, Jr., MD

The purpose of this study was to determine the efficacyof resistance exercise in reversing skeletal muscle my-opathy in heart transplant recipients. Myopathy, engen-dered by both heart failure and immunosuppressionwith glucocorticoids, is a post-transplant complication.The sequelae of myopathic disease includes fiber-typeshifts and deficits in aerobic metabolic capability. Werandomly assigned patients to either 6 months of resis-tance exercise (training group; n ! 8) or a control(control group; n ! 7) group. Exercise was initiated at 2months after transplant. Biopsy of the right vastus late-ralis was performed before and after the 6-month inter-vention. Myosin heavy chain (MHC) composition wasassessed using sodium dodecyl sulfate-polyacrylamidegel electrophoresis. Biochemical assays were performedto determine citrate synthase, 3-hydroxyacyl-CoA-dehydrogenase, and lactate dehydrogenase activity.There were no group differences (p >0.05) in MHCcomposition and enzymatic reserve at baseline. Im-

provements in the training group for citrate cynthase("40%), 3-hydroxyacyl-CoA-dehydrogenase ("10%),and lactate dehydrogenase activity ("48%) were signif-icantly greater (p <0.05) than in the control group("10%, #15%, and "20%, respectively). Oxidativetype 1 MHC isoform concentration increased signifi-cantly in the training group ("73%, p <0.05) but de-creased in the control group (#28%; p <0.05). Glyco-lytic type 2x MHC isoform increased significantly (17%;p <0.05) in the control group but decreased (#33%;p <0.05) in the training group. This is the first study todemonstrate that resistance training elicits myofibrillarshifts from less oxidative type II fibers to more oxidativefatigue-resistant type I fibers in heart transplant recipients.Resistance exercise initiated early in the post-transplantperiod is efficacious in changing skeletal muscle phenotypethrough increases in enzymatic reserve and shifts in fibermorphology. !2005 by Excerpta Medica Inc.

(Am J Cardiol 2005;95:1192–1198)

Skeletal muscle myopathy is a hallmark of end-stage heart failure involving both morphologic

shifts in fiber type1–4 and histochemical changes inenzymatic reserve.5,6 After orthotopic heart transplan-tation, immunosuppression regimens using bolus glu-cocorticoids cause further de novo deleterious effectson skeletal muscle.7–11 No therapeutic intervention hasbeen developed to prevent myopathic disease in hearttransplant recipients. The purpose of this study was todetermine if an intervention consisting of progressiveresistance exercise, initiated early in the post-trans-plant period, would be efficacious in changing skeletalmuscle phenotype through increases in enzymatic re-serve and shifts in fiber morphology in heart transplantrecipients. We used skeletal muscle biopsy to prospec-tively assess skeletal muscle morphology and enzy-matic reserve in heart transplant recipients at 2 monthsafter transplant and repeated the measurements after 6

months of progressive resistance exercise training or acontrol period.

METHODSSubjects: Fifteen patients (n ! 15) were recruited to

participate in the study at the time they were listedwith the United Network for Organ Sharing as candi-dates for orthotopic heart transplantation. Descriptivecharacteristics of heart transplant recipients are listedin Table 1. Before transplantation, patients were ran-domly and prospectively assigned either to a groupthat would participate in a 6-month program of resis-tance exercise training (n ! 8) or to a control groupthat would not participate in resistance exercise (n !7). Before transplantation, all subjects participated in ahospital-based physical therapy program consisting ofmild walking and resistance exercises. After trans-plantation, all subjects participated in standard carehome-based walking programs that were comparablein intensity and duration, but only the resistance train-ing group performed specific supervised resistanceexercises.

All heart transplant recipients had biatrial anasto-mosis at the time of transplantation and were receivingtriple-drug immunosuppression therapy with cyclo-sporine, prednisone, and azathioprine. Cyclosporinedose was titrated to maintain whole blood troughlevels of approximately 300 ng/ml. No subject re-

From the Center for Exercise Science, College of Health andHuman Performance and the College of Medicine, University ofFlorida, Gainesville, Florida; Lynchburg College, Lynchburg,Virginia; and the Department of Kinesiology, University of NewHampshire, Durham, New Hampshire. This report was supportedby a grant from the American Heart Association, Dallas, Texas, toDr. Braith. Manuscript received September 13, 2004; revised manu-script received and accepted January 10, 2005.

Address for reprints: Randy W. Braith, PhD, PO Box 118206,Center for Exercise Science, University of Florida, Gainesville, Florida32611. E-mail: [email protected].

1192 ©2005 by Excerpta Medica Inc. All rights reserved. 0002-9149/05/$–see front matterThe American Journal of Cardiology Vol. 95 May 15, 2005 doi:10.1016/j.amjcard.2005.01.048

doi:10.1136/hrt.2008.159582 published online 1 Apr 2009; Heart

and Nicole Uszko-Lencer Martijn A Spruit, Rose-Miek Eterman, Valery Hellwig, Paul Janssen, Emiel Wouters

patients with chronic heart failuremoderate-to-high intensity resistance training in A systematic review on the effects of

http://heart.bmj.com/cgi/content/abstract/hrt.2008.159582v1Updated information and services can be found at:

These include:

Rapid responses http://heart.bmj.com/cgi/eletter-submit/hrt.2008.159582v1

You can respond to this article at:

serviceEmail alerting

top right corner of the article Receive free email alerts when new articles cite this article - sign up in the box at the

Notes

Online First articles must include the digital object identifier (DOIs) and date of initial publication. establish publication priority; they are indexed by PubMed from initial publication. Citations to may be posted when available prior to final publication). Online First articles are citable andaccepted for publication but have not yet appeared in the paper journal (edited, typeset versions

contains unedited articles in manuscript form that have been peer reviewed andOnline First

http://journals.bmj.com/cgi/reprintformTo order reprints of this article go to:

http://journals.bmj.com/subscriptions/ go to: HeartTo subscribe to

on 28 June 2009 heart.bmj.comDownloaded from

Page 49: Presentatie V. Niemeijer, Het falende hart in beweging

HIT  vs  HIT  +  krachttraining  

CNE  Hartfalen  en  Hartrevalidatie   49  

Page 50: Presentatie V. Niemeijer, Het falende hart in beweging

*  Inspiratory  muscle  training    *  Pi  max  *  <  70%  Pi  max  predicted  

*  Training  *  30  min/dag  *  2-­‐3x/week  *  20-­‐40%  Pi  max  

Ademhalingstraining  

CNE  Hartfalen  en  Hartrevalidatie   50  

Page 51: Presentatie V. Niemeijer, Het falende hart in beweging

Inspanningsdiagnostiek  Het  Falende  Hart  in  Beweging  

CNE  Hartfalen  en  Hartrevalidatie   51  

Page 52: Presentatie V. Niemeijer, Het falende hart in beweging

1.  Objectiveren  inspanningsvermogen  /  aansturen  training  

2.  Vaststellen  eventuele  contra-­‐indicaties  voor  training  

3.  Vaststellen  aard  beperking  (co-­‐morbiditeit)  

4.  Evalueren  prognose  

Spiro-­‐ergometrie  bij  CHF  

CNE  Hartfalen  en  Hartrevalidatie   52  

Page 53: Presentatie V. Niemeijer, Het falende hart in beweging

1.  Zwakke  correlatie  subjectieve  beleving  inspanningstolerantie  en  

objectieve  inspanningscapaciteit  

2.  Geen  correlatie  LVEF  en  objectieve  inspanningscapaciteit  

3.  Maximale  aërobe  capaciteit  bij  CHF  niet  goed  te  voorspellen  

door  maximale  vermogen  

Objectiveren  inspanningsvermogen  

CNE  Hartfalen  en  Hartrevalidatie   53  

Page 54: Presentatie V. Niemeijer, Het falende hart in beweging

1.  Zwakke  correlatie  subjectieve  beleving  inspanningstolerantie  en  objectieve  inspanningscapaciteit  (Wilson  et  al.  Circulation  1995)  

CNE  Hartfalen  en  Hartrevalidatie   54  

Page 55: Presentatie V. Niemeijer, Het falende hart in beweging

2.  Geen  correlatie  LVEF  en  objectieve  inspanningscapaciteit  (Smith  et  al.  Circulation  1993)  

V-HeFT I V-HeFT II

Peak VO2 (ml/kg/min)Peak VO2 (ml/kg/min)

LV-E

F (%

)

LV-E

F (%

)

CNE  Hartfalen  en  Hartrevalidatie   55  

Page 56: Presentatie V. Niemeijer, Het falende hart in beweging

3.  Maximale  aërobe  capaciteit  bij  CHF  niet  goed  te  voorspellen  door  maximale  vermogen  

CHF

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120

Workload

VO2

ΔVO2 / Δwork rate ratio: 7.9

Gezond

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350

Workload

VO2

ΔVO2 / Δwork rate ratio: 10.1

CNE  Hartfalen  en  Hartrevalidatie   56  

Page 57: Presentatie V. Niemeijer, Het falende hart in beweging

*  Peak  VO2    

*  gemiddelde  VO2  in  laatste  20-­‐30  sec  van  een  RAMP  test  

*  Bij  goed  uitgevoerde  test  objectieve  reproduceerbare  maat  voor  het  maximale  inspanningsvermogen  

 

Objectiveren  inspanningsvermogen  

CNE  Hartfalen  en  Hartrevalidatie   57  

Page 58: Presentatie V. Niemeijer, Het falende hart in beweging

1.  Percentage  peak  VO2    

2.  Percentage  ventilatoire  drempel    

Aansturen  training  

CNE  Hartfalen  en  Hartrevalidatie   58  

Page 59: Presentatie V. Niemeijer, Het falende hart in beweging

Hartfrequentie  is  vaak  niet  bruikbaar!  

60

70

80

90

100

110

120

Tijd

Hartf

requ

entie

(bts

/min

)

Maximale  inspanningstest  

RER  max  1.25  

Position paper European Society Cardiology 2009:

CNE  Hartfalen  en  Hartrevalidatie   59  

Page 60: Presentatie V. Niemeijer, Het falende hart in beweging

Meten  van  trainingseffecten  -­‐  welke  parameters?  -­‐  

Kemps  et  al.  Eur  J  Appl  Physiol  2010  

CNE  Hartfalen  en  Hartrevalidatie   60  

Page 61: Presentatie V. Niemeijer, Het falende hart in beweging

*  ICD  *  20  slagen  onder  interventie  zone  (cave  

AFib)  *  Schoudermobiliteit  

*  CRT  *  Instellingen  bij  inspanning  (positief  

complex  V1)  *  LVAD  *  Pulsatile  vs  continuous  flow  

*  Hart  transplantatie  *  Chronotrope  incompetentie  (denervatie)  

Specifieke  aanbevelingen  

CNE  Hartfalen  en  Hartrevalidatie   61  

Page 62: Presentatie V. Niemeijer, Het falende hart in beweging

*  Spier  is  ook  ziek  in  CHF  *  Krachttraining  werkt  echter  slechts  beperkt  

*  Individueel  voorschrijven  trainingsvorm  *  Hoog  intensief  training  is  mogelijkheid  *  HR  alleen  bruikbaar  bij  chronotrope  competentie  *  Cave  ICD  

*  Spiro-­‐ergometrie  is  zinvol  en  sterk  aanbevolen  *  Richtlijn  hartrevalidatie  

Take  home  message  

CNE  Hartfalen  en  Hartrevalidatie   62  

Page 63: Presentatie V. Niemeijer, Het falende hart in beweging

*  Meyer  2013  Current  heart  failure  reports:  *  “analogous  to  opamizing  pharmacotherapy,  combining  and  tailoring  different  exercise  training  modaliaes  according  to  each  paaent’s  baseline  exercise  capacity,  personal  needs,  preferences  and  goals  seem  the  most  judicious  approach  to  exercise  prescripaon”  

Advies  

CNE  Hartfalen  en  Hartrevalidatie  

Page 64: Presentatie V. Niemeijer, Het falende hart in beweging

Vraag   Score   Antwoord   Verschil  (abs)  

1  

2  

3  

4  

5  

6a  

6b  

som  

Antwoorden  

CNE  Hartfalen  en  Hartrevalidatie   64