Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

  • Upload
    pgandz

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    1/15

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    2/15

    1 96 7; S a r i c h a n d C r o n i n 1 9 7 6 , 1 9 7 7 ) , D N A h y -b r i d iz a t io n S a r i c h a n d C r o n i n 1 9 7 7 ; S i b l e y a n dA h l q u i s t 1 9 8 4 ) , r e s t r i c t i o n e n d o n u c l e a s e m a p p i n g~ D N A B r o w n e t a l. 1 9 7 9 ), p r o t e i ne l e c tr o p h o r e si s S a r i c h a n d C r o n i n 1 9 7 6 ; N o z a w ae t a l. 1 9 82 ), a n d a m i n o a c i d s e q u e n c i n g G o o d m a ne t a l. 1 9 8 3 ). A l t h o u g h t h e s e m e t h o d s w e r e p o w e r f u le n o u g h t o e x c l u d e t h e p o s s i b i l i t y th a tarnapithecusWas a n c e s t r a l to h u m a n s a n d e v o l v e d a f t e r t h e h u -m a n - a p e s p l i t t i n g , t h e y p r o v i d e d o n l y a r o u g h e s -t im a t e o f th e d a t e o f t h e s e p a r a t i o n .

    T h e s e m e t h o d s e s t i m a t e d g e n e t i c d i s t a n c e s i n -d ir e ct ly, a n d n o t o n t h e b a s i s o f s t a ti s t ic a l m o d e l s .T h e y t h e r e fo r e c o n t a i n e d s o m e u n c e r t a i n ty, a n d t h ea m o u n t o f e r r o r i n h e r e n t i n t h e e s t i m a t e s c o u l d n o tb e e v a l u a t e d in a p r o p e r w a y. F u r t h e r m o r e , s i n c er ao st o f t h e s e p r e v i o u s m e t h o d s d i d n o t t a k e a c c o u n tof the e ffec t o f mu l t ip le chan ges in a s i t e , the i r e s -t im a t e s o f t h e d i v e rg e n c e d a t e a r e b i a s e d i n f a v o r~ 1 7 6 m o r e a n c i e n t t h a n t h e a c tu a l o n e w h e n a m o r e.d i s tan t sp l i t t ing i s t aken as a re fe rence . Therefore ,t n a p r e l i m i n a r y r e p o r t , w e d e v e l o p e d a s t a t i st i c a lr n e t h o d t h a t g i v e s g e n e t i c d i s t a n c e s b y d i r e c t c o m -P ar is on b e t w e e n m i t o c h o n d r ia l D N A m t D N A ) s e-q u e n c e s , a n d o b t a i n e d a m o r e r e l i a b l e e s t i m a t e o flu e ti m i n g o f th e d i v e rg e n c e e v e n t s d u r i n g t h e e v o -

    t io n o f t h e H o m i n o i d e a H a s e g a w a e t a l. 1 9 8 4 a ).O u r e s t i m a t e w a s h e a v i l y d e p e n d e n t o n t h e a s -

    ~ U r a P t i o n t h a t t h e d i v e rg e n c e b e t w e e n b o v i n e s a n d~ri rr ta tes occ ur re d 90 M yr ago Dic kers on 1971; Sar-1 9 a n d C r o n i n 1 9 7 6 ; S i m o n s I 9 7 6 ; Wi l s o n e t a l.

    7 7; G o o d m a n e t a l. 1 9 83 ). H o w e v e r , w e n o w k n o wt n o c o n v i n c i n g f o s s il s o f t h e l i v i n g o r d e r s o f

    l a l a c e n t a l m a m m a l s h a v e b e e n f o u n d f r o m t h e C r e -t ac e ou s p e r i o d N o v a c e k 1 9 8 2; S a v a g e a n d R u s s e l l1 98 3) . A l s o , t h e p r e s u m e d h o l o c a u s t t h a t o c c u r r e da t t h e e n d o f t h e C r e t a c e o u s A l v a r e z e t al . 1 9 8 0 ,1 98 4; R a u p a n d S e p k o s k i 1 9 8 4 ), s o m e 6 5 M y r a g o ,r a a y h a v e b e e n r e s p o n s i b l e f o r s t a r t i n g a n e w r a -d i at io n o f p l a c e n t a l m a m m a l s A l l a n C . W i l s o n , p e r -S Ona l c o m m u n i c a t i o n ) . T h e r e f o r e , i t s e e m s l i k e l yt h a t t h e d i v e rg e n c e b e t w e e n b o v i n e s a n d p r i m a t e s~ C U r r e d a s r e c e n t l y a s 6 5 M y r a g o . I n t h i s p a p e r,w e P r e s e n t f u ll d e t a il s o f o u r m e t h o d , a n d g i v e e s -t ir aa te s o f d i v e rg e n c e ti m e s a m o n g t h e H o m i n o i d e a~ u s i ng a r e c a l i b ra t e d m o l e c u l a r c l o c k b a s e dot~ the re v i se d re fe ren ce t ime .

    Mitochondr ia l D N A Seq uence Da ta

    T h e r n t D N A s o f h u m a n A n d e r s o n e t a l. 1 9 8 1 ),b ~ v in e A n d e r s o n e t a l . t 9 8 2 ) , a n d m o u s e B i b b e ta l. 1 9 81 ) , e a c h o f w h i c h i s a b o u t 1 6 , 5 0 0 n u c l e o t i d e sill l e n gt h , h a v e b e e n c o m p l e t e l y s e q u e n c e d . B r o w na ~d h i s c o w o r k e r s s e q u e n c e d a s t r e t c h o f 8 9 6 n u -C le otid es i n m t D N A s f r o m h u m a n , c h i m p a n z e e , g o -

    6

    r il la , o r a n g u t a n , a n d g i b b o n B r o w n e t a l. 1 9 8 2 ) .T h i s s e g m e n t c o n t a i n s t h e g e n e s f o r t h r e e t R N A sa n d p a r t s o f t w o p r o t e i n s. T h e d a t a s e t u s e d in t h ep r e s e n t s t u d y i s c o m p o s e d o f t h e 8 9 6 - n u c l e o t i d es e q u e n c e s fr o m t h e a b o v e - m e n t i o n e d f i v e s p e c ie s o fH o m i n o i d e a a n d t h e s e q u e n c e s o f t h e c o r r e s po n d i n gr e g io n s f r o m b o v i n e an d m o u s e L - s t ra n d o fm t D N A ) . T h e s e d a t a p r o v i d e u s w i t h t h e o p p o r -t u n i t y t o d a t e t h e d i v e rg e n c e e v e n t s d u r i n g t h e e v o -l u ti o n o f th e H o m i n o i d e a b y a m o r e r e li ab le m e t h o dt h a n h a s b e e n u s e d b e f o r e .

    T h e r a t e o f sy n o n y m o u s s u b s ti tu t io n s i n D N Ac o d i n g f o r p r o t e i n s i s m u c h h i g h e r t h a n b o t h t h a to f a m i n o a c i d - a lt e r in g s u b s t i tu t i o n s K i m u r a 1 9 7 7;B r o w n e t a l. 1 9 8 2 ; M i y a t a e t a l. , 1 9 8 2 ) a n d t h a t o fs u b s t i tu t i o n s i n t R N A g e n e s. T h e r a t e s o f a m i n oa c i d -a l te r in g s u b s t i tu t i o n s a n d o f t R N A s u b s t it u -t i o n s h a v e b e e n a p p r o x i m a t e l y t h e s a m e d u r i n g t h ee v o l u t i o n o f a n i m a l m t D N A B r o w n et a l. 1 9 82 ) .T h i s i s in s h a r p c o n t r a s t w i t h t h e s i t u a t i o n f o r n u -c l e a r D N A , i n w h i c h t R N A g e n e s a r e m u c h m o r ec o n s e r v a t i v e t h a n a r e m o s t o f t h e g e n e s fo r p r o t e in sH a s e g a w a e t al . 1 9 8 4 b ) . S in c e s y n o n y m o u s s u b s t i-

    t u t i o n s a r e c o n f i n e d m o s t l y t o t h e t h i r d c o d o n p o -s i t io n s o f p r o t e i n g e n e s , w e d i v i d e t h e n u c l e o t i d es i te s in t o t w o c l a s s e s: C l a s s 1 s i te s a r e t h i r d c o d o np o s i t i o n s , a n d c l a ss 2 s it e s a r e f i rs t a n d s e c o n d c o d o np o s i t io n s a n d s i te s in t R N A g e n es . T h e s e t w o c l as s eso f s it e s a r e t r e a t e d s e p a r a t e l y i n t h e s t a ti s ti c a l m o d e lp r e s e n t e d i n t h i s p a p e r.

    P h y l o g e n e t ic R e l a t io n s h i p s A m o n g t h eH o m i n o i d e a

    I n a n a l y z i n g t h e d a t a , i t m u s t b e t a k e n i n t o a c c o u n tt h a t t r a n s i t i o n A ~ G , T ~ C ) h a s g r e a t ly p r e d o m -i n a t e d o v e r t r a n s v e r s io n A , G ~ T, C ) i n t h e e v o -l u ti o n o f a n i m a l m t D N A B r o w n a n d S i m p s o n 1 9 8 2 ;B r o w n e t a l. 1 9 82 ). We t h e r e f o r e c o u n t e d t h e n u m -b e r s o f t r a n s i t i o n - a n d t r a n s v e r s i o n - t y p e d i f f e r e n c e sbe tween spec ies in c lass I and c lass 2 s i t es sepa-r a t e ly, a s s h o w n i n Ta b l e 1 H a s e g a w a e t al . 1 9 8 4 a ) .I t i s r e m a r k a b l e t h a tthe n u m b e r o f t r a n s it i o n - ty p ed i f f e re n c e s i n c l a ss 1 s i te s b e t w e e n h u m a n a n d c h i m -p a n z e e i s n e a r l y t h e s a m e a s t h a t b e t w e e n h u m a na n d m o u s e . T h i s m e a n s t h a t a c o n s i d e r a b l e n u m b e ro f m u l ti p l e t r a n si t io n s h a v e a c c u m u l a t e d a t t h e s esi tes , even w h e n w e c o m p a r e a n y p a i r o f c l o s e s tr e l a t i v e s i n t h e p r e s e n t d a t a s e t . Tr a n s i t i o n a t t h et h i r d c o d o n p o s i t i o n c l a ss 1 s i te ) i s a l w a y s s y n o n -y m o u s i n t he g e n et ic c o d e o f m a m m a l i a n m i t o -c h o n d r i a B a r re U e t a l. 1 9 7 9 ; A n d e r s o n e t al . 1 9 8 1 ,1982; Bibb e t a l . 1981) .

    T h e t r a n s v e r s i o n - t y p e d i f f e r e n c e s i n Ta b l e 1 a n do t h e r e v i d e n c e i n d i c a t e t h a t o f t h e l i v in g h o m i n o i d s ,g i b b o n s s e p a r a t e d f ir st a n d o r a n g u t a n s s e c o n d f r o m

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    3/15

    162

    T a b l e l

    mtDNAsNumbers of transition- (upper right hal0 and transversion- (lowerleft half) type nucleotide difference s amon g ma mm aliaa

    1 2 3 4 5 6

    i Mou se Bovine Gibbon Orang. Gorilla Chim p. Hu ma n SOVr~

    1 M ou se 68 (39) 81 (53) 81 (48) 87 (46) 79 (50) 79 (51)2 Bovine 91 (82) 80 (42) 81 (44) 93 (52) 85 (61) 86 (57)

    3 Gi bbo n 83 (83) 69 (71) 57 (59) 65 (59) 61 (64) 59 (58)4 Orang . 90 (85) 65 (65) 18 (34) 64 (52) 59 (60) 55 (53)5 Gorilla 85 (77) 72 (67) 19 (26) 15 (18) 28 (58) 32 (52)6 Chim p. 86 (79) 71 (67) 18 (26) 16 (18) 5 (4) 24 (50)

    Hu ma n 89 (77) 70 (67) 19 (26) 15 (20) 4 (4) 3 (2)V(O/r~ O. 131 O. 104 0.028 0.023 0.007 0.005

    (0.347) (0.291) (0.121 ) (0.080) (0.017) (0.009)

    0.119 (0.206)0.128 (0.221)

    0.09t (0.259)0.089 (0.237)0.045 (0.237)0.036 (0.216)

    Number in parentheses is for the third codon positions of protein-codingpreceding it is for the rest of the sites (class 2 sites; 667 nucleotides). Fromrl and Vt0/ri

    regions (class 1 sites; 232 nucleotides) and the numberHasegawa et al. (1984a). See text for explanation o fS ~

    t h e l in e l e a d in g to h u m a n s ( G o o d m a n 1 9 62 , 1 9 63 ;Z i h l m a n e t al . 1 9 7 8 ; F e n d s e t al . 1 9 8 1 a ; A n d r e w sa n d C r o n i n 1 9 8 2 ; B r o w n e t al . 1 9 8 2; S i b l e y a n dA h l q u i s t 1 9 8 4) , a n d t h a t p r i m a t e s a r e r e l a t e d m o r ec l os e ly t o b o v i n e s t h a n t o t h e m o u s e ( M c K e n n a1 9 7 5 ; E i s e n b e r g 1 9 8 1 ). H o w e v e r , t h e b r a n c h i n g o r -d e r a m o n g h u m a n , c h i m p a n z e e , a n d g o r il la is c o n -t r o v e rs i a l. Te m p l e t o n ( 1 9 8 3 ) h a s d e v e l o p e d a n a l-g o r i t h m f o r a n o n p a r a m e t r i c t e s t f o r c o m p a r i n ga l t e r n a ti v e p h y l o g e n i e s o b t a i n e d f r o m r e s t r ic t i o ne n d o n u c l e a s e c l e a v a g e si te d a t a , a n d h a s a p p l i e d i tt o t h e m t D N A d a t a f r o m h o m i n o i d s . H i s c on c l u s io nw a s t h a t t h e c h i m p a n z e e a n d g o r i ll a s e p a r a te d a f t e rt h e d i v e r g e n c e o f h u m a n s . B e c a u s e h i s a n a ly s i s in -v o l v e d m a n y s y n o n y m o u s t r a n si t io n s , a c o n s i d e r -a b l e n u m b e r o f w h i c h r e p r e s e n t m u l t i p l e t r a n s it i o n s,h i s c o n c l u s i o n m a y n o t b e c o r r e c t . I n f a c t , n i n e o ft h e v a r i a t i o n s i n t h e d a t a u s e d b y h i m a r e i n th ep r o t e i n - c o d i n g r e g i o n i n o u r d a t a s e t. S e v e n o f t h e mi n v o l v e t r a n s i ti o n s a t t h i r d c o d o n p o s i t i o n s, o n e o ft h e r e m a i n i n g t w o i n v o l v e s t r a n s i t i o n s a t a f i rs t p o -s i t io n , a n d t h e o t h e r i n v o l v e s t r a n s i t i o n s a t a s e c o n dp o s i t i o n .

    To c l a ri f y t h e p h y l o g e n e t i c r e l a t io n s h i p s a m o n gt h e H o m i n o i d e a , w e a p p l i ed t h e m a x i m u m l ik el i-h o o d m e t h o d d e v e l o p e d b y F e l se n s t e i n (1 9 8 1 ) t oo u r d a t a s et ( H a s e g a w a a n d Ya n o 1 9 84 ). T h e m e t h -o d o r i g i n al l y a s s u m e d t h a t t r a n s i t io n s a n d t r a n s -v e r s i o n s o c c u r a t t h e s a m e r a te . T h i s a s s u m p t i o n i si n v a li d i n a n i m a l m t D N A . T h e r e f o r e , w e s e p a r a te dt r a n s v e r s i o n f r o m t r a n s i ti o n , a n d e x a m i n e d o n l y t h ef o r m e r in c a l c u la t in g t h e m a x i m u m l i k e l ih o o d e s-t im a t e . T h e t o p o l o g y o f t h e m a x i m u m l i ke l ih o o dt r e e (F i g. 1) s h o w s t h e c h i m p a n z e e a s t h e u n i q u ec l o se s t r e l a t iv e o f h u m a n s a m o n g e x t a n t a p e s. A l -t h o u g h th e b r a n c h in g o r d e r a m o n g h u m a n s a n d t h eA f r i c a n a p e s i s c o n f i d e n t o n l y a t 4 . 4 % r i s k l e v e l b yt h is a n a l y si s , t he h u m a n - - c h i m p a n z e e g r o u p i n g h a sb e e n s u g ge s te d a ls o b y a s i n g l e - co p y n u c l e a r D N A -

    D N A h y b r i d i z a t i o n ( S i bl e y a n d A h l q u i s t 1 9 84 ) , bYh e m o g l o b i n s e q u e n c e s ( G o o d m a n e t a l. 1 9 83 ), an db y e x t e n s i v e c o m p a r i s o n o f h i g h - r e s o l u t i o n b a n d in gp a t t e r n s o f th e c h r o m o s o m e s ( Yu n i s a n d P ra ka Sta1 9 8 2) . We t e n t a t i v e l y a d o p t t h i s t r e e t o p o l o g y iae s t i m a t in g d i v e r g e n c e t im e s i n th e H o m i n o i d e a .

    A S t a t i s t i c a l M o d e l

    L e t u s c o n s i d e r s h o m o l o g o u s n u c l e o t i d e s e qu en C eSt h a t c o n s i s t o f r n u c l e o t i d e s i te s o f a h o m o g e n e o u sc l a s s ( e i t h e r c l a s s 1 o r c l a s s 2 ) . F o r t h e d a t a s etan a ly ze d in th i s wo rk , s = 7 , r~ = 232 (c l a s s 1 si te s ),a n d r 2 = 6 6 7 ( c l a s s 2 s i t e s ) ; s i t e s t h a t e x p e r i e n c e dd e l e t i o n o r i n s e r t i o n a r e i n c l u d e d , b u t d e l e t i o n - i l as e r ti o n e v e n t s a r e n o t t a k e n i n t o a c c o u n t i n o u ra n a l y s i s . A b a s i c a s s u m p t i o n i s t h a t e a c h s i t e c h a n g e sh o m o g e n e o u s l y a n d i n d e p e n d e n t l y o f o t h e rs ; th a ti s, th e p r o b a b i l i t y o f n u c l e o t i d e s u b s t i t u t i o n h a s a~i n d e p e n d e n t l y i d e n t i c a l d i s t r i b u t i o n ( i. i. d .) . A r a rl -d o m v a r i a b l e i s r e p r e s e n t e d b y ( x~ . . . . , x s), i n w h ic he a c h c o m p o n e n t i s T, C , A , o r G , a n d t h e n u m b e ro f p o s s i b le s t a t e s i s 4 S. O u r p u r p o s e i s t o p a r a m e t r i z e

    P ( x l = i l . . . . . x s= i s - - -- q i l . . . i s(i~ . . . . . is = T, C , A , G )

    b a s e d o n a s t a t i s t i c a l m o d e l a n d t o e s t i m a t e d i v e rg e n c e t i m e s a m o n g t h e e x t a n t h o m i n o i d s .

    W e d e n o t e b y n it i, t h e n u m b e r o f s i te s t h ath a v e a v a l u e o f ( i l . . . . . is ). T h i s f o l l o w s t h e m u lt in o m i a l ( 4 ~ - n o m i a l ) d i s t r i b u t i o n

    P o l ( n ; q i ~ .. , i ,, i t , . . . , is = T, C , A , G )

    a n d r e p r e s e n t s th e m o s t d e t a i l e d i n f o r m a t i o n a b oO tt h e d a t a u n d e r t h e b a s i c a s s u m p t i o n o f a n i. i .d . Tla ~a v e r a g e a n d t h e c o v a r i a n c e o f th e s e s t a t i s ti c s af eg i v e n b y t h e f o l l o w i ng f o r m u l a e :

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    4/15

    t 65Myr

    7 Man

    6 Chimpanzee

    5 Goril la

    4 Orangutan

    3 . Gibbon

    2 Bovine

    I Mouse

    b ig . 1 . P h y l o g e n y i n f e rr e d f r o m t h e m t D N A s e q u e n c e s b y am a x i m u m l i k e l i h o o d m e t h o d d e v e l o p e d b y F e l s e n st e i n (1 9 8 1 ).I n c a l i b ra t i n g o u r m o l e c u l a r c l o c k , t h e d a t e o f d i v e r g e n c e b e t w e e nt he p r i m a t e s a n d b o v i n e s ( n o d e 2 ) w a s t a k e n t o b e 6 5 M y r a g o

    E{ni l . . . i ,} = rqi , - - - is

    ( ~ O v { n i l . . . i , , n i t , . . . i s , } =r(6i, ...i,; i f . . . i s ' q i t . . . i s ( l a )

    - - q i t . . , i s q i l ' . . , is ') ( l b )

    Where 6it . . . i,; i t , . . , i,, eq ua ls 1 w he n i t = i t ' , . . . . i , =1~', an d 0 o th e rw ise .

    We c a n n o t h a n d l e E q s . ( l a ) a n d ( l b ) a s t h e y a r e ,b e ca u se t h e n u m b e r o f s ta t e s i n c re a s e s e x p l o s i v e l ya s s i n c r e a s es . T h e r e f o r e , w e r e d u c e t h e d a t a t o d i f -f e re n c es , a n d c o m p a r e t h e d i f f e r e n c e s w i t h a p r o b -a b il it y d i s t r i b u t i o n t o w h i c h t h e y c o n f o r m .

    4 S t a t io n a r y M a r k o v M o d e l

    T h e p r o b a b i l i t y t h a t a g i v e n s i t e is v a r i a b l e i s d e -n o te d b y f , w h i c h m e a n s t h a t t h e p r o b a b i l i t y o f it sb e in g n o n v a r i a b l e i s 1 - f . E a c h v a r i a b l e s i t e e v o l v e sa CC o rd in g t o a M a r k o v p r o c e s s i n w h i c h a b a s e i ( T,C , A , o r G ) i s r e p l a c e d b y a n o t h e r b a s e j i n a ni n f in i t e si m a l l y s h o r t i n t e r v a l o f t i m e , d t , w i t h al a robab i l i ty o f P i j ( t ) , a s fo l lows :

    P i j (d t ) = P r (x ( t + d t ) = j Ix ( t ) = i )

    = I a ~ ' j d t ( f o r t r a n s i t i o n )[ r j d t ( f o r t r a n s v e r s i o n )

    2)

    163

    w h e r e r rj i s t h e s t a t i o n a r y c o m p o s i t i o n o f b a s e j . I nou r da ta se t , ~-a- t ) = 0 .1 69 , ~rco) = 0 .4 29 , a 'Ao) =0 . 3 6 4 , a n d 7 t o~ = 0 .0 38 f o r c l a s s 1 s i t e s ; an d 7 rx~2) =0.297, 7rca) = 0. 26 7, ~rA 2) = 0. 31 0, a nd 7rG~2) = 0. 12 6f o r cl a ss 2 s i te s . T h i s m o d e l i s j u s t i f i e d b e c a u s e t h eb a se c o m p o s i t i o n o f a n im a l m t D N A is hi g hl y bi a s ed( p a r t i c u l a r l y, G i s s c a r c e i n t h e L - s t r a n d ) , a n d b e -

    c a u s e th e a s y m m e t r y o f t h e s u b s t i t u t i o n f r e q u e n c i e si s i n a c c o r d w i t h t h e b i a s i n b a s e c o m p o s i t i o n ( th eA --. G f r e q u e n c y is m u c h l o w e r t h a n t h e G --, A )( A q u a d r o a n d G r e e n b e r g 1 9 83 ) . O u r m o d e l i s a g e n -e r a li z a ti o n o f t h e m o d e l s o f K i m u r a ( 1 98 0 ) a n d o fF e l s e n s t e i n ( 1 9 8 1 ) . K i m u r a ' s m o d e l c o r r e s p o n d s t oth e ca se o f lrx = 7rc = ~ 'A = ~rG = Va in Eq . (2) , a n dF e l s e n s t e in ' s m o d e l c o r r e s p o n d s t o t h e c a s e o f a =

    . S i n ce t r a n s it i o n p r e d o m i n a t e s o v e r t r a n s v e r s i o n ,F e l s e n s te i n ' s m o d e l i s a p p a r e n t l y i n a d e q u a t e f o r an -i m a l m t D N A . F u r t h e r m o r e , b e c a u s e t h e b a se c o m -p o s i t i o n o f a n i m a l m t D N A i s h i g h ly bi a s ed , K i -m u r a ' s m o d e l d o e s n o t f i t t h e d a t a . T h i s w i l l b ef u r t h e r s h o w n f o r t h e c l a ss 1 s i te s l a t e r in t h i s p a p e r.

    T h e s u b s t i t u t i o n p r o b a b i l i t y m a t r i x f o r a n i n f in -i t e s im a l l y s h o r t i n t e r v a l o f t i m e c a n b e w r i t t e n a s

    T C A G

    C aTradt 1- - C t ~ T + ~ W A /~rAdt /~rodt+ B*ro)dt

    P(dt) = r /5~rcdt 1 - (ttrr + fl:r t~rodt+ f l r c d t

    Trrdt flrcdt ar ^dt 1 -- (a~rA + f i r r+ fl*rc)dt

    -- - I + Adt (3 )

    F o r a n a r b i t r a r y t i m e i n t e r v a l t , t h e f u n c t i o n P ( t )s at is fi es th e C h a p m a n - K o l m o g o r o v e q u a t io n

    P ( t + d t ) = P ( t ) P ( d t )= P ( 0 ( I + A d O

    T h i s e q u a t i o n i s a m a t h e m a t i c a l m a n i f e s t a t i o n o ft h e M a r k o v i a n n a t u r e o f t h e p ro c e ss . T h e r e f o r e , w e

    g e t

    d P ( t ) _ P ( t ) A

    d t

    S i n c e P ( 0 ) = I , w e h a v eP(t ) = e tA (4)

    To c a r r y o u t o u r a n a l y s i s , i t i s n e c e s s a r y t o e x -p l ic i tl y d e t e r m i n e t h e i n d i v i d u a l s u b s t i t u ti o n p r o b -a b i l i ty P i j( 0 b y u s i n g t h e s p e c if i c v a l u e d e c o m p o -s i t io n o f t h e r i g h t - h a n d s i d e o f E q. ( 4 ). B yd e c o m p o s i n g A a s

    4

    A = ~ X i U i X ii - I

    w e h a v e

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    5/15

    164

    4

    e tA = ~ exp ( t )k l )u iv i 'i = l

    w h e r e d e t ( h i I - A ) = 0 , A u i = ~ i ~ i, A ' ~ i = X i vi ,

    ( u~ , v j) = ~ 0 f o r i , j = 1 , 2 , 3 , 4 , a n d a t i l d e u n d e r a

    l e t te r in d i c a t e s a v e c t o r . W e g e t

    X3= - 0 r v 3 + a R a ),

    V 1 ~ 7 rC71 A

    7 r G

    00 /~ : 3 = 7 1 . C r / Tr '

    V 2

    V 4 =

    X4= - ( T r v a ~ r ~ )

    t , .~RTgT ~1 RTrc /

    - - ,R 'y ' / I 'A

    7 1 y T / ' G /

    1 / ~ r v \1 / ~ r v |

    g ~ = - 1 / ~ r ~ ]1/ lr R ]

    7 l ' C / T r y ~

    u , = - - ~ r T / ~ r v [ow h e r e Tr y= 71 7/ Ca n d 71 R = 71 A 71 G .

    N o w , t h e n u m b e r s o f t r a n s i t i o n - t y p e d i ff e re n c e s ,S O ~, j 2 ), a n d t r a n s v e r s i o n - t y p e d i f f e r e n c e s , V ( j~ , j 2) ,b e t w e e n t h e j ~ -th a n d j : - t h s e q u e n c e s a r e d e f i n e d a sf o l l o w s :

    S( j~, J2) n..T..C.. + n..C..T..J, J~ J, J2

    + n.a. .~. . + n..G..A_ (6 a)J) Ja J, J2

    V ( j , ,J2)--'--n..T.A.+ n . . T. . 9 . .

    + n..c..A.. + n..c..G..J J~ J~ J~

    ~ n . .A . .T. . 31- n . .A . .C . .J, J~ J~ J~

    + n..G..T.. + n..o..c.. (6 b)Jl Ja Jl J2

    w h e r e n ..r..c., i n d i c a t e s t h e n u m b e r o f s i te s t h a t h a v eJt Ja

    T i n t h e j ~ -th s e q u e n c e a n d C i n t h e j 2 - th s e q u e n c ei r r e s p e c t i v e o f o t h e r s e q u e n c e s .

    L e t u s c o n s i d e r a p a i r o f s e q u e n c e s s e p a r a t e d tm i l l i o n y e a r s a g o . S t a t e s o f e a c h s i te o f t h e s e t w o

    s e q u e n c e s a r e d e n o t e d b y x ( t) a n d y ( t ) , r e s p e c t i v e l y.U n d e r t h e a s s u m p t i o n o f s t a ti o n a ri ty , w e h a v e , f o ri

    Pr (x ( t ) = i , y ( t ) = j )

    = P r ( x ( t ) = i , y ( t ) = j [ v a r i a b l e s i t e )

    9P r ( v a r i a b l e s i t e )

    f ~ 7rtPti t)Pej t)t f f iT,C ,A,G

    (7)

    S i n c e r e v e r s i b i l i t y, i . e . ,

    ~r tpei ( t = l r iPi t ( t ) ,(Sa) c a n b e e a s i ly p r o v e n , E q . (7 ) b e c o m e s

    Pr ( x ( t ) = i , y ( t ) = j ) = f ir~ ~ P i , ( t )P, j ( t )t

    = f i r iP0(2 t )( C h a p m a n - K o l m o g o r o v e q u at io n )

    T h e r e f o r e , t h e a v e r a g e n u m b e r s o f t r a n s i t i o n - a n dt r a n s v e r s i o n - t y p e d i f f e r e n c e s a r e c a l c u l a t e d a s f o l-

    (5b) lows:

    V(t ) = 2 f r~ -v lrR[ 1 - - ex p( - - 23 0] (8a )

    S( t ) = 2 fr{ (a 'vr c + l rATrG)

    -~ (71 TTrC TrR/T ry 21-~-ATrG~rv/TrR)exp(--2flt)

    - - 0rTT rc/Try)e xp[--2 t (aTrv + 31rv3]

    (5C) -- (TrAlrG/TrR)exp[--2t(a~rR + BTrv )]} (8b )

    F u r t h e r m o r e , b y u s i n g E q s . ( 6 a ), (6 b ) , ( l a ) , a n d ( l b ) ,v a r i a n c e s a n d c o v a r i a n c e s a m o n g d i f fe r e n c e s a rec a l c u l a t e d a s f o ll o w s : F o r o n e p a i r o f s e q u e n c e s ,

    Va r ( V ) = V ( 1 - V / r ) ( 9 a )

    Va r ( S ) = S ( 1 - S / r ) ( 9 0 )

    C o v ( V, S ) = - V S / r (9c)

    a n d f o r t w o d i f f e r e n t p a i r s o f s e q u e n c e s (j ( l) , j2 w )and ( j (2 ) , j 2 r

    C ov {S (j n t ), j2~ S( j (2), j2(2))}

    = rgl gl ' $2g2

    t r a n s i t i o n

    {q. . L. . !,'...e,...~;..j im j2o> j,q~j2(a)

    - q . . ~ , .. e , .. .q . , e , . ? ; . . } ( 9 d )jtct)j2o) jtol j2o)

    (,) j,m)}ov {S (j l , j2(1)), V ( j t (2),= r

    $1 #I ' g2$2'

    t r a n s i t i o n t r a n s v e r s i o n

    {q. . t , . . e , , . . g , . . t ; . .

    - q. . t , . .e , . .q.e, . .e; . .} (9 e)j,,,,g(,, L,2>L,~,

    C oy {V 0( , j2 ( ) , V O y >, j2m))

    = r ;g l ~ 1 g 282'

    t ransv~ersion t . . . v~ersion

    {q .. e,.. ,'.. t,.. e;..j,.'L .) j,,.)g.)

    - q.. t,.. e,'..q., ,.. t;.. }j,(')jzo) jna)j212)

    (90

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    6/15

    Least-Squares Fi t t ing o f the Data

    S in c e o u r d a t a c o n s i s t o f t w o c l a s s e s o f n u c l e o t i d es it es , a l l o f t h e v a r i a b l e s , a l l o f t h e p a r a m e t e r s e x c e p tt, a n d a ll o f t h e s t a ti s ti c s d e f i n e d a b o v e m u s t h a v ea S U b s c ri p t o r s u p e r s c r i p t k t o d e s i g n a t e t h e c l a ss .We f in a ll y r e d u c e t h e d a t a t o t h e f o l l o w i n g f o r m s :

    1 7V k I) - - - - ~ V k (i, j ) ( 1 0a )

    7 - i j= ~

    1 7S k i) = - - - ~ S k ( i , j ) , ( 1 0 b )

    7 - i ~ _ . ~ .

    i = 1 , 2 . . . . . 6

    W h e re t h e s u p e r s c r i p t ( i) d e n o t e s t h e i - t h s p l i t t i n g i nF ig . 1. T h e s e v a l u e s a r e l i s t e d i n Ta b l e 1 .

    F r o m t h e c e n tr a l l i m i t t h e o r e m , t h e s e s ta t i st i csC an b e r e g a r d e d a s c o n s t i t u t i n g t h e f o l l o w i n g v e c t o r ,W h ic h f o l l o w s a m u l t i v a r i a t e n o r m a l d i s t r ib u t i o n :

    ~ (V t( ') ' . . . , V1(6), SlO ), . . . ,S1(6),V2 ( ') . . . . . V2 (6~, S2( ' ) . . . . . Sa (6))

    T h e e x p r e s s i o n o f t h e m u l t i v a r i a t e n o r m a l d i s t r i -b u t i o n i s t h e n

    p ~ N ( 0 , n )

    3 = ( V , ( h ) . . . . . V, ( t 6 ) , S , ( t l ) . . . . . S , ( t6 ) ,V2 (h) , 9 9 , V~2(~6), S2-(i () . . . . . $2-~J6)) , a n d f~ is th eVa r i a n c e - e o v a r i a n c e m a t r ix . T h e a v e r a g e s c a n b eC a l c ul a te d b y E q s . ( 8 a) a n d ( 8 b ) , a n d t h e v a r i a n c e sb y E q s . ( 9 a - f ) , ( 1 0 a ), a n d ( 1 0 b ) . T h e l i k e l i h o o d f u n c -t ion i s

    L b , D ) = 1- (21r) 12k/-d- f~

    9 x p { - I ( D - I ~ ) ' f l- l ( D - I ~ )}

    I f w e s u b s t i t u t e t h e v a r i a n c e a n d c o v a r i a n c e d a t af or R , t h e a p p r o x i m a t e m a x i m u m l i k e li h o o d e s t i-

    m a t e o f t h e p a r a m e t e r s o f t h e m o d e l c a n b e o b t a i n e db y m i n i m i z i n g

    R = - ( D - I ~ ) ' f ~ - ' ( D - ~ ) ( 1 1 )

    l a O u r e a r l ie r w o r k s ( H a s e g a w a 1 9 8 4 ; H a s e g a w a e ta l. 19 8 4 a , 1 9 8 5 ) , a s a n a p p r o x i m a t i o n o f t h i s g e n -e r a li z ed l e a s t- s q u a r e s m e t h o d , w e s o l v e d t h e l e a s t-S qU ares p r o b l e m b y m i n i m i z i n g

    k- l i -1 Va r (V k ~

    { V k ( i) - - V k ( t i ;fk, /3k)}=

    165

    1+Var(S k o) )

    9 Sk ~ -- Sk(ti; fk, ak, Bk) (1 2)

    S i n c e t h e e f fe c ts o f c o v a r i a n c e t e r m s a r e n o t n e g li -

    g i b le , w e m i n i m i z e R d i r e c t l y in t h is p a p e r . I n o u re a r li e r w o r k s ( H a s e g a w a a n d Y a n o 1 9 84 ; H a s e g a w ae t a l . 1 9 8 4 a , 1 9 8 5 ) , n i~ kt i n s t e a d o f C hjke w a s u s e d i nc a l c u l a t i n g f~. S i n c e t h e s a m p l e s i z e i s s m a l l , t h ec o v a r i a n c e s e s t i m a t e d i n t h a t m a n n e r a r e u n s t a b l e .T h e r e f o r e , i n t h i s w o r k w e c a l c u l at e q U kt i t e r a t iv e l yb y m e a n s o f t he N e w t o n m e t h o d d i sc u s se d b e l o wb y s e t t in g t h e v a l u e s o f t h e p a r a m e t e r s a s f o ll o w s :U n l e s s i = j = k = g , q~ jk t i s g i v e n b y

    q ) ~ : =I J K L

    f ~ ~ 7r.Pxi(2h - t j ) P. j ( b)* Y ' Pxy( t j - - t r. )Pyk( tv. )Py, ( tv. )f o r I < J < K < L

    f ~i j ~ r x P . ~ ( 2 t , - t v. ) P. k ( t r . ) P x e ( t v. )f o r I = J < K < L

    f6jk ~ rxPxi(2t~ - t j )P , j ( t j )P~e (t j ) (13 )x f o r I < J = K < L

    f~kt ~ rxPx i(2t l - - t j )Pxj( t j )P,k ( t j )x f o r I < J < K - L

    f~ij~kdriPik(2t t )f o r I = J < K = L

    w h e r e fiij i s K r o n e c k e r ' s d e l t a a n d ~ i s t h e s u m o v e r

    T, C , A , a n d G .

    N e w t o n M e t h o dTo m i n i m i z e R , t h e N e w t o n m e t h o d w a s c a r ri e d

    o u t a s fo llo w s. If _0 - (t , , t3, t4, ts, t6, t"1, a, , /31, f2,a 2,/3 2 )' t h e i t e ra t i o n a l g o r i t h m o f t h e N e w t o n m e t h -o d i s g i v e n b y

    : a2R ,~ - (aR ~o . , = O o - \ ~ / ~ _ . \- ~- L ~ _. ( 1 4 )

    Variances of the Est ima tesF r o m E q . (11 ), R i s g i v e n a s a f u n c t i o n o f D a n d

    0 b y

    R ( p , 0 ) = ( D - 0 ( 0 ) ) ' f l - ' ( D - - 0 ( 0 ) )

    w h e r e 0 (0 ~) = E [ D [ 0 ] . O n e c a n o b t a i n ~ ( D ) b y se t -

    t i n g

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    7/15

    166

    C,d

    o 3

    o 2

    o l6o

    C l a s s s i t e s

    t = 92.2 7-+ 11.7 3 Myr (Mouse)CM

    _ 2 l = 65 Bovi ne)t 2

    4 i~3 = 13.30 + 1.54 Gibbon)

    = s i~4 = I0. 86 -+ 1.24 Orang)

    s = 3.67 -+ 0.62 Go r il l a)

    i~6 = 2.68 -+ 0.61 Chimp)D

    CDCD

    c : T l I I I I l l I I I l I I I I I I I I l I l0 . 0 0 0 . 0 4 0 . 0 8 0 . 1 2 0 . 1 6 0 . 2 0 0 . 2 4 0 . 2 8 0 . 3 2 0 . 3 6 0 . 4 0 0 . 4 4

    V / r

    F i g . 2 . Least-squares fitting of the relation between S/r and V/r. Vertical and horizontal lines indicate standard deviations o f S ~and VOVr, resp ectiv ely.The interval between neighboring small circles along the c urve is 5 My r

    6) 0 . 15)R ( p , =

    D e f i n i n g

    R t ( D , 0 ) - ~ 0 R ( D , 0 ) ,

    we e x pa nd R o_(~D, ~ ar o u nd R e_(I)(~0) , ~ as fol lo ws :

    R_o(~D, 0~) - R o( O (O ), O)

    A ( D - ~ ( 0 ) ) + B ( g - 0 ) ( 1 6)

    w h e r e

    0 2A - - - R ( ~ ( 0 ) , 0 )

    a o o D

    a n d

    B = _ _

    ~2

    3 0 0 0 / R ( ~ ( ~ 0 ) ' 0 )

    S i n c e t h e l e f t - h a n d s i d e o f E q . ( 1 6 ) i s z e r o ,

    - 0 = - - B - ' A ( D - 0 ( ~ ) )

    T h e r e f o r e , t h e v a r i a n c e a n d c o v a r i a n c e m a t r i x o ft h e e s t i m a t e s i s g i v e n b y

    Va r ( ~ ) = E [ ( ~ - 0 ) ( ~ - 0 ) ' ]

    - B-1AE[(D~ -- ~(0))

    9 D - I ) ( 0 ) ) ' ] A ' B - ~

    = B - J A g A , B - I (17)

    R e s u l t s

    ivergence Times in the Evolution of theHominoidea

    T h e r e s u l t s a r e s h o w n i n i n F i g s . 2 a n d 3 . O u r c l o c kgiv es 92.27 _+ 11.73 , 1 3.30 _+ 1.54, 10.86 _+ 1.24,3 . 6 7 _+ 0 . 6 2 , a n d 2 . 6 8 _+ 0 . 6 1 M y r f o r t h e s e p a r a t i o ~f r o m t h e h u m a n l in e o f m o u s e , g i b b o n , o r a n g u ta n ,g o r i l l a , a n d c h i m p a n z e e , r e s p e c t i v e l y ( t h e n u m b e ra f t e r _+ i s t h e s t a n d a r d d e v i a t i o n ) .

    T h e e s t i m a t e o f th e o t h e r p a r a m e t e r s o f t hem od e l a re as fo l low s : t '2 = 0 .949 1 _+ 0 .03 95 , &l ~0 . 4 4 8 3 + 0 . 1 4 2 4 M y r - ~ , ~ = 0 . 0 0 8 2 + 0 . 0 0 12MY -~, f2 = 0 .3 84 7 _+ 0.0 22 8, &2 = 0.0 68 4 _+ 0.009 3M y r - 1 ~ 2 = 0 . 0 0 6 2 +- 0 . 0 0 0 7 M y r -1 ( t h e n u m b e r

    a f t e r _ + i s t h e s t a n d a r d d e v i a t i o n ) . T h e f a c t t h a t 3 1n e a r l y e q u a ls u n i t y s h o w s t h a t a l m o s t a l l o f t h e t h i r dc o d o n p o s i t i o n s a r e v a r i a b l e .

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    8/15

    167

    3 . r z f f 9 o .6 1 M y r

    10.86 _ 1.24 M y r /13.30 1 .54 Myr

    an

    Chimpanzee

    Gorilla

    Orangutan

    Gibbon

    F i g . 3 . E s t i m a t e s o f d a t e s o f s e p a r a t i o n sd u r i n g e v o l u t i o n o f t h e H o m i n o i d e a . A h o r i -z o n t a l l i n e i n d i c a t e s t h e r a n g e o f t h e s t a n d a r de r r o r o f t h e e s t i m a t e

    Simulat ion Experiment

    To C on fi rm t h e v a l i d i t y o f o u r m e t h o d , a c o m p u t e rS i m u l a ti o n w a s c a r r i e d o u t . A h y p o t h e t i c a l a n c e s t r a ls e q ue n c e c o r r e s p o n d i n g t o n o d e 1 i n F i g . 1 w a s c o n -S t ru c te d a c c o r d i n g t o t h e a v e r a g e n u c l e o t i d e c o m -l a o si ti o n s o f t h e r e s p e c t i v e c l a s s e s o f o u r d a t a s e t o fr n tD N A . I n t h e s i m u l a t i o n t h e s e q u e n ce e v o l v e sa CC or di ng t o t h e M a r k o v m o d e l i n w h i c h a i , B i, fi( i ~ 1 , 2 ) , an d t~ ( i = 1 . . . . 6 ) a re the e s t im a tes

    O b t ai n ed b y o u r a n a l y s i s t o g i v e a s e t o f s e v e n c o n -~ ve ra Po ra ry s e q u e n c e s . T h e n t h e s e q u e n c e s a r e a n a -Y Zed b y o u r m e t h o d , a n d t h e p a r a m e t e r s o f th e

    m o d e l a r e e s t i m a t e d .T h e s i m u l a t i o n w a s p e r f o r m e d 1 0 0 t i m e s , a n d

    t he S a m p l e m e a n s a n d s a m p l e v a r i a n c e s o f t h e e s -t i m a t e s w e r e c o m p u t e d . T h e r e s u l t s a r e a s f o l l o w s :t~ ~ 91 .80 _ 11 .30 M yr, t3 = 13 .24 _ 1 .16 M yr,t4 ~ 10 .79 __+ 0.8 8 M y r, t5 = 3.6 5 + 0.4 8 M yr , t6 ---2 . 7 3 + 0 . 4 3 M y r , f l = 0 . 9 5 3 8 ___ 0 . 0 2 6 6 , a l0 ' 4 5 4 7 -+ 0 . 1 0 0 0 M y r - ~ , f ll = 0 . 0 0 8 3 __+ 0 . 0 0 0 9MMYr-I, f2 = 0 .3 85 2 +_ 0.0 18 1,a 2 = 0 .06 89 _ 0 .0 07 6

    y r -1 , /~ 2 = 0 .0 0 6 2 + 0 . 0 0 0 6 M y r - 1 ( th e n u m b e ra ft er + i s t h e s t a n d a r d d e v i a t i o n ) . T h e s e r e s u l t s a r ec o n si st e nt w i t h t h e e s t i m a t e s f r o m t h e D N A s e-q u en c e d a t a , a n d t h e s t a n d a r d d e v i a t i o n s c a l c u l a t edf ro m t h e s a m p l e v a r i a n c e s o f s i m u l a t i o n e x p e ri -. ~ l e n t s , a s w e l l a s t h o s e c a l c u l a t e d f r o m E q . ( 1 7 ) ,a a di e at e t h e d e g r e e o f e r r o r i n o u r e s t i m a t e o f t h eP a r a m e t e r s .

    dOrne Chara cteristics o f the Relationship Betweenand S

    t i s a p p a r e n t i n F i g . 2 t h a t t h e n u m b e r o f t r a n s i t i o n -p e d if f e re n c e s S i s n o t a m o n o t o n o u s l y i n c r e a s i n g

    f u n c t i o n o f d i v e r g e n ce t i m e t , b u t h a s a m a x i m u mv a l u e a n d t h e r e a f t e r d e c r e a s e s . T h i s i s a l w a y s t h ec a s e i f a i s g r e a t e r t h a n ~ . T h i s c h a r a c t e r i s t i c h a sn o t b e e n p o i n t e d o u t b y p r e v i o u s r e s e a r c h e r s , b e -c a u s e t h e i r i n t e r e s t h a s b e e n i n c o u n t i n g t h e a c c u -m u l a t e d n u m b e r o f n u c l e o t i d e s u b s t i tu t i o n s , t h a t is ,t r a n s i t i o n s p l u s t r a n s v e r s i o n s ( K i m u r a 1 9 8 0 , 1 9 8 1 ;Ta k a h a t a a n d K i m u r a 1 9 81 ; G o j o b o r i e t a l. 1 9 8 2) .I n a n i m a l m t D N A ,h o w e v e r , i n w h i c h t r a n s i t i o ng r e a tl y p r e d o m i n a t e s o v e r t r a n s v e rs i o n , t h i s n u m -

    b e r i s n o t a d e q u a t e a s a m e a s u r e o f g e n e t ic d i s t a n ce .S e p a r at e c o u n t i n g o f tr a n s i t io n s a n d t r a n s v e r s io n si s p r e f e r a b l e i f p o s s i b l e , a s i s t h e c a s e f o r d i r e c ts e q u e n c e d a t a .

    T h e d o m a i n o f c o n v e rg e n c e o f th e N e w t o n m e t h -o d i s n a r r o w . T o f i n d a g o o d i n i t i al p a r a m e t e r s e t,i t is u s e f u l t o h a v e a g o o d g r a s p o f t h e c h a r a c t e r i s ti c so f t h e r e l a t i o n s h i p b e t w e e n ~ r a n d S ,

    d S a IrTlrc + ~'ATrO

    w h i c h i s d e t e r m i n e d b y a / ~ . F u r t h e r m o r e , f o ra >

    d S /I'TTI'C TrR /'/I'y /rATI'G'/I'y/ //l im ~ - -t-c* d V a'yTrR

    w h i c h i s i n d e p e n d e n t o f th e a d j u s t a b l e p a r a m e t e r s .I n K i m u r a ' s ( 1 9 8 0 ) f o r m u l a t i o n , d S / d V t e n d s t o

    1 / 2 a s t g o e s t o i n f i n it y. H i s f o r m u l a i s a g o o d a p -p r o x i m a t i o n o f o u r s f o r c l as s 2 s it es , w h e r e d S / d Vb e c o m e s - 0 . 4 5 5 a s t t e n d s t o w a r d i n f i n it y, b u t n o tf o r c l as s I si te s , w h e r e d S / d V b e c o m e s - 0 . 2 8 8 .

    A s t goes to in f in i ty , V( t ) an d S( t ) t e nd to 2 f rl ryTrRa n d 2 f r 0 r Tr c + lrA ~rG ), r e s p e c t i v e l y, w h i c h v a l u e sa r e d e p e n d e n t o n t h e p a r a m e t e r f . To o b t a i n a g o o d

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    9/15

    168

    estimate off , distantly related pairs of sequence data,in which the number of transition differences de-creases as t increases, are needed. In our data set,the bovine-primate and mouse-(bovine, primate)pairs are important in this respect. On the otherhand, to obtai n a good estimate o f a and B, closelyrelated pairs of sequence data, in which the numbe rof transi tion differences increases as t increases, areneeded. In our data set, the huma n-ch impa nzee andgor illa (hu man, chimpanzee) pairs are import ant inthis respect. We cannot obtain a good estimate ofa, B, and f from a single pair of sequences, andsequence data from man y species of organisms, bothclosely related and distan tly related, are needed. Se-quence data from intermediately related pairs o fspecies increase the accuracy of the estimates. Thestatistical procedure developed in this paper takesinto account the information contained in a set ofsequence data more fully than any o f the primitivemethods of simple pairwise comparison of se-quences. When mtDNAs from an Old World mon-key and from a New World mo nkey are sequenced,the accuracy of our estimate will increase.

    ve rage Ra te o f Nuc leo tide Subs t i tu t i ons i n m tDN

    Our present study shows that in analyzing directsequence data of mtDNA, transitions and transver-sions must be treated separately, because the ratesof these two kinds of substitutions differ consider-ably. In analyzing restriction endonuclease mappingdata of MtDNA, however, such a separate treatmentis impossible. Therefore, it should be useful in in-terpreting the restriction mapping data to estimatethe average rate of nucleotide substitutions inmtD NA irrespective of transition or transversion.

    Since the previous studies estimated the rate ofnucleotide substitutions in mtD NA without payingfull atten tion to the fact that a considerable nu mbe rof the transit ion-typ e differences in the class 1 sites,even those between human and chimpanzee, rep-resent multiple hits (Brown et al. 1979, 1982; Nei1982), their estimates are bound to be lower thanours. These clocks, which proceed slower than thereal clock, have been used in datin g relatively recentevents; for example, divergences among hum an raceshave been dated based on restriction endonucleasefragment patterns o fm tD NA (Cann et al. 1982; Nei1982; Johnson et al. 1983). Therefore, these datingsmust be reexamined by our new molecular clock ofmtDNA.

    In a short time interval t, exp(x) in Eqs. (8a) and(8b) may be approximated by 1 + x. From these

    equations the average rate of nucleotide substitu-tions, that is transitions plus transversions , is there-fore given by Hasegawa (1984)

    (rl + r2) -1 2rki'k{0rTbrc k + 7rAk~rGk)&kk=l 2

    I r y k l r R k 3 k }

    the calculat ed value o f whic h is (25.4 + 6.1) x 10 -9per site per year (the value after _ is the standarddeviation). This is the average substitution rate ofthe segment of 899 nucleotides of mtD NA used inconstructing our clock. Althoug h regions outside thissegment have evolve d faster or slower than the seg-ment, it seems reasonable to assume that the rateestima ted above is representative o f the average nu-cleotide substitution rate of the whole mitochondrial genome. The above estimate is much largertha n the rat es of 2.5 x 10 -9 per site per year, esti-ma ted b y Nei (1982), an d 10 x 10 -9 per site peryear, estimated by Cann et at. (1982). Of the pre-viou s estimates, the rate of 10-20 10 -9 per siteper year, estimated by Brown et al. (1982), is theclosest to our value. The divergence times amonghuma n races estimated by the previous studies mustbe revised. The revised divergence times based onthe molecular clock ofm tD NA are more recent thanthe estimates obtained from the polymorphism ofprotein s code d for by nuclear genes (Hasegawa 1984).Because mtD NA is more susceptible to transfer be-tween populations, the divergence time estimatedfrom the mt DN A clock may indicate the time whenmt DN A transfer last happe ned between two groupS.

    i s c u s s i o n

    T h e D a t e o f M a m m a l i a n D i ve rg e nc e

    Our datings of the splittings among homino ids areheavily dependent on the assumption that the di-vergence between bovin es and primates occurred 65Myr ago. Since the holoca ust at the end of the Cre-taceous is likely to have been responsible for themammalian divergence, we think that the date of65 Myr ago is closer to the truth than previous es-timates.

    Michael Novacek (personal communicat ion)pointed out that the value of 90 My r that we adoptedfor the divergence in the earlier paper (Hasegawa etal. 1984a) is unrealis tically high, and suggested arange between 65 (first appearance of primates andungulate groups in the fossil record) and 75 M yr agofor the split-off from the last com mon ancestor ofprimates and bovines. If the older limit of 75 Myra g o is taken , our clock gives 106.46 + 13.54,15.35 +__1.78, 12.53 - 1.43 ,4.23 _ 0.7 1, an d3 .0 90.71 Myr ago for the separations from the human

    line of mouse, gibbon, oranguta n, gorilla, and chinapanzee, respectively. Although there is some uncertainty as to the date of the mamm alia n divergence,

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    10/15

    t hi s d i v e rg e n ce e v e n t s e e m s t o b e t h e m o s t r e l i a b ler e fe r e n ce w i t h w h i c h t o c a l i b r a t e t h e m o l e c u l a r c l o c ko f t h e v a r i o u s r e f e r e n c e s u s e d t h u s f a r.

    Uniformity of the Rate of the Molecular Clock

    T h e u ni f o rm i t y o f t h e e v o l u t i o n a r y r a te o f m t D N Aa m o n g d i f f e r e n t l i n e a g e s c a n b e e x a m i n e d b y a r e l -a t iv e r a t e t e s t W i l s o n e t a l. 1 9 7 7 ) . F r o m t h e d a t ai n Ta b l e 1 , n o s i g n i f i c a n t d i f f e r e n c e i s o b s e r v e da m o ng t h e n u m b e r s o f ch a n ge s b e t w e e n t h e m o u s ea n d a n y o n e o f th e p r i m a t e s a n d b o v i n e s . N e i t h e ri s a n y s ig n i f ic a n t d i f f e r e n c e o b s e r v e d a m o n g t h en u m b e r s o f ch a n g es b e t w e e n b o v i n e s a n d a n y o n eo f t h e P r i m a t e s . F u r t h e r m o r e , n o s i g n if i c a n t d if f e r -e n ce i s o b s e r v e d a m o n g t h e n u m b e r s o f ch a n g e sb e t w e e n t h e g i b b o n a n d o t h e r h o m i n o i d s , a n d s oo n. O n e m i g h t n o t i c e t h a t t h e n u m b e r o f t r a n s v e r -S i o n d i f f e r e n c e s o b s e r v e d b e t w e e n g i b b o n a n dorangutan in the c lass 1 s i t es, 34 , d i ffe r s con s ider -a b ly f r o m t h e 2 6 s u c h d i f f e r e nc e s o b s e r v e d b e t w e e ng i b b o n a n d t h e g o r i l l a - - c h i m p a n z e e - h u m a n t r io .b l o w e v e r, t h i s d i s c r e p a n c y i s n o t s i g n if i c an t i f th ed i st r ib u t io n i s P o i s s o n . T h e n u m b e r o f tr a n s i ti o nd if fe re n ce s o b s e r v e d b e t w e e n m o u s e a n d b o v i n e s i nthe c lass 1 s i t es , 39 , i s a l so no t s ign i f ican t ly d i ffe ren tf r om th e 4 6 - 5 3 s u c h d i ff e r en c e s b e t w e e n m o u s e a n dP r im a t e s . A l t h o u g h t h e p o s s i b i l i t y o f a s m a l l d e v i a -ti on f r o m u n i f o r m i t y o f t h e n u c l e o t i d e s u b s t i t u t i o nl ~ ro b a b il it y i s n o t e x c l u d e d , t h i s t e s t s h o w s t h a t o u rd a t a i n d i c a t e a n a p p r o x i m a t e u n i f o r m i t y a t l e a s ta m o n g p r i m a t e s a n d b o v i n e s .

    B a s e d o n n u c l e a r D N A h y b r i d i z a t i o n d a ta , s o m ea u th o r s h a v e c o n t e n d e d t h a t t h e n u c l e o t i d e s u b s ti -t u t i o n r a t e w a s m u c h h i g h e r a l o n g t h e l i n e a g e s o fm o u s e a n d r a t t h a n a l o ng o t h e r m a m m a l i a n l in e a g e sK o h n e 1 9 7 0 ; K o h n e e t a l. 1 9 7 2 ) . H o w e v e r , t h e i r

    s tu d ie s w e r e b a s e d o n q u e s t i o n a b l e e s t i m a t e s o f di -Ve rg en ce t i m e , a s p o i n t e d o u t b y S a r i c h a n d W i l s o n1 9 7 3) a n d b y Wi l s o n e t a l . 1 9 7 7 ) . F u r t h e r m o r e ,

    8 a r ic h a n d C r o n i n 1 9 8 0 ) a n d F e r N s e t a l. 1 9 8 3 )s u g g es te d t h a t t h e r a t e s o f n u c l e o t i d e d i v e rg e n c e a r es i m il a r f o r p r i m a t e s a n d r o d e n t s . T h e r e f o r e , i t i sP o s si b le t h a t t h e r a t e o f m t D N A d i v e rg e n c e i n r o -d e n ts d o e s n o t d i ff e r f r o m t h a t f o r o t h e r m a m m a l i a nOrders.

    A t p r e s e n t , w e t e n t a t i v e l y t h i n k t h a t t h e n u c l e o -t id e s u b s t i t u t i o n r a t e o f r o d e n t s d o e s n o t d i f f e r f r o mt ha t o f o t h e r m a m m a l i a n o r d e r s , a n d t h a t, a s o u r~ a l y s i s i n d ic a t e s, r o d e n t s d i v e rg e d fr o m o t h e r p la -c e n ta l m a m m a l s 9 2 . 2 7 + I 1 .7 3 M y r a g o , b e f o r e t h e~ a m r n a l i a n r a d i a t i o n a m o n g m o s t o f t h e e x t a n t p l a-C en ta l m a m m a l i a n o r d e r s t h a t t o o k p l a c e s o m e 6 5

    M y r a go . S i nc e r o d e n t s a r e u n i q u e a m o n g p l a c e n t a lm a m m a l s i n t h a t a ll a t te m p t s o f p a le o n t o l o g i s ts t or el at e t h e m t o o t h e r g r o u p s o f m a m m a l s h a v e b e e n

    169

    i n v a i n C o l b e r t 1 9 8 0 ) , o u r h y p o t h e s i s o f a n e a r li e rr o d e n t d iv e rg e n c e m a y n o t b e u n r e a s o n a b l e .

    I n a n y c a se , t h e m o l e c u l a r c l o c k h y p o t h e s i s a sa p p l i e d t o t h e w h o l e m a m m a l i a n c l as s is st il l c o n -t r o v e r s i a l. I t w il l b e d e s i r a b l e t o t e s t w h e t h e r r o d e n tD N A h a s e v o l v e d m o r e r a p i d l y t h a n t h a t o f o t h e rp l a c e n ta l m a m m a l s w h e n a n o u t s i d e r e f e re n c e s u cha s m a r su p i a l m t D N A is o b ta i n e d . E v e n i f t h e m o u s el in e h a s e v o l v e d m o r e r a p i d l y t h a n t h e o t h e r s , i td o e s n o t i n v a l id a t e o u r a p p r o a c h i n e s t im a t i n g d i -v e r ge n c e ti m e s a m o n g t h e H o m i n o i d e a .

    A l t h o u g h t h e c o n s t a n c y o f o u r c l o c k w i t h r e s p e c tt o a b s o l u t e g e o l o gi c al t i m e h a s y e t t o b e p r o v e nd i re c t ly, f u t u re s e q u e n c in g o f m t D N A s f r o m v a r i o u sf a m il ie s o f p r i m a t e s a n d f r o m v a r i o u s m a m m a l i a no r d e r s w i l l c l a r if y t h e a c c u r a c y a n d a p p l i c a b i l i t y o fo u r c l o c k in e s t i m a t i n g d i v e rg e n c e t im e s a m o n gm a m m a l s . I t h a s b e e n p r o p o s e d t h a t th e S o u t hA m e r i c a n m o n k e y s d e s c e n d e d f r o m A f ri c an m o n -k e y s , n o t f r o m N o r t h A m e r i c a n p r o s i m i a n s , w h e nt h e S o u t h A m e r i c a n c o n t i n e n t w a s c lo s e t o t h e A f -r i c a n c o n t i n e n t s o m e 3 5 - 3 8 M y r a g o C i o c h o n a n dC h ia r eU i 1 9 8 0) . W h e n m t D N A f r o m a n e w W o r l dm o n k e y i s s e q u e n c e d , t h e v a l i d it y o f o u r c l o c k w i llb e t e s t e d .

    Splittings of Orangutan and Gibbon romHuman Line

    I n o u r e a r li e r p a p e r H a s e g a w a e t a l. 1 9 8 4 a ) , w ea s s u m e d t h a t t h e 1 4 . 5 - M y r - o l d s p e c i m e nSivapith-ecus w a s a n c e s t ra l t o t h e o r a n g u t a n b u t n o t t o h u -m a n s R a z a e t a l. 1 9 8 3 ), a n d t h a tMicropitheeusw h i c h i s s o m e 2 0 M y r o l d , w a s a n c e s t r a l t o t h eg i b b o n s b u t n o t t o h u m a n s S i m o n s 1 9 8 1) . A s s u m -i n g 9 0 M y r a g o f o r t h e d a t e o f t h e s p li tt in g b e t w e e np r i m a t e s a n d u n g u l a t e s a n d u s in g a l e a s t- s q u a r e sm e t h o d b y m i n i m i z i n g R , r e p r e s e n t e d b y E q . 1 2 ),w e o b t a i n e d f o r t h e d i v e rg e n c e d a t e s o f th e o r a n -g u t a n a n d o f t h e g i b b o n s f r o m t h e h u m a n l in e15 .9 + 2 .9 and 19 .1 + 3 .6 M yr ago n i jke va lu esi n s t e a d o f q ~k e v a l u e s w e r e u s e d i n c a l c u l a t in g ~ ) ,r e s p e c t i v e l y, w h i c h a r e c o n s i s t e n t w i t h t h e a b o v ei n t e r p re t a t io n o f th e f o s si l e v i d e n c e . H o w e v e r , w h e nw e t a ke 6 5 M y r f o r t h e d a te o f m a m m a l i a n d i v er -g e n c e a s i n th i s p a p e r, t h e e s t i m a t e d d a t e s o f t h eo r a n g u t a n a n d g i b b o n d i v e rg e n c e s c o n t r a d i c t t h ea b o v e i n t e r p r e t a t i o n o f t h e f o s s i l e v i d e n c e .

    P e t e r A n d r e w s p e r s o n al c o m m u n i c a t i o n ) p o i n t -e d o u t t h a t t h e 1 4 .5 M y r a g o s p li tt in g t i m e b e t w e e nh u m a n s a n d t h e o r a n g u t a n R a z a e t a l. 1 9 8 3 ) i sb a s e d o n t h e i d e n t i f ic a t i o n o f a f r a g m e n t a r y f o s s ilt h a t i s n o t w e l l d a t e d . F u r t h e r m o r e , h e p o i n t e d o u t

    t h a t Micropithecus h a d n o t b e e n s h o w n t o b e a n -c e s t r a l t o t h e g i b b o n s .Micropithecus i s n o w r e c o g -n i z e d a s b e l o n g i n g t o a p r i m i t i v e g r o u p l a c k i n g t h e

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    11/15

    170

    synapomo rphies (derived characters that are shared)of the Homi noi dea (Andrews 1981). Our datings inthi s paper, 10.86 + 1.24 an d 13.30 ___1.54 Myr agofor the orangutan and gibbon divergences, respec-tively, are in accord with those of Andrews andCron in (1982), 10 _ 3 Myr ago for the orangutandivergence and 12 + 3 Myr ago for the gibbon di-vergence, and also approximately in accord withthose of Sarich and Cronin (1977), 9-11 and 11-13Myr ago for the orangutan and the gibbon diver-gences, respectively.

    Possibility Th at Austra lopithe cus afarensis is No tan Ancesto r o f Hu ma ns Tha t Evo lved Af te r theH u m a n - A p e S p l i tt in g

    There is a widely believed hypothesis that Australo-pithecus afarensis which lived some 3.7 M yr ago atLaetoli in Tanzania an d at Had ar in Ethiopia, is ourancestor and evolved after the human-ape splitting(Leakey et al. 1976; J ohan son et al. 1978; Joha nsonand White 1979; Cronin et al. 1981; White et al.1981). However, our dati ng of the hum an- chi m-panzee splitting by the molecular clock of mtDNAis 2.68 + 0.61 Myr ago, which is more recent thatwhen A. afarensis lived. Two factors may be takeninto consideration to explain this. First, the datingof the Hadar homi nids is still controversial, and theycould be younger than 3.4 Myr (Sarna-Wojcicki etal. 1985). Second, the divergence between primatesand ungulates may have happened 75 Myr ago rath-er than 65 Myr ago, and if this is the case, then ourclock gives 3.09 + 0.71 Myr ago for the hu ma n-chimpanzee separation. Considering these uncer-tainties, the possibility that the hypothesis is com-patible with our clock cannot be discounted. How-ever, this compa tibility rests on fragile ground, an dit may be worthwhile to ex amine the va lidity of thehypothesis.

    Since A. afarensis walked upright on two legs,despite the simi larity of its brain capacity, dentition,and other features to those of apes, most paleoan-thropologists believe it to be the first hominid. How-ever, our molecular clock of mtDN A suggests thatthe human-ape splitting may have occurred morerecently than when A. afarensis lived.

    Bipedalism is widely believed to have been thefirst step in homin iza tio n (Leakey et al. 1976; Da yand Wi ckens 1980; White 1980), a nd any fossil pri-mates that walked upright have been readily ac-cepted as our immediate ancestors. If A. afarensiswhich walked upright, is not an ancestor that e volvedafter the hum an- ape splitting, as is suggested by our

    molecular clock, then the following two explana-tions of the origin of bipedalism are possible: (1)A.afarensis an upright biped, was a com mon ance stor

    of human s and the chimpanzee (and probably thegorilla). The chimpanzee (and the gorilla) lost bi-pedalism after splitting from the hu ma n line. (2) A.afarensis was not an ancestor o f any living primate.Bipedalism evolved independently in at least twolineages, the A. afarensis line and the human line.

    The first possibility was pointe d out by Gribbinand Cherfas (1982). Al though no i ndicati on has beenfound that the chimpanzee had a bipedal ancestor,this does not necessarily exclude the first possibility.

    Zihlm an (1979) pointed out th at the pygm y chim-panzee Pan paniscus has many morphological fea-tures in common with A. africanus which is be-lieved to have descended from A. afarensis. Thepygmy chimpanzee is the species most closely re-lated to the common chimpanzee P. troglodytesamon g extant homin oids (Zihlm an et al. 1978; Fer-riset al. 1981a, b; Brown et al. 1982; Sibley andAhlquist 1984). Furthermore, Feldesman (1982a, b)noticed that A. afarensis clearly resembles P. pan-iscus in proximal ulnar morphology. The above ar-guments might be compatible with the first possi-bility, that knuckle-walking of extant chimpanzeesand gorillas evolved from bipedality.

    Oxna rd (1975, 1984) poi nted out that bipedalisnamight have evolved not once or even twice, butperhaps several times during the evolution of theHomin oidea . Therefore, the second possibility alsoappears likely. He claims that the australopithecines, including A. afarensis A. africanusand A.robustus were not structurally closely similar to hu-mans, a nd that they were adapted at least in part toan arboreal environment.

    Although it is likely that the australopithecineswere capable o f bipedalism (but probably in a bio-mechanical mode quite different from that em-ployed by humans), they mig ht also have been quad-rupedal, especially when c limbing in trees. It is nowbeing recognized that although A. afarensis couldwalk bipedally, it kept its balance more like a chim-panzee does than a hu ma n does (Stern and Susman1981, 1983). Thus, the possibility that A. afarensiSwas not an ancestor of humans that evolved afterthe huma n-a pe splitting cannot be ruled out at pres-ent.

    It is unknow n whether the last co mm on ancestorof human and chimpanzee was like the living chim-panzee or the living human. However, it seems tohave been widely assumed i mplicitly that the corn-mort ancestor of the two species was mor e like thechimpanzee than the human. There has been a tendency to view hominid features as specialized andthose o f apes as unspecialized. Any fossil hominoidsthat bear some resemblance to humans have beenreadily considered to be human ancestors thatevolved after the human-ape splitting. Ramapithecines had long been believed to be ancestral to hu-

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    12/15

    r oa ns b a s e d o n t h is t y p e o f r e a s o n in g . H o w e v e r , t h e ya re n o w b e l i e v e d t o b e a n c e s t o r s o f t h e l iv i n g o r a n g -u ta h A n d r e w s 1 9 8 2 ; A n d r e w s a n d C r o n i n 1 9 8 2;P i lbeam 1982) .

    R e c e n t l y A l a n W a l k e r p o i n t e d o u t t h a t t h e o r a n g -u ta n , w h i c h h a d b e e n w i d e l y b e l i e v e d t o b e a h i g h lyS pe cia liz ed a p e a s c o m p a r e d w i t h t h e c h i m p a n z e ea n d g o r il la , m a y a c t u a l l y b e t h e l iv i n g h o m i n o i d t h a tb e ar s t h e m o s t e x t e n s i v e r e s e m b l a n c e a m o n g c o r n -t e m p o r a ry d e s c e n d a n t s t o th e l a st c o m m o n a n c e s t o rof a ll the l iv ing grea t ape s Lew in 1983) . In th i sSense, the o r an guta n m ay be a l iv ing foss il .

    S c h w a rt z 1 9 8 4 ) p o i n t e d o u t th a t h u m a n s s h a r eU n i qu e ly f e w m o r p h o l o g i c a l f e a t u r e s w i t h e i t h e r t h ec h i m p a n z e e o r t h e g o r i l l a , w h e r e a s m a n y f e a t u r e sa re s h a re d b y h u m a n s a n d t h e o r a n g u ta n . H e c o n -e lu d ed t h a t h u m a n s a n d t h e o r a n g u t a n m a y b e t h ec lo s es t r e l a t i v e s a m o n g t h e l i v i n g h o m i n o i d s . A l -t ho u gh t h e m o l e c u l a r e v i d e n c e s h o w s t h a t h i s c o n -c lu s io n i s c l e a r ly w r o n g G o o d m a n 1 9 6 2 , 1 9 6 3 ; S a r-ic h a n d W i l s o n 1 9 6 7 ; F e r r is e t al . 1 9 8 1 a ; A n d r e w sa n d C r o n i n 1 9 8 2 ; B r o w n e t a l. 1 9 8 2 ; H a s e g a w a a n dYa n o 1 9 8 4 ; S i b l e y a n d A h l q u i s t 1 9 8 4 ), h i s su g g e s -t io n l e a d s u s to t h e f o l l o w i n g i m p o r t a n t p o i n t . A l -t ho u g h b r a i n c a p a c i t y h a s i n c r e a s e d v e r y m u c h a l o n gt he h u m a n l in e a g e , n o t o n l y t h e o r a n g u t a n b u t a l s ot he h u m a n m a y b e l iv i n g f o s s il s w i t h r e s p e c t t o v a r-io u s m o r p h o l o g i c a l f e a tu r e s , w h e r e a s t h e c h i m p a n -Z ee a n d t h e g o r i ll a m a y h a v e s p e c i a l i z e d q u i c k l ya ft er t h e y d i v e rg e d f r o m t h e h u m a n l in e . I f t h i s isth e C a s e , i t is p o s s i b l e t h a t s o m e f o s s il h o m i n o i d sth at We re a n c e s t r a l t o t h e c h i m p a n z e e o r g o r i ll a b u tn o t t h e h u m a n h a v e b e e n a s s ig n e d t o h u m a n a n c e s -to rs b e c a u s e o f s o m e o f t h e i r r e s i d u a l f e a t u r e s . I t isb o w c l e ar t h a t t h e d a t i n g o f th e b r a n c h i n g e v e n t sf rom the foss i l r ec ord a lon e i s a h igh ly d i ff icu l t jo b~a t h is c i r c u m s t a n c e , a n d t h a t t h e m o l e c u l a r r e c o r dis USefu l fo r th i s purp ose .

    A th e o r y o f h u m a n o r ig i n m u s t b e a t h e o r y o fc h i m p a n z e e a n d g o ri ll a o r i g i n s t o o Z i h l m a n 1 9 7 9 ) ,a nd to c l a ri f y o u r o r i gi n , p a l e o a n t h r o p o l o g i s t s m u s tS ee k n o t o n l y o u r a n c e s t o r s b u t a l s o f o s s i l c r e a t u r e sa n c e s t r a l t o t h e c h i m p a n z e e o r t h e g o r i l l a b u t n o tt o h u m a n s . H o w e v e r , n o f o s s i l a s s i g n e d t o b e a n -C eS tral o n l y t o t h e c h i m p a n z e e o r g o r i l la h a s y e t b e e n~ e a r t h e d .

    ~Ssib ili ty o f lnterspecies Transfer o f MitochondrialIVA between Proto-hum an and Proto-chimpanzee

    S in ce m t D N A i s i n h e r i t e d m a t e r n a ll y, a m o l e c u l a re lg ck b a s e d o n i t c a n g i v e o n l y in f o r m a t i o n o n m a -terna l lineages . Also , da t ing s o f spec ies sep ara t ionf ro m m t D N A d a t a m a y s o m e t i m e s b e in e r r or b e -c atls e o f t h e p o s s i b i l i t y o f in t r o g r e s s i o n o f t h e s e i n -Clependently segrega t ing organe l les f ro m on e spe c ies

    171

    tO a n o t h e r. T h i s m a y b e n o t o n l y a w e a k n e s s o fm t D N A a n a ly s is , b u t a l s o a st re n g th , b e c a u s e ins u c h a c a s e t h e m t D N A c l o c k c o u l d p r o v i d e i n f o r -m a t i o n o n t h e e c o l o g i c a l r e l a t i o n s h i p b e t w e e n t w ospec ies .

    I t h as r e c en t ly b e e n f o u n d t h a t m t D N A c a n p a ssa c r o s s t h e s p e c ie s b o u n d a r y i n t h e m o u s e F e n -i s e ta l. 1 9 8 3 ) , in t h e a q u a t i c f r o g S p o l s k y a n d U z z e l l1984) , and inDrosophila Powel l 1983) , and i t i sn o t i m p o s s ib l e t ha t s u c h a n e v e n t h a p p e n e d a m o n ge a r l y h o m i n o i d s . I f i t d i d o c c u r , t h e t i m e d e r i v e df r o m o u r c l o c k s h o u l d r e f l e c t i t . T h e s e q u e n c e s o fn u c le a r D N A , w h e n t h e y b e c o m e a v a i la b le , s h o u l dm a k e t h e s i t u a t i o n c l e a r. A t p r e s e n t t h e p o s s i b i l i t ym u s t b e c o n s i d e r e d t h a t o u r c l o c k r e fl e c ts a t r a n s f e ro f m t D N A t h ro u g h h y b r i d i z a ti o n b e t w e e n a p r o t o -h u m a n a n d p r o t o - c h i m p a n z e e a f te r t h e f o r m e r h a dd e v e l o p e d b i p e d a l i s m F ig . 4 ) .

    W h e n t w o c l o s e ly re l a te d a n i m a l s p e c ie s ar e g e o -g r a p h i c a l l y c o n t i g u o u s , f e r t i l e i n t e r s p e c i e s h y b r i d ss o m e t i m e s a r i s e a t t h e b o u n d a r y z o n e . S u c h c a s e sa r e w e l l k n o w n i n p r i m a t e s , e . g ., b e t w e e n a n u b i sb a b o o n s(Papio anubis)a n d h a m a d r y a s b a b o o n s P.hamadryas) N a g e l 1 9 7 3 ; S h o t a k e 1 9 8 1 ; S u g a w a r a1 9 8 2 ) a n d b e t w e e n r e d t ai l m o n k e y s(Cercop hecusascanius) a n d b l u e m o n k e y s(C. mitis) A l d r i c h -B l a k e 1 9 6 8 ; M a c d o n a l d 1 9 8 4 ) .

    I n t e rg ro u p t r a n sf e r o f m a l e s i s f a r m o r e c o m m o na m o n g s o c ia l p r i m a t e s t h a n t h a t o f f e m a l e s, a n d i na n u b i s b a b o o n s a n d J a p a n e s e a n d r h e s u s m o n k e y s ,w h i c h a r e a m o n g t h e m o s t f r e q u e n t l y s t u d i e d m o n -k e y s , f e m a l e s t y p i c a l l y r e m a i n i n t h e i r n a t a l g r o u pe .g ., see Mo or e 1984) . In such a soc ia l sys tem , in -

    t e r sp e c i e s tr a n s f e r o f m t D N A w o u l d s e e m d i f fi c ul te v e n i f i n t e r s p e c i e s h y b r i d i z a t i o n o c c u r s f r e q u e n tl y.I n c o n t r a s t , i n s o c i e t i e s o f c h i m p a n z e e s a n d g o r il la s ,i n t e rg r o u p t r a n sf e r o f fe m a l e s a n d n o t o f m a l e s i sr o u t i n e . T h e r e f o r e , i t a p p e a r s p o s s i b l e t h a t i n t e r -s p ec ie s tr a n sf e r o f m t D N A h a p p e n e d b e t w e e n a p r o -t o - h u m a n a n d a p r o t o - c h i m p a n z e e .

    I f in t e rs p e c ie s t r a n sf e r o f m t D N A b e t w e e n p r o to -h u m a n a n d p r o t o - c h i m p a n z e e d i d i n d e e d o c c u r, i ti s t e m p t i n g t o s p e c u l a t e i n w h i c h d i r e c t i o n t h e t r a n s -f e r o cc u r r e d . T h e l e ss e r in t ra s p e c ie s p o l y m o r p h i s mo f h u m a n m t D N A c o m p a r e d w i th t h at o f c h im p a n -zee Fer r i s e t a l . 1981b ) sugges t s tha t the t rans f e ro c c u r r e d f r o m p r o t o - c h i m p a n z e e i n t o p r o t o - h u -m a n .

    I n t e rs p e c i e s t r a ns f e r o f m t D N A h a s b e e n o b -s e r v e d b e t w e e n t h e f r u i t f l yDrosophila pseudoob-scura and i t s s ib l ing spec iesD. persimilis P o w e l l1 9 83 ) . A l t h o u g h m a l e F ~ h y b r i d s b e t w e e n t h e t w os p e c i e s a r e s te r il e , F1 f e m a l e s , t h e s e x t h a t m u s t b ef e r ti le t o p a s s m t D N A , a r e f e rt il e . T h u s e v e n i f t h e r ee x i s ts a b a r r i e r t o i n te r s p e c i e s h y b r i d i z a t i o n , t h e i n -t r o g r e s s i o n c a n o c c u r Ta k a h a t a a n d S l a t k i n 1 9 8 4 ) .

    N a t u r a l i n t e r s p e ci e s tr a n s f e r o f m t D N A i s o b -

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    13/15

    172

    s e r v e d f r o mM u s d o m e s ti c u si n t o M . m u s c u l u s( F e r -r i s e t a I. I 98 3 ) , a n d f r o mR a n a l e s s o n a e i n t o R .r i d i b u n d a ( S p o l s ky a n d U z z e l l 1 9 84 ). T h e e x t e n t o fm t D N A d i ve r ge n c e b e t w e enM . d o m e s t i c u sa n d a u -t h e n t i c M . m u s c u l u si s a b o u t 5 % , a n d t h a t b e t w e e nR . l e s s o n a ea n d a u t h e n t i cR . r i d i b u n d a i s a b o u t 8 % .S i n c e t h e a v e r a g e s u b s t it u t i o n r a t e o f m t D N A i se s t i m a t e d t o b e 0 . 0 2 5 4 p e r s i t e p e r m i l l i o n y e a r s ,t h e i n t e r s p e c i e s t r a n s f e r o f m t D N A o c c u r r e d0 . 0 5 / ( 2 x 0 . 0 2 5 4 ) ~ 1 M y r a g o i n m i c e a n d0 . 0 8 / ( 2 x 0 . 0 2 5 4 ) ~ 1 .5 M y r i n a q u a t i c f r o g s a f t e rt h e s p e c i e s se p a r a t e d . T h e r e f o r e , i f s u c h a n i n -t ro g r es s io n o c c u r r e d be t w e e n p r o t o - h u m a n a n d p r o -t o - c h i m p a n z e e 2 . 6 8 _+ 0 . 61 M y r a g o , t h e n t h e h u -m a n - a p e s p l it ti n g m a y d a t e b a c k t o s o m e 5 M y ra g o , a s s u g g e s t e d b y S a r i c h a n d Wi l s o n ( 1 9 6 7 ) a n db y S a r i c h a n d C r o n i n ( 1 9 7 7 ).

    S i b le y a n d A h l q u i s t ( 1 9 8 4 ) c a l i b r a te d t h e m o l e c -u l ar c lo c k b a s ed o n t h e ir n u c l e a r D N A - D N A h y -b r i d i z a t i o n d a t a b y a s s u m i n g t h a t t h e o r a n g u t a n d i -v e r g e d f r o m t h e h u m a n l in e 1 3 - 1 6 M y r a g o. S in c eo u r m o l e c u l a r c l o c k o f m t D N A g i v es 1 0. 86 _ 1 .2 4M y r a g o a s th e d a t e f o r t h e o r a n g u t a n d i v e r g e n c e ,w e t h i n k t h a t t h e 1 3 M y r d a t e i s n e a r e r t h e a c t u a lv a l u e t h a n 1 6 M y r i s, p r o v i d e d m t D N A t r a ns f e r d i dn o t o c c u r b e t w e e n t h e o r a n g u t a n a n d t h e A f r i c a na p e s . I f t h e 1 3 M y r d a t e i s u s e d f o r t h e o r a n g u t a ns p l it t in g , t h e i r d a t a g i v e 6 .3 M y r a g o a s t h e d a t e f o rt h e h u m a n - - c h i m p a n z e e s e p a r a t io n , a l t h o u g h t h ea m o u n t o f e r r o r i n h e r e n t i n t h e ir d a t a c a n n o t b ee s t i m a t e d .

    T h o u g h t h e r e l e v a n t d a t a a r e l i m i te d , t h e h y -p o t h e s i s o f a l at e d i v e r g e n c e b e t w e e n h u m a n s a n da p e s i s a l s o s u g g e s te d b y t h e a m i n o a c i d s e q u e n c eo f p r o t ei n s c o d e d fo r b y n u cl e a r D N A ( G o o d m a ne t at . 1 9 8 3 ), a n d b y t h e r a r i t y o f s y n o n y m o u s n u -c l e o t id e s u b s t it u t i o n s i n h e m o g l o b i n g e n e s b e t w e e nh u m a n s a n d t h e A f r i c a n a p e s ( L i e b h a b e r a n d B e g l e y1 9 8 3 ; S c o t t e t a l . 1 9 8 4 ) .

    A f t e r s u b m i s s i o n o f t h i s p a p e r, w e l e a r n e d t h a tf f ~ -g l o bi n g e n e s , w h i c h a r e p s e u d o g e n e s o f t h e /~ - g l o -b i n g e n e fa m i l y, f r o m h u m a n , c h i m p a n z e e , g o ri ll a,o w l m o n k e y ( N e w W o r l d m o n k e y ) , a n d l e m u r ( p r o -s i m i a n ) h a v e b e e n s e q u e n c e d ( C h a n g a n d S l i g h t o m1 9 8 4; G o o d m a n e t a l. 1 9 8 4; H a r r i s e t a l. 1 9 8 4) .G o o d m a n a n d h i s c o w o r k e r s (1 9 84 ) c o n t e n d e d t h a tt h e n u c l e o t i d e s u b s t i t u t i o n r a t e w a s s l o w e r a l o n g t h eh o m i n o i d l i ne a ge t h a n a l o ng th e N e w Wo r l d m o n -k e y l i n ea g e . H o w e v e r , t h e d i f f e r e n c e is n o t s t a ti s t i-c a l l y s i g n if i c a nt , a n d w e t h i n k t h a t t h e n u c l e o t i d es u b s t i tu t i o n p r o b a b i l i t y p e r u n i t t i m e i n t e r v a l o f th ex b n- gl ob in g e n e h a s b e e n a p p r o x i m a t e l y u n i f o r m a tl e as t a m o n g t h e A n t h r o p o i d e a . A s s u m i n g t h a t t h ed i v e rg e n c e b e t w e e n t he H o m i n o i d e a a n d t h e N e wW o r l d m o n k e y s o c c u r r e d 3 8 M y r a go , o u r p re l im -i n a r y a n a l y s i s o f t h e ~ k ~- glo bin d a t a g i v e s d a t e s o f5 . 2 + 0 . 5 a n d 5 . 8 ___ 0 . 6 M y r a g o ( t h e n u m b e r a f -

    6 . Man2.7 _ O. Myr ago /

    Australopithecus [afarensis . ~ / f

    l j / / ~ Interspecies transfer of~ ' / 1 l m ito c h o n d r ia l DNA

    Fig 4. A possible model of interspecies transfer of mtDN Abetween proto-human and proto-chimpanzee

    t e r + i s t h e s t a n d a r d d e v i a t i o n ) f o r th e c h i m p a n z e ea n d g o r i l l a s e p a r a t i o n s , r e s p e c t i v e l y, f r o m t h e h u -m a n l i n e ( u n p u b l i s h e d d a t a ) . T h e s e d a t i n g s s e e m toc o n t r a d i c t th o s e f r o m t h e m t D N A d a t a, a n d t hisd i s c r e p a n c y m a y r e f le c t m t D N A t r a n s f e r b e t w e e n ap r o t o - h u m a n a n d p r o t o - c h i m p a n z e e .

    T h e D N A s e q u e n c e d a t a p r e s e n t l y a v a i la b l e f ors e tt in g o u r m o l e c u l a r c l o c k a r e l im i t e d a n d t h e d o c kc a n n o t a l w a y s d e t e r m i n e w h i c h o n e o f t h e v a r io u sp o s s i b i l i t i e s d i s c u s s e d i n t h i s p a p e r i s t h e t r u t h ,T h e r e f o r e , f u t u r e s e q u e n c i n g o f D N A , p a r ti c u la r l yn u c l e a r D N A , i n c o n j u n c t i o n w i t h f u t u r e f o s si l f in d -

    i n g s s h o u l d t h r o w m o r e l i g h t o n t h e o r i g i n a n d e v ol u t i o n a r y h i s t o r y o f o u r s p e c ie s . I n t h i s p a p e r , w eh a v e d e m o n s t r a t e d t h a t c h i m p a n z e e a n d h u m a n a r ef a r m o r e c l o s e l y r e la t e d g e n e t i c a l l y t h a n i s ge n e r al l yb e l i e v e d . A m o l e c u l a r a p p r o a c h c a n b e e x p e c t e dtor e m a i n a n i m p o r t a n t t o o l f o r e l u c id a t i n g th e o r ig ina n d e v o l u ti o n o f m a n k i n d .

    Acknowledgments.We are deeply grateful to Professor Alia0C. W ilson for suggesting the possibility o f the recent date ofmamm alian divergence adopted in this paper. Thanks are doeto D rs. Peter Andrew s and M ichael Novacek fo r helpful sug8 stions, to P rofessor Joseph Felsenstein for providing us w ith hiscomputer program for inferring phylogeny and for comm ents,and to Mr. Hajime G om i and Mr. Manabu Takano f or their helpwith the computer programs. We also thank Drs. Hiroshi Mizutani, Haruhiko Noda , Charles E. Oxna rd, Da vid Pilbeam , jacl~T. Stem, Naoyuki Takahata, Phillip V. Tobias, and Adrienne L-Zihlman for helpful comments on an early version of the manttscript, although their opinions var y greatly. This work w as suPported by grants from the M inistry of Education, Scienc e, aridCulture of Japan.

    R e f e r e n c e s

    Aldrich-Blake FP G (1968) A fertile hybrid between twocercopithecusspp. in the Budon go forest, Ugand a. Folia prirnat01(Basel) 9:15-21

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    14/15

    Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extra-terrestrial cause for the Cretaceous--Tertiary extinction. Sci-ence 208:1095-1108

    Alvarez W, Alvarez LW, Asaro F, Michel HV (1984) The endof the Cretaceous: Sharp boun dary or gradual transit ion? Sci-ence 223:1183-1186

    Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, CoulsonAR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F,

    Schreier PH, Smith AJH, Staden R, Young IG (1981) Se-quence and organization of the human mitochondrial ge-norne. Nature 290:457-464

    Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F,Young IG (1982) The complete sequence of bovin e mito-chondrial DNA: conserved features of the mammalian mi-tOchondrial genome. J Mol Biol 156:683-717

    Andrews p (1981) Species diversity and diet in monkeys andapes during the Miocene. In: Stringer CB (ed) Aspects of hu-man evolution. Taylor and Francis, London, pp 25-6 1

    Andrews p (1982) Homi noid evolut ion. Nature 295:185-186Andrews p, Cron in JE (1982) The relationship of Sivapilhecus

    and Ramapithecusand the evolution of the orang-utah. Na-ture 297:541-546

    Aquadro CF, GreenbergBD (1983) Huma n milochondrial DNAvariation and evolution: analysis ofnuedeotide sequences fromseven ind ividuals. Genetics 103:287-312

    laarrell BG, Bankier AT, Droui n J (1979) A different geneticB' COde in human milochondria. Nature 282:189-194

    lbb M J, Van Etten RA, Wright CT, Walberg MW, Clayton DA(1981) Sequence and gene organization of mouse mitochon-drial DNA. Cell 26:167-180

    /~rowa GG, S impson MV (1982) Novel features of animalmtDNA evolution as shown by sequences of two rat cyto-chrome oxidase subunit II genes. Proc Nail Acad Sci USA79:3246-3250

    13ro~ra WM, George M Jr, Wilson AC (1979) Rapi d evolutionof animal mitochndrial DNA. Proe Nail Acad Sci USA 76:1967-1971

    ~rov,,a WM, Prager EM, Wang A, Wilson AC (1982) Mito-choudrial DNA sequences of primates: tempo and mode ofevolution, j Mol Evol 18:225-239

    C-ann RL, Brown WM, Wilson AC (1982) Evolut ion of humannaitochondrial DNA: a preliminary report. In: Bonnb-TamirB, Cohen p, G oodman RN (eds) Human genetics, part A: the

    Ch Unfolding genome. Alan R Liss, New York, pp 157-165aug LYE, Slightom JL (1984) Isolat ion and nucleotide se-quence analysis of the B-type globin pseudogene from human ,

    C gorilla and chimpanzee. J Mol Biol 180:767-754IOChon RL, Chiarelli AB (1980) Evolutionary biology of the

    New World monkeys and continental drift. Plenum Press,New York

    CiOChon RL, Corruccini RS (1983) New interpretations of ape

    and human ancestry. Plenum Press, New YorkCOlbert EH (1980) Evolut ion of the vertebrates 3rd ed. JohnWiley & Sons, New York

    Cronin JE, Boaz NT, Stringer CB, Rak Y (1981) Tempo andi) raOde in h ominid evolution. Nature 292:113-122

    ay MH, Wickens EH (1980) Laetoli Pliocene hominid foot-3i Prints and bipedalism. Nature 286:385-387

    Ckerson RE (1971) The structure of cytochrome c and the~ rates of molecular evolution. J Mol Evol 1:26-45

    lsenberg JF (1981) The mammal ian radiations: an analysis oftrends in evolution, adaptation and behavior. University ofChicago Press Chicago

    Feldesman MR i1982a) Morphometrics of the ulna of some/~e Cenozoic hominoids . Am J Phys Anthropol 57:187

    ldesman MR (1982b) Morphomet ric analysis of the distalhumerus of some Cenozoic catarrhines: the late divergencehypothesis revisited. Am J Phys Anthropol 59:73-95

    173

    Felsenstein J (1981) Evolut ionary trees from DNA sequences:a maximum likelihood approach. J Mol Evol 17:368-376

    Ferris SD, Wilson AC, Brown WM (1981a) Evolut ionary treefor apes and humans based on cleavage maps of mitochon-drial DNA. Proc Nat[ Acad Sci USA 78:2432-2436

    Ferris SD, Brown WM, Davidson WS, Wilson A C (19811)) Ex-tensive polymorphism in the mitochondrial DNA of apes.Proc Natl Acad Sci USA 78:6319-6323

    Ferris SD, Sage RD, Huang C-M, Nielsen JT, Ritte U, WilsonAC (1983) Flow of mitochondr ial DNA across a speciesboundary. Proc. Natt. Acad Sci USA 80:2290-2294

    Gojobori T, [shii K, Nei M (1982) Estimation of average num -ber of nucleotide substitutions when the rate of substituti onvaries with nucleotides. J Mol Evol 18:414-423

    Goodman M (1962) Immunochemist ry of the primates andprimate evolution. An n NY Acad Sci 102:219-234

    Goo dma n M (1963) Serological analysis of the systematics ofrecent hominoids. Hum Biol 35:377-436

    Goo dma n M, Braurtitzer G, Stangl A, Schrank B (1983) Evi-dence on human origins f rom haemoglobins of African apes.Nature 303:546-548

    Goodman M, Koop BF, Czelusniak J, Weiss ML, Slightom JL(1984) The ~-globingene. Its long evolut ionary hislory ofthe~-globin gene family of mammals. J/Viol Biol 180:803-823

    Gribhin J, Cherfas J (1982) The monkey puzzle. Bodley Head,London

    Harris S, Barrie PA, Weiss ML, Jefereys AJ (1984) The primatefrill gene. An ancient B-globin pseudogene. J Mol Biol 180:785-801

    Hasegawa M (1984) The origin and the evoluti on of man asinferred from D N A sequences: an introduction to molecularanthropology [ in Japanese]. Kaimeisha, Tokyo

    Hasegawa M~ Yan o T (1984) Phylogeny and classification ofHominoidea as inferred from DNA sequence data. Proc JpnAcad 60B:389-392

    Hasegawa M, Yano T, Kishino H (1984a) A new molecularclock of mitochondrial DNA a nd the evolution of hominoids.

    Proc Jpn Acad 60B:95-98Hasegawa M, Yano T, Miyata T (1984b) Evolutionary impli -

    cations of error amplification in self-replicating and proteinsynthesizing machinery. J Mol Evol 20:77-85

    Hasegawa M, Iida Y, Yano T, Takaiwa F, Iwabuchi M (1985)Phyogenetic relationships among eukaryotic kingdoms in-ferred by ribosmal R NA sequences. J Mol Evol (in press)

    Johanson DC, White TD (1979) A systematic assessment ofearly African hominids. Science 202:321-330

    Johanson DC, White TD, Coppens Y (1978) A new species ofthe genus Australopithecus (Primates: Hominidae) from thePliocene of eastern Africa. K_irtlandia 28:1-14

    Johnson MJ, Wallace DC, Ferris SD, Rattazzi MC, Cavaili-Sfor-za LL (1983) Radiat ion of human mitochondria DNA types

    analyzed by restrict ion endonuclease cleavage patterns. J MolEvol 19:255-271Kimura M (1968) Evolutionary rate at the molecular level.

    Nature 217:624--626Kimur a M (1977) Preponderance of synonymous changes as

    evidence for the neutral theory of molecular evolution. Nature267:275-276

    Kimur aM (1980) A simple method for estimating evolutionaryrates of base substitutions through comparative studies ofnucleotide sequences. J Mol Evoi 16:111-120

    KimuraM (1981) Estimationofevolutionarydistancesbetweenhomologous nucleotide sequences. Proe Nail Acad Sci USA78:454-458

    Kimura M (1983) The neutral theory of molecular evolution.Cambridge Univers ity Press, Cambridge

    Kimu ra M, Ohta T (1974) On some principles governing mo-lecular evolution. Proc Nail Acad Sci USA 71:2848-2852

  • 8/13/2019 Primate Human-Ape Div. DNA Hasegawa Et Al J Mol Evol 1985

    15/15

    174

    Kohne DE (1970) Evolution of higher-organism DNA. RevBiophys 33:1-48

    KohneDE, ChisconJA, Hoyer BH (1972) Evoluti onofp rimateDNA sequences. J Hum Evol 1:627-644

    Leakey MD, Hay RL, Curtis GH, Drake RE, Jackes MK, WhiteTD (1976) Fossil hominids from the Laetolil Beds. Nature262:460-466

    Lewin R (1983) Is the orangutan a living fossil? Science 222:

    1222-1223Liebhaber SA, Begley KA (1983) Structural and evolu tionaryanalysis of the two chimpanzee a-globin mRNAs . NucleicAcids Res 11:8915-8929

    Macdonald D (1984) The encyclopaedia of mammals, vol. 1.George Allen & Unwin, London, pp 396-397

    McKenn a MC (1975) Toward a phylogenetic classification ofthe mammalia. In: Luckett WP, Szalay FS (eds) Phylogenyof the primates: a multidisciplinary approach Plenum Press,New York, pp 21-46

    Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayashi M,Koike K (1982) Molecu lar clock of silent substitution: atleast six-fold preponderance o f silent changes in mi tochon-drial genes over those in nuclear genes. J Mol Evol 19:28-35

    Moore J (1984) Female transfer in primates. Int J Primatol5:537-589

    Nagel U (1973) A comparison ofanu bis baboons, hamadryasbaboons and their hybrids at a species border in Ethiopia.Folia Primatol (Basel) 19:104-165

    Nei M (1982) Evolution of huma n races at the gene level. In:Bonnr -Tamir B, Cohen P, Goodman M (eds) Human ge-netics, pa rt A: the unfolding genome. Alan R Liss, New York,pp 167-181

    Novacek MJ (1982) Information for molecular studies fromanatomical and fossil evidence on higher eutherian phylogeny.In: Good man M (ed) Macromolecular sequences in systematicand evolu tionary biology. Plenum Press, New York, pp 3-41

    Nozawa K, Shotake T, Kawamoto Y, Tanabe Y (1982) Elec-trophoretically estimated genetic distance and divergence time

    between chimpanzee and man. Primates 23:432-443Oxnar dCE (1975) The place ofthe australopithecines in human

    evolution: Grounds or doubt? Nature 258:389-395Oxnard CE (1984) The order of man: a biomathematical anat-

    omy of the primates. Yale University Press, New HavenPilbeam D (1982) New hominoid skull material from the Mio-

    cene of Pakistan. Nature 295:232-234Pilbeam D (1984) The descent of homino ids and hominids. Sci

    Am 250(3):60--69PoweU JR (1983) Interspecific cytoplasmic gene flow in the

    absence o fnu ciea r gene flow: evidence from Drosophila.Prec.Natl Acad Sci USA 80:492-495

    Raup DM, Sepkoski JJ Jr (1984) Periodicity of extinctions inthe geologic past. Prec. Natl Acad Sci USA 81:801-805

    Raza SM, Barry JC, Pilbeam D, Rose MD, Shah SMI, Ward S(1983) New hominoid primates from the middle MioceneChinji Formation, Potwar Plateau, Pakistan. Nature 306:52-54

    Sarich VM, Cronin JE (1976) Molecular systematics of theprimates. In: Goodman M, Tashian RE (eds) Molecular an-thropology. Plenum Press, New York, pp 141-170

    Sarich VM, Cronin JE (1977) Generatio n length and rates ofhomino id molecular evolution. Nature 269:354

    Sarich VM, Cronin JE (1980) South American mammal mo-lecular systematics, evolutionary clocks, and con tinenta l drift.In: Ciochon RL, Chiarelli AB (eds) Evolutionary biology ofthe New World monkeys and continental drift. Plenum Press,New York, pp 399-421

    Sarich VM, Wilson AC (1967) Immunolog ical time scale for

    hominid evolu tion. Science 158:1200-1203Sarich VM, Wilson A C (1973) Generation time and genomicevolution in primates. Science 179:1144-1147

    Sama-Wojcicki AM, Meyer CE, Roth PH, Brown FH (1985)Ages of tuff beds at East African early hominid sites andsediments in the Gulf of Aden. Nature 313:306-308

    Savage DE, Russell DE (1983) Mamm alian paleofaunas of theworld. Addison-Wesley, London

    Schwa rtzJH (1984) The evolutionar y relationships of man andorang-utans. Nature 308:501-505

    Scott AF, Heath P, Trusko S, Boyer SH, Prass W, Gooman M,

    Czelusniak J, Chang L-YE, Slightom JL (1984) The se-quence o ft he gorilla fetal globin genes: evid ence for multiplegene conversions in hu man evolution. Mol Biol Evol 1:3714389

    Shotake T (1981) Population genetical study of natural hybrid-ization between Papio anubis and P. hamadryas primates22:285-308

    Sibley CG, Ahlquist JE (1984) The phylogeny of the hominoidprimates, as indicated by DNA-DNA hybridization. J/rEvol 20:2-15

    Simons EL (1976) The fossil record of primate phylogeny. Ill:Goo dman M, Tashian RE (eds) Molecu lar anthropology. Ple-num Press, New York, pp 35-62

    Simons EL (1981) Man's immediate forerunners. Philos TranSR See Lend [Biol] 292:21-41

    Spolsky C, Uzzell T (1984) Natura l interspecies transfer ofmitochondrial DNA in amphibians. Proc Natl Acad Sci uSA81:5802-5805

    Stern JT Jr, Susman RL (1981) Electromyography of the glutealmuscles in Hylobates Pongoand Pan: implications for theevolution of hominid bipedality. Am J Phys Anthropol 55:153-166

    Stern JT Jr, Susman RL (1983) The locomotor anatomy ofAustralopithecus afarensis.Am J Phys Anthropo160:279-318

    Sugawara K (1982) Sociological compar ison between two wildgroups of anubis--hamadryas hybr id baboons. Air studyMonogr 2:73-131

    Takahata N, Kimura M (1981) A model of evolutionary basesubstitutions and its application with special reference to raPid change of pseudogenes. Genet ics 98:641-657

    Takaha ta N, Slatkin M (1984) Mitoch ondr ial gene flow. procNatl Acad Sci USA 81:1764-1767

    Temp leton AR (1983) Phylogenetic inference from restrictiolaendonuclease c