Pro 818600 01 Gestra-guide En

Embed Size (px)

Citation preview

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    1/221

    GESTRA

    Guide

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    2/221

    1st English Edition, 20062nd English Edition, 2010

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    3/221

    GESTRA Guide

    Preface

    For three decades now, the GESTRA Guide (in German) has been an important refe-rence work in the field of steam and condensate technology. The continuing strong inte-rest in this useful technical guide has encouraged us to publish a revised edition thisyear - in book form and on CD-ROM - together with an English translation.

    With regard to the content, we have kept to the proven basic concept of the book. Unitsand conversion tables have been updated to reflect today's standards and currentusage, whilst units not officially permitted are marked accordingly. The chapters onStandards and Acceptance Conditions comply with the European EN standards, andthe American standards according to ASME have been considered.Special thanks are due to all the staff members who contributed towards the success ofthis book over the years.

    GESTRA AGBremen, 2010

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    4/221

    GESTRA Guide

    Page

    Table of Contents

    1. Piping 7

    2. Heat Transfer 35

    3. Properties of Substances 43

    4. Connection Examples 77

    5. Materials and Durability Tables 117

    6. Units, Symbols, Conversion Tables 141

    7. Acceptance Conditions 163

    8. Flanges, Pipes 171

    9. Standards 225 Index 235

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    5/221

    GESTRA Wegweiser 7

    Page

    1 Piping

    1.1 General 9

    1.1.1 PN/Class 9

    1.1.2 Test pressure PT 91.1.3 Maximum permissible pressure PS 9

    1.1.4 Minimum/maximum permissible temperature TS 9

    1.1.5 Pressure/temperature rating (p/T rating) 10

    1.1.6 Nominal size DN/NPS 10

    1.1.7 Identification of pipes 11

    1.2 Pressure Losses 12

    1.2.1 Introduction 12

    1.2.2 Definition of terms 13

    1.2.2.1 Reynolds number Re 13

    1.2.2.2 Pipe friction coefficient 13

    1.2.2.3 Resistance coefficient 14

    1.2.2.4 Equivalent pipe length 14

    1.2.2.5 Geodetic head (liquid level) 14

    1.2.2.6 Changes in cross-section 14

    1.2.2.7 Pressure loss, static head 15

    1.2.3 Pressure drop in steam lines 16

    1.2.4 Flow resistance in straight water pipes 18

    1.3 Determining the Nominal Sizes of Pipes 20

    1.3.1 General notes on calculation 20

    1.3.2 Flowrates in pipes 21

    1.3.3 Flow velocity in steam lines 22

    1.3.4 Condensate lines 23

    1.3.4.1 Calculating the amount of condensate 231.3.4.2 Calculating the flash steam 24

    1.3.4.3 Nominal sizes of condensate lines 24

    1.4 Expansion of Pipes 27

    1.5 Heat Loss of Insulated Pipes 30

    1.6 Temperature Drop in Steam Lines 32

    1.7 Support Spans, Wall Distances 34

    1.8 Waterhammer 34

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    6/221

    GESTRA Guide 9

    1 Piping

    1.1 General

    1.1.1. PN/Class

    Like the PN figure, the Class specification is a characteristic quantity for the mechanical

    and dimensional properties of a component.

    PN levels:PN 2,5, PN 6, PN 10, PN 16, PN 25, PN 40, PN 63, PN 100, PN 160, PN 250, PN 320, PN 400

    Class levels:Class 25, Class 75, Class 125, Class 150, Class 250, Class 300, Class 600, Class 900,Class 1500, Class 2500, Class 4500

    The PN figure is commonly used wherever the pressure is expressed in bar. According to the

    standard (DIN EN 1333), the numerical value which follows the letters PN is not a measurablevalue. As a rule, however, it corresponds to the maximum permissible pressure of the com-ponent at 20 C. For some materials, e.g. austenites, the maximum permissible pressure at20 C can be lower than the PN number. For the Class figures, the pressures were initially spe-cified in psig. Nowadays, the pressures are increasingly being expressed in bar for Class.In this system, the maximum permissible pressure of the component at 20 C differs accor-ding to material. This pressure is not indicated by the numbers following the word Class.By way of example, the following table shows the maximum permissible pressures of flan-ges made of comparable EN and ASTM materials at 20 C.

    The maximum permissible pressure PS of a component depends on several influencingfactors: PN or Class level, design and material of the component, temperature etc. (see

    also Section 1.5 Pressure/temperature rating.

    1.1.2 Test pressure PT

    The pressure to which the component is subjected for testing purposes (proof of pressureintegrity).

    1.1.3 Maximum permissible pressure PS

    The maximum design pressure for which the component - referred to a certain temperatu-re - is designed (see also Section 1.5 "Pressure/temperature rating").

    1.1.4 Minimum/maximum permissible temperature TSThe minimum/maximum operating temperature for which the component - referred to acertain pressure - is designed (see also Section 1.5 Pressure/temperature rating).

    Flange, PN 40 Flange, Class 300 EN material Perm. pressure ASTM material Permissible pressure [bar] [psig] [bar] 1.0460 40 A105 740 51.1 1.5415 40 A182 F1 695 48.0 1.4404 40 A182 F316L 600 41.4

    Fig. 1

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    7/221

    1.1.5 Pressure/temperature rating (p/T rating)

    Since the strength of materials decreases with increasing temperature, the maximum per-missible pressure PS for a component is not a fixed value but depends to a great extenton the temperature. Similarly, the maximum permissible temperature TS differs accordingto the expected pressure. For components, there are thus generally a large number ofvalue pairs for PS and TS.

    This interdependency of the maximum permissible pressure PS and the maximum per-missible temperature TS is known as the p/T rating. Pressure/temperature ratings arespecified in the corresponding standards, e.g. in DIN EN 1092-1 for flanges with PN clas-sification.

    1.1.6 Nominal size DN/NPS

    Both the DN and NPS figures specify the standard connection size of a component.The number after the letters DN indicates the internal diameter (inside width) of the connec-tion drill-hole of a component (e.g. of a flange) in millimetres, whereas the number after the let-ters NPS expresses this measurement in inches. However, this is an approximate value that

    has been roughly rounded up or down. The actual internal diameter varies according to thePN or Class level.

    10 1 Piping

    DN 10 DN 50 DN 150 DN 400 DN 800 DN 1400 DN 2200 DN 3200 DN 15 DN 60 DN 200 DN 450 DN 900 DN 1500 DN 2400 DN 3400 DN 20 DN 65 DN 250 DN 500 DN 1000 DN 1600 DN 2600 DN 3600 DN 25 DN 80 DN 300 DN 600 DN 1100 DN 1800 DN 2800 DN 3800 DN 32 DN 100 DN 350 DN 700 DN 1200 DN 2000 DN 3000 DN 4000 DN 40 DN 125

    Fig. 2a DN levels

    NPS 1/2 NPS 2 NPS 6 NPS 16 NPS 28 NPS 38 NPS 46 NPS 54 NPS 3/4 NPS 2 1/2 NPS 8 NPS 18 NPS 30 NPS 40 NPS 48 NPS 56 NPS 1 NPS 3 NPS 10 NPS 20 NPS 32 NPS 42 NPS 50 NPS 58 NPS 1 1/4 NPS 4 NPS 12 NPS 24 NPS 34 NPS 44 NPS 52 NPS 60 NPS 1 1/2 NPS 5 NPS 14 NPS 26 NPS 36

    Fig. 2b NPS levels

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    8/221

    GESTRA Guide 11

    1.1.7 Identification of pipes

    DIN 2403 defines the identification of pipes according to the fluid conveyed. The fluids aredivided into 10 colour groups, depending on their general properties. For details andimplementation procedures, see the standard.

    Fluid conveyed Group Colour

    Water 1 Yellow green RAL 6018Steam 2 Flame red RAL 3000Air 3 Silver grey RAL 7001Combustible gases 4 Rapeseed yellow 1) RAL 1021Non-combustible gases 5 Rapeseed yellow 2) RAL 1021Acids 6 Pastel orange RAL 2003Alkalis 7 Red lilac RAL 4001Combustible liquids 8 Ochre brown 3) RAL 8001Non-combustible liquids 9 Ochre brown 4) RAL 8001

    Oxygen 0 Sky blue RAL 5015

    1) Rapeseed yellow or rapeseed yellow with the additional tint flame red (RAL 3000).2) Rapeseed yellow with the additional tint jet black (RAL 9005)or jet black (RAL 9005).3) Ochre brown or ochre brown with the additional tint flame red (RAL 3000).4) Ochre brown with the additional tint jet black (RAL 9005)or jet black (RAL 9005).

    Fig. 3 Identification of pipes

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    9/221

    12 1 Piping

    1.2 Pressure Losses

    1.2.1 Introduction

    The pressure drop in a pipe is the result of all the individual losses of all pipeline compon-ents, such as pipes, fittings and valves, from the influence of the geodetic head and fromchanges in the cross-section. In the case of gases, the change in volume caused by

    expansion must also be taken into account. This can be neglected, however, provided thatthe pressure drop is only a few percent of the absolute pressure. Under this prerequisite,calculation of the pressure losses is the same for liquids and gases.

    We can say quite generally that (1)

    Substituting(2)

    the pressure loss caused by the wall friction for pipes is then

    For valves and fittings, C = and so (3)

    In another common notation for equation (1), the proportionality factor C is replaced bya where a is known as the body factor.

    We then obtain (1a)

    With a = I/d for pipes, then (2a)

    For valves and fittings, a = 1: consequently (3a)

    The value in (2a) corresponds to the value in (2), and so equations (3) and (3a) are alsoidentical.

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    10/221

    GESTRA Guide 13

    1.2.2 Definition of terms

    1.2.2.1 Reynolds number Re

    The dimensionless quantity Reis the ratio of inertial forces to viscose forces. It providesan indication of the type of fluid flow: the flow is laminar for Re< 2000, possibly turbulentfor Re> 2000 and usually turbulent from Re> 2300 in industrial piping.

    (4) w = characteristic fluid velocity

    (4a) d = typical length dimension

    (4b) = kinematic fluid viscosity

    1.2.2.2 Pipe friction coefficient The relationships outlined here are described mathematically by the laws of friction in fluidflow resulting from the work of various researchers. These laws are usually presented gra-phically in the log-log system.

    The pressure loss p caused by friction in a pipe is proportional to the specific pipe lengthI/dand also proportional to the dynamic pressure of the flow w2/2. As a proportionalityfactor, the pipe friction coefficient is introduced.

    (2)

    The pipe friction coefficient is a function of the Reynolds number Reand, in certain ran-ges, is also influenced by the pipe roughness. In the laminar range, is only dependent onRe; the influence of the roughness can be neglected. For turbulent flow, we differentiatebetween hydraulically smooth pipes, hydraulically rough pipes and a transitional zone. For

    hydraulically smooth pipes, is only dependent on Re. For pipes that are completelyrough, the roughness is the sole influencing factor. In the transitional zone, the value isinfluenced by both Reand the roughness.

    _

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    11/221

    14 1 Piping

    1.2.2.3 Resistance coefficient The pressure loss pin valves and fittings is proportional to the dynamic pressure .

    As a proportionality factor, the resistance coefficient is introduced.

    (3)

    For several single resistances of the same nominal size, the pressure loss becomes

    (5)

    The resistance coefficient is determined empirically and can be taken from tables or dia-grams. Unless stated otherwise, it must always be referred to the nominal connection sizeof the valves or screwed connection and to the nominal size of the pipes to be connected.

    1.2.2.4 Equivalent pipe length

    In calculations, it is possible to substitute the flow resistance caused by pipeline compo-nents, such as valves and fittings, by equivalent pipe lengths. For this, we consider thefamiliar equations:

    Equation (3) for valves

    Equation (2) for pipes

    With p1= p2we obtain = and then (6)

    With this equivalent pipe length l according to (6) plus the length of actual pipe, the pres-sure loss of the entire pipe can be calculated in one step using (2).

    1.2.2.5 Geodetic head (liquid level)

    Routing a pipe upwards or downwards changes the potential energy of the fluid convey-

    ed. According to the law of energy conservation - Bernoulli effect - the pressure must thenalso change. Through an appropriate arrangement of the pipework, it is for example pos-sible to influence the working pressure for a steam trap.

    1.2.2.3 Changes in cross-section

    Changes in cross-section affect the kinetic energy and, according to Bernoulli, also thepressure of the fluid. If a pipe is of varying diameter, then the pressure losses caused bywall friction must be calculated separately for each cross-section and the associated pipelength. Moreover, the pressure changes in the cross-sectional transitions must also bedetermined.

    ld

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    12/221

    GESTRA Guide 15

    1.2.2.7 Pressure loss, static head

    From equation (1) with SI units, we obtain the pressure loss pin the SI unit Pascal (Pa). Forconversion to the commonly used unit bar: 1 bar = 105Pa

    pin Pa (1) C flow resistance coefficient -

    density kg/m3

    pin bar w velocity m/s

    g gravity acceleration m/s2

    Pipe friction resistances are still expressed as static heads Hvin m (pressure head losses).

    With the units agreed above, the following applies:

    Hvin m

    pin Pa

    p in bar

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    13/221

    16 1 Piping

    Fig. 4

    1.2.3 Pressure drop in steam lines

    Valves and fittings: C = Pipes: C = l/dwhere = 0.0206 according to Eberle

    The flow resistance coefficients C for all pipeline components of the same nominal size areread from Fig. 4. The total pressure drop pin bar can be determined from the sum of allindividual components Cand the operating data; see Fig. 5.

    Fig. 4

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    14/221

    GESTRA Guide 17

    Fig. 5

    Example:

    Pipeline components DN 50

    Pipeline, length 20 m C= 8.11 angle valve C= 3.32 special valves C= 5.6

    1 tee-piece C= 3.12 elbows, 90 C= 1.0 C= 21.1

    Operating data

    Temperature t= 300 CAbs. steam pressure p= 16 barVelocity w= 40 m/s

    Result: p= 1.1 bar

    Fig. 5

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    15/221

    18 1 Piping

    1.2.4 Flow resistance in straight water pipes

    Static head Volume flow

    where C = l/d

    Fig. 6 applies for cold water and new pipes of grey cast iron. The pressure head losses Hv

    must be multiplied by

    0.8 for new rolled steel pipes1.25 for older, slightly corroded steel pipes1.7 for pipes with encrustation, where the constricted cross-section is relevant.

    Example:

    Cast iron pipe DN 80Volume flow V= 20 m3/h

    Result according to Fig. 6:Static head H

    v= 2.0 m/100m

    Flow velocity w= 1.1 m/s

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    16/221

    GESTRA Guide 19

    Fig. 6

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    17/221

    20 1 Piping

    1.3 Determining the Nominal Sizes of Pipes

    1.3.1 General notes on calculation

    The parameters given are usually the volume flowrate and a permissible pressure drop; thenecessary pipe diameter is the figure needed. For the calculation, we approach the pro-blem the other way round. We select a diameter and ascertain the pressure loss or flow

    rate. If necessary, the calculation is reiterated with a corrected diameter. For the initial com-putational approach, the diameter can be calculated by assuming a velocity from the flowrate.

    Flash and exhaust steam lines,

    flash steam in condensate lines 15 25 m/s

    Saturated steam lines

    up to 1 bar < 10 m/s

    1 to 2 bar 10 15 m/s

    2 to 5 bar abs 15 25 m/s

    5 to 10 bar abs 25 35 m/s

    10 to 40 bars abs 35 40 m/s

    40 bar abs < 60 m/s

    Superheated steam lines of low capacity approx. 35 m/s

    Superheated steam lines of medium capacity 40 50 m/s

    Superheated steam lines of high capacity 50 65 m/s

    Feedwater suction lines 0.5 1.0 m/s

    Feedwater pressure lines 1.5 3.5 m/s

    Cooling water suction lines 0.7 1.5 m/s

    Cooling water pressure lines 1.0 5.5 m/s

    Drinking and service water lines 1.0 2.0 m/s

    Compressed air lines 15 m/s

    Fig. 7 Guideline values for flow velocities

    _

    _

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    18/221

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    19/221

    22 1 Piping

    1.3.3 Flow velocity in steam lines

    Fig. 9

    Example: Steam temperature 300 C

    Absolute steam pressure 16 bar Steam flowrate 30 t/h Nominal size DN 200

    Result according to Fig. 9:

    Flow velocity w= 43 m/s

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    20/221

    GESTRA Guide 23

    1.3.4 Condensate lines

    In steam-heated heat exchangers, the evaporation heat and, if applicable, the superheatis extracted from the heating steam. From the amount of condensate and other operatingdata, we obtain the required size of the steam trap, the expected flash steam, the nominalsize of the condensate line (which is not always the same nominal size as the trap), andthe size of the flash vessel needed for utilization of the flash steam.

    1.3.4.1 Calculating the amount of condensate

    The condensate flow Min kg/h produced in a heat exchanger is often an unknown quan-tity. First of all, we calculate the heat flow Qin kJ/h.For a mass flowmwith the specific heat capacity cfor warming up from t1to t2degreesCelsius (for c, see Chapter 3 Properties of Substances), this heat demand per unit timeis:

    If the mass flowm is to be warmed up to boiling point tsand evaporated, then the specificevaporation heatrof the substance to be heated must be taken into account.

    The condensate flow M is obtained from the following equation. The evaporation heat r isgiven by the steam tables.

    For approximate calculations, the evaporation heat is taken to ber2100 kJ/kg. An addi-tional amount of condensate from heat losses is considered through a correction factor(e.g. x = 1.25)

    The condensate flow Mcan also be calculated from the heating surfaceA and the heat trans-fer coefficientk. In the following equation, TSis the steam temperature, t1und t2are the tem-peratures of the substance to be heated andris the specific evaporation heat of the steam.

    The arithmetic mean of the temperatures is sufficiently accurate for

    The mean temperature difference is precisely

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    21/221

    24 1 Piping

    1.3.4.2 Calculating the flash steam

    The condensate produced in a heat exchanger has the boiling point belonging to the cor-responding pressure. However, not only the evaporation heat is used in the heat exchan-ger but also a part of the sensible heat, causing a reduction in the temperature of the con-densate which can amount to a few degrees. Another, though negligible, decrease in tem-perature results from the heat losses in the pipe leading to the steam trap.

    Nevertheless, for approximate calculations, it should be assumed that the condensate rea-ches the steam trap at boiling point. Then, it is solely the enthalpy difference (the sensibleheat released) corresponding to the working pressure (pressure before trap minus pressu-re after trap) that is decisive for how much flash steam is produced per kg of condensate(Fig. 10).

    For the purposes of calculation:

    MD flash steam flow kg/hM condensate flow kg/hh1 enthalpy of the condensate

    before flashing kJ/kgh2 enthalpy of the condensate

    after flashing kJ/kgr2 evaporation heat kJ/kg

    1.3.4.3 Nominal sizes of condensate lines

    The diameter of the piping between the heat exchanger and the steam trap is normallychosen to fit the nominal size of the trap. When choosing the diameter of the condensateline downstream of the trap, flashing has to be considered.If the condensate is produced with high undercooling and if the working pressure of thesteam trap is correspondingly low, then little or no flash steam will be formed. For the usualworking pressures and the corresponding enthalpy differences, the amount of flashing canbe very large and the residual condensate flow negligibly small. In such cases, only theflash steam determines the pipe cross-section. For determination by table, see Fig. 11.

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    22/221

    GESTRA Guide 25

    Example: Gauge pressure upstream of steam trap 10 bar

    Gauge pressure downstream of steam trap 0 bar Flash steam 0.162 kg/kg equivalent to 16.2%

    Fig. 10 Flash steam diagram

    Amount of flash steam formed when boiling condensate is reduced in pressure

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    23/221

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    24/221

    GESTRA Guide 27

    1.4 Expansion of Pipes

    Pipelines increase in length when bearing hot fluids. To prevent excessive forces occurringat the fixed mounting points, a suitable expansion joint is provided. For the heat expansionbetween two points on a pipe, the straight-line distance between the points is taken. Theshape of the piping between the points has no effect.

    = expansion coefficient

    Expansion diagram for pipes of mild steel

    Example: A pipe with a length of 45 m undergoes a temperature change of 265 K.According to Fig. 12, this results in a change in length - elongation - of 156 mm.

    Fig. 12

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    25/221

    28 1 Piping

    Pipe leg compensator, leg length

    Pipe leg and U-bend compensators are manufactured from the same material as the pipe.A change in the length of the straight pipe section leads to outward displacement of thepipe leg which is at right angles to the main pipe section. The pipes are pre-stressed duringmanufacture by 50 % of the expected expansion. Fig. 13 applies for heating pipes accor-ding to DIN EN 10220.

    Fig. 13

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    26/221

    GESTRA Guide 29

    Compensation pipe bend, expansion capacity

    Compensation pipe bends are produced as smooth pipes in bellows and wave-shapedbends. They are suited to the highest pressures and temperatures and offer particularlyreliable expansion compensation. The pipes are pre-stressed during manufacture by 50 %of the expected expansion. Fig. 14 applies for a pipe temperature of t = 200 C.

    Fig. 14

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    27/221

    30 1 Piping

    1.5 Heat Loss of Insulated Pipes

    Heat loss per 1 metre of pipe length:Inside a building:

    Outdoors:

    kf, fdandfware obtained from the diagrams of Fig. 15if the following data are known:

    insulation thicknesss thermal conductivity outside diameter of the pipe do For the thermal conductivity see the chapter Properties of Substances Guideline value: = 0.058 W/m K

    Example: Insulation thickness s = 40 mm Thermal conductivity = 0.058 W/m K Outside diameter of the pipe do= 48.3 mm Temperature of the medium tM= 160 C

    Temperature of the environment te= 20 C Reading off the chart: kf= 1.25 W/m2K fd= 0.27 m2/m fw= 1.068

    Result: Indoors: Qi= 1.25 0.27 (160 - 20) = 47.3 W/m Outdoors: Qf= 1.25 0.27 1.068 (160 - 20) = 50.5 W/m

    Flanges and pipe supports cause additional heat losses. Insulated flanges are treated ascontinuous pipes, whereas insulated flanges with flange caps are considered by an allowan-ce of 1 m on the pipe length. Pipe supports increase the heat losses indoors by 15 % and

    outdoors by 25 %.

    Qf= kf fd fW(tM- te)

    Q

    i= k

    f f

    d(t

    M- t

    e)

    Q heat loss W/m

    kf heat transfer coefficientfor flat walls W/m2K

    fd diameter factor for correcting kf m

    2/mtM temperature of the medium Cte temperature of the environment Cfw wind factor

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    28/221

    GESTRA Guide 31

    Fig. 15 Heat transfer coefficientkf, diameter factor fd, wind factor fW.

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    29/221

    32 1 Piping

    1.6 Temperature Drop in Steam Lines

    Temperature drop in Kelvin per metre of pipe length:

    t temperature drop K/mQ heat loss W/m

    cp specific heat capacityat constant pressure Ws/kg K

    m steam flowrate in t/h kg/s

    The temperature drop tcan be obtained from Fig. 16.First the heat loss must be determined according to Fig. 15.

    Example:

    Steam temperature 220 CSteam pressure, absolute 10 bar

    Steam flowrate 30 103

    kg/h = 8.33 kg/sHeat loss 50.5 W/m

    Result from Fig. 15: Temperature drop t = 0.0028 K/m

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    30/221

    GESTRA Guide 33

    Fig. 16

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    31/221

    34 1 Piping

    1.7 Support Spans, Wall Distances

    The support span of a pipe depends on the degree of sagging. Adequate drainage must beensured. As a result, the sagging also determines the minimum gradient. The permissiblesagging depends on the operational conditions. The wall distances for lines routed alongbuildings must be kept as small as possible. Insulation and pipe flanges must remain acces-

    sible.

    Nominal size DN 25 DN 40 DN 50 DN 80 DN 100 DN 150

    Wall thickness of the pipe s in mm 2.0 4.0 2.0 4.0 2.0 4.5 2.3 5.6 2.6 6.3 2.6 7.1

    Permissible support spans, L1 in m

    Empty pipe, not insulated 2.9 2.9 3.5 3.5 4.5 4.4 5.5 5.4 6.3 6.2 7.6 7.5

    Pipe filled with water, not insulated 2.7 2.8 3.1 3.3 3.9 4.1 4.6 5.0 5.1 5.6 5.8 6.6

    Pipe filled with water, insulated to DD 40 2.0 2.2 2.5 2.3 3.2 3.6 4.0 4.5 4.6 5.2 5.4 6.3

    Pipe filled with water, insulated to DD 80 1.8 2.0 2.8 3.2 2.9 3.3 3.7 4.3 4.4 5.0 5.2 6.1

    Nominal size DN 200 DN 250 DN 300 DN 350 DN 400 DN 500

    Wall thickness of the pipe s in mm 2.9 7.1 2.9 7.1 2.9 8.0 3.2 8.8 3.2 10.0 4.0 11.0

    Permissible support spans, L1 in m

    Empty pipe, not insulated 8.7 8.7 9.7 9.7 10.6 10.6 11.1 11.1 11.9 11.8 13.3 13.2

    Pipe filled with water, not insulated 6.5 7.4 6.9 8.0 7.3 8.7 7.7 9.1 8.0 9.7 8.9 10.7

    Pipe filled with water, insulated to DD 40 6.1 7.1 6.6 7.7 7.0 8.4 7.4 8.8 7.7 9.5 8.7 10.5

    Pipe filled with water, insulated to DD 80 5.9 6.9 6.5 7.6 6.9 8.3 7.3 8.7 7.6 9.4 8.6 10.4

    Fig. 17 Permissible support spans in m for steel pipesaccording to AD 2000 - Bulletin HP 100 R.

    Nominal width DN25 DN32 DN40 DN50 DN65 DN80 DN100 DN125 DN150 DN200 DN250

    Support span 100 110 125 140 150 165 185 215 225 260 300

    Fig. 18 Support spans in cm for PVC piping, rigid PVC up to 20 C

    (based on empirical values)

    1.8 Waterhammer

    Every plant should be so constructed as to prevent waterhammer. If this is not possible,arrangements to prevent waterhammer must be provided. There are two types of water-hammer: Hydraulic waterhammer occurs in plants with cold liquids, e.g. through the rapidclosing of a line (a stop valve closing too suddenly). Thermal waterhammer arises in steamand condensate installations or in hot-water systems. This is caused when the steambubbles produced through a drop in pressure or entrained steam arrive in colder parts ofthe plant containing condensate. There the bubbles condense instantly, leading to implosions.Faulty equipment, improper operating and inappropriate installation may also cause water-

    hammer. For suitable installations, see Chapter 4 Connection Examples as well as theGESTRA Condensate Manual.

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    32/221

    Page

    2 Heat Transfer

    2.1 Fundamentals 37

    2.1.1 General 37

    2.1.2 Heat conduction through a flat wall 372.1.3 Heat conduction through a pipe wall 38

    2.1.4 Heat transmission 38

    2.1.5 Heat transfer 39

    2.1.6 Heat radiation 39

    2.2 Typical Heat Data 40

    2.2.1 Thermal conductivity coefficients 40

    2.2.2 Heat transmission coefficients 40

    2.2.3 Heat transfer coefficients 41

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    33/221

    2 Heat Transfer

    2.1 Fundamentals

    2.1.1 General

    Problems involving heat transfer can be represented by simple equations, determined empi-

    rically or by calculation, if we group the large number of influencing quantities together toform characteristic coefficients and numbers. An overview is given by DIN 1341, with moredetailed information being provided by the relevant technical literature.Heat transfer necessitates a temperature difference and may take place through the mecha-nisms of conduction, convection and radiation. Heat transfer is possible in these threemodes at any boundary layer between bodies at different temperatures.

    2.1.2 Heat conduction through a flat wall

    The linear change in temperature

    applies for the steady-state case.

    According to Fourier's Law:

    For a linear temperature curve, i.e.

    this yields

    This equation applies for heat conduction in flat walls, and is also sufficiently accurate forthin-walled pipes.

    For heat conduction in multilayer walls, the equation is expanded to:

    GESTRA Guide 37

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    34/221

    38 2 Heat Transfer

    2.1.3 Heat conduction through a pipe wall

    For a simple pipe wall, with

    and ,we obtain

    With and this yields

    For multilayer pipe walls, we can therefore say:

    2.1.4 Heat transmissionThe transmission of the heat contained in flowing gases or liquids into a wall takes placeby conduction and convection. The process is influenced by the flow conditions. The heattransmission coefficient considers all values that cannot be accommodated by calcula-tion. The heat exchange between the wall and the hot flowing medium is obtained as

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    35/221

    GESTRA Guide 39

    2.1.5 Heat transfer

    In the technical applications of heat transfer in heat exchangers, preheaters, condensersetc., the term heat transfer is used to mean the following processes:

    Heat transmission from the flowing medium to the pipe wall

    Heat conduction within the pipe wall (thin-walled pipes; see Section 2.1.2)

    Heat transmission from the pipe wall to the other flowing medium

    For a uniform heat flow (steady-state case), Q is a constant. Addition of the three equa-tions yields:

    At the same time,

    This heat transfer coefficientkyields the equation for heat transfer as

    Forkvalues, see Figs. 21 - 23.

    For a dividing wall consisting of several layers, the overall heat transfer coefficient istherefore

    2.1.6 Heat radiation

    For heat transfer by radiation, the Stefan-Boltzmann Law applies:

    C unit conductance in W/m2K4

    As radiant heating area in m2

    T1 absolute temperature of the radiant surface in K T2 absolute temperature of the radiated surface in K

    In practice, the heat radiation component is often neglected. The calculation then consi-ders solely the heat transferred by contact.

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    36/221

    40 2 Heat Transfer

    2.2 Typical Heat Data

    2.2.1 Thermal conductivity coefficients

    The thermal conductivity coefficient is a physical characteristic, expressed in the unit W/mK or J/m s K, which depends on various factors, such as temperature, pressure, moisture,structural compounds etc. Here the value indicates what heat flow in W or J/s passes

    through a layer of a certain substance 1 m thick when the surfaces with an area of 1 m exhi-bit a temperature difference of 1 K. For the range of values for some common substances,see Fig. 19. Further details are provided in Chapter 3 Properties of Substances. Factors forconverting into other units are given in Chapter 6 Units, Symbols, Conversion Tables.

    2.2.2 Heat transmission coefficients

    The heat transmission coefficient is, amongst other things, a function of the flow veloci-ty w, and thus also of the Reynolds number Re. It is determined empirically, taken from

    tables, or calculated with the aid of characteristic numbers.

    Liquids = 0.12... 0,58 W/m K

    Air = 0.02 W/m K

    Gases = 0.01... 0.23 W/m K

    Insulating materials = 0.03... 0.12 W/m K

    Alloys = 12... 145 W/m KPure metals = 7... 419 W/m K

    Fig. 19

    Boiling water with vertical walls = 3489 W/m2K

    Boiling water with horizontal walls = 1745 W/m2K

    Flue gas = 4.7 w0.8 W/m2K

    Superheated steam = 52 w0.8 W/m2K

    Highly compressed air with intercoolers = 233 w0.8 W/m2K

    Air in air preheaters = 5.8 w0.8 W/m2K

    Condensing steam = 11630 W/m2K

    Water flowing in preheaters, coolers etc. = 3489 w0.8

    W/m2

    K

    Fig. 20 Average values for use in approximate calculations

    w= flow velocity in m/s

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    37/221

    GESTRA Guide 41

    2.2.3 Heat transfer coefficients

    The factors determining the heat transfer are the k value (see Section 2.1.5), the arrange-ment of the pipes, and the direction of flow (uniflow, counterflow, crossflow). The followingkvalues are intended to provide reference values for approximate calculations.

    Heating Wall Heated medium Heat transfer coefficient kmedium W/m2K

    Water Cast iron Air (smoke) 8Water Wrought iron Air (smoke) 12Water Copper Air (smoke) 13Water Cast iron Water 291Water Wrought iron Water 349Water Copper Water 407

    Air Cast iron Air 6

    Air Wrought iron Air 8Air Copper Air 10

    Steam Cast iron Air 12Steam Wrought iron Air 14Steam Copper Air 16Steam Cast iron Water 907Steam Wrought iron Water 1047Steam Copper Water 1163

    Fig. 21 Reference values for calculations of heating coils, preheaters etc.

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    38/221

    42 2 Heat Transfer

    Immersion evaporatorSaturated steam k-values W/m2Kpressure(absolut)

    bar min. typical max.

    2 1047 1454 1919

    4 1861 2384 3140 6 2500 2908 3722 8 2733 3198 4129 10 2791 3315 4303

    Circulation evaporator

    2 2326 2733 3489 4 3489 3954 4594 6 4129 4536 5175 8 4594 4943 5466

    10 4826 5234 5815

    Fig. 22 Heat transfer coefficients for evaporators and steam converters

    The k values are expressed in relation to the saturated steam pressure! The typicalvalues were obtained as average values from a large number of examinations, whilst theminimum and maximum values indicate the fluctuation range encountered in practicefor various installations.

    Type Medium Medium kvalue

    in the pipes outside the pipes W/m2KTubular preheaters Cold water Condensing steam 814 to 1047Tubular heat exchangers Water Water 291 to 349

    Tubular condensers Water Condensing petrol vapour 233 to 582Tubular aftercooler Liquid petrol Water or petrol 145 to 291Tubular heat exchangers Crude oil or tar Condensing petrol vapour 87 to 291Tubular heat exchangers Crude oil or tar Crude oil or tar 58 to 174Box coolers Oil distillate Water 58 to 116

    Convection oven Crude oil or tar Flue gases 23 to 41Stills Crude oil or tar Flue gases 17 to 23Tubular coolers Reformed gases Water 17 to 29Tubular coolers Water Air and gases 8 to 14Tubular boilers Air and gases Flue gases 6 to 12

    Fig. 23 Heat transfer coefficients - empirical values of the oil industry

    Typical values for the usual flow velocities and good maintenance condition of the equip-ment in continuous operation. Varying states of cleanliness of the heating or cooling sur-faces, special design features, and abnormal flow velocities can lead to appreciably dif-

    ferent results.

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    39/221

    Page

    3 Properties of Substances

    3.1 Density 45

    3.1.1 General 45

    3.1.2 Density(t)of various liquids 473.1.3 Density of aqueous solutions as a function of concentration 48

    3.1.4 Density and specific volume of gases 49

    3.2 Viscosity 50

    3.2.1 Viscosity of liquids 50

    3.2.2 Viscosity of gases and steam 54

    3.3 Various Properties of Substances 56

    3.3.1 Solid and liquid substances , to, ts, , c 563.3.2 Gases and vapours 60

    3.3.3 Refrigerants 62

    3.3.4 Thermal conductivity (t)for metals 64

    3.3.5 Thermal conductivity(t)for insulating materials 65

    3.4 Humidity of Air 66

    3.5 Steam Pressure Curves of Important Substances 67

    3.6 Steam Tables 69

    3.6.1 Saturation pressure table 69

    3.6.2 Specific enthalpy of superheated steam 72

    3.6.3 Specific volume of superheated steam 74

    3.6.4 h,s diagram for steam according to Mollier 76

    To some extent, the properties of substances given here are average values obtained

    from various sources. All information is correct to the best of our knowledge.

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    40/221

    GESTRA Guide 45

    3 Properties of Substances

    3.1 Density

    3.1.1 General

    The weight density (specific gravity) with the units of the systems applied in the past was,

    for example, used in static calculations. In the international system of units (SI), the densi-ty is generally used.The acceleration due to gravitygis hence only used in equations if there really is a gravi-tational effect.Fig. 24 provides a comparison of density and weight density for water at 4 C and 1013mbar.The following relations apply here: density weight density (specific gravity) m mass

    G weight V volume gn standard value of the acceleration due to gravity (gn= 9.80665 m/s

    2)

    From Fig. 24 and the relation = gn, we see that both the numerical value and the unitchange by the factorgnfor the transformation from weight density to density in the m-kp-s system. In this system, the mass is a derived quantity. In contrast, only the unit changesin the m-kg-s-(kp) system, because 1 kp = 1 kg gn. The numerical value - 1000 in theexample of Fig. 24 - remains the same for both the density and weight density of any sub-stance. As already mentioned, only the density is used in the international system of unitsand the additional factorgnis introduced for the special case of a weight acting vertically,without calculating the product gseparately.

    Unitary system Density Weight density

    m-kp-s

    m-kg-s-(kp)*

    International systemof unitsm-kg-s-A-K-mol-cd

    Fig. 24

    * Earlier transitional system used by preference in technology, with kilopond as the unit of force instead

    of Newton (N) and kilogram as the unit of mass.

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    41/221

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    42/221

    GESTRA Guide 47

    3.1.2 Density (t)of various liquids

    Fig. 27

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    43/221

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    44/221

    GESTRA Guide 49

    3.1.4 Density and specific volume of gases

    In the international system of units, the specific volume is the reciprocal of the density.

    =m/V V=v m

    For real gases in the range of standard conditions, the general equation of state for ideal

    gases can be applied. Here it must be noted that a correction must be made for higher pres-sures or in the vicinity of the dewpoint. By means of the compressibility factor K, the beha-viour of real gases can then be referred to that of ideal gases (p v= K Ri T).

    Numerical values for the density - e.g. those in Fig. 29 - usually refer to the standard condi-tion of zero C and 1013.25 mbar. When calculating the density for a different set of con-

    ditions, the following numerical value equation is often used. It is derived from the generalequation of state; for this reason, the limitations regarding pressure and dewpoint of thegases apply.

    kg/m3 density in the operational state o kg/m

    3 standard density p bar absolute pressure T K temperature (T = 273 + t)

    For a mixture of various gases, the following relationship applies:

    o1, o2 densities of the separate gases n1,n2 parts by volume of the separate gases

    Air

    (0.78 N2+0.21 O2+...) 1.293 Ethane C2H6 1.356Oxygen O2 1.429 Propylene C3H2 1.915

    Nitrogen N2 1.251 CmHn* 1.392

    Carbon monoxide CO 1.250 Coke-oven and grid gas 0.50

    Carbon dioxide CO2 1.977 Producer gas 1.15

    Hydrogen H2 0.090 Blast furnace gas 1.27

    Methane CH4 0.717 Water gas 0.69

    Acetylene C2H2 1.171 Ammonia NH3 0.77

    Ethylene C2H

    4 1.261 Sulphur dioxide SO

    2 2.92

    Fig. 29 Standard density 0of various gases in kg/m3

    * Composition in parts by volume: 0.80 C2H4 + 0.20 C3H6

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    45/221

    50 3 Properties of Substances

    3.2 Viscosity

    3.2.1 Viscosity of liquids

    The viscosity exerts an influence on the flow processes and thus on the pressure drop inthe flowing media. Viscosity is that characteristic of a liquid or gaseous substance ofaccommodating a shear stress that is dependent on the speed profile, through the mecha-

    nism of shear deformation. In addition to the internal friction forces which hinder themotion, inertial forces are also active in the flowing process. Accordingly, two types of vis-cosity are specified:

    Dynamic viscosity This is a measure for the internal friction resulting from mutual displacement of adjacentmolecules, defined according to the Newtonian friction law, with the derived SI unitpascal-second (Pa s)

    Kinematic viscosity This is a measure for the simultaneous effect of frictional and inertial forces, defined as thequotient of dynamic viscosity and density (= /, where = /g), with the unit

    In addition to these legal units, the physical units according to the cm-g-s system and alsoconventional units of the viscosity measurement apparatus are also occasionally encoun-tered, for example:

    Physical units

    Conventional unitsGermany: Engler numbers EEngland: Redwood seconds second

    USA: Saybolt Universal Seconds SUS or SSU

    The Redwood and Saybolt scales express the time in seconds needed by the test fluid torun out of defined containers. The Engler numbers express the time needed by 200 cm 3oftest fluid to run out of a container in relation to 200 cm3of distilled water at 20 C.

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    46/221

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    47/221

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    48/221

    GESTRA Guide 53

    Liquid 10 C 30 C 50 C 70 C 90 C

    Acetone 0.45 0.37 0.31Ethanol 1.85 1.27 0.90Benzol 0.87 0.64 0.50Glycerol at 20 C: 11.9 ,0 4.9 ,0Phenol at 20 C: 10.9 ,0 6.5 3.20

    Pyridine 1.14 0.85 ,0Carbon disulphide 0.31 0.27 ,0Carbon tetrachloride 0.71 0.53 0.41Tetraline at 20 C: 2.06 ,0 ,0 1.34Toluol 0.77 0.60 0.49Xylol (typical values) 0.91 0.70 0.56

    Crude oils (reference values):

    Argentina = 939 kg/m3 ,0 ,0 600,00 200,0 50,0Mexico = 940 kg/m3 ,0 800,00 250,00 90,0 32,0Germany,

    Hanover = 941 kg/m3

    ,0 500,00 125,00 42,0 14,5Baku = 929 kg/m3 ,0 260,00 80,00 31,0 12,0Texas 300,00 80,00 30,00 14,0 ,0Romania = 940 kg/m3 270,00 70,00 25,00 12,0 5.5Iran 140,00 35,00 13,00 6.5 3,0Borneo 19,00 9,00 5,00 3.2 1.9Galicia = 855 kg/m3 12.50 6,00 3.5,0 2.3 1.4

    Heavy lignite tar ,0 ,0 300,00 60,0 14,0Light lignite tar 120,00 30,00 10,00 5,0 2.4Coke tar from hard coal ,0 220,00 60,00 22,0 9,0Low-temperature tar from

    Ruhr coking coal ,0 170,00 25,00 7.5 2.4

    Fig. 32 Kinematic viscosity of some liquids at various temperatures (106in m2/s)

    Liquid 106m2/s kg/m3 Liquid 106m2/s kg/m3

    Spirits 95% 1.940 0809 Beer 1.150 1020-1040 90% 2.190 0823 Milk 2.900 1030 85% 2.460 0836 Wine 1.150 990-1000Naphthalene, pure 0.905 0979 Solution of common salt in waterBenzene 0.80-0.76 0700-740 05% NaCl 1.170 1036

    Olive oil 117.000 0920 10% NaCl 1.250 1073Castor oil 1480.000 0970 20% NaCl 1.640 1150Turpentine oil 1.860 0875 Paraffin (kerosene) 1.75-2.8500800-825Nitric acid

    25% 1.160 1150 Petrol (gasoline) 0.820 0737 40% 1.310 1250 0.610 0708 91% 0.950 1500 0.460 0680Sulphuric acid

    25% 1.660 1182 50% 3.060 1399 75% 10.000 1674

    100% 14.700 1836

    Fig. 33 Kinematic viscosity and density of various liquids at 15 C

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    49/221

    54 3 Properties of Substances

    3.2.2 Viscosity of gases and steam

    The types and characteristics of viscosity mentioned in Section 3.2.1 for liquids also applyhere. However, the density and kinematic viscosity of gases and steam are dependent onpressure, whilst the numerical value of the dynamic viscosity at pressures of up to 10 barabsolute and constant temperatures only changes by less than 1 %. For this reason, cal-culation with the dynamic viscosity (t) is preferred for gases and vapours. Corresponding

    data is given in the diagrams of Figs. 34 and 35.In the range up to 10 bar absolute, changes by less than 1 %. However, at higher pres-sures and with an air temperature of e.g. 20 C

    forp 1 80 120 160 200 bar absolute

    106 18.5 20.0 23.5 27.5 32.5 Pa s

    An adequate approximation for the dynamic viscosity of gas mixtures can be obtained for

    all temperatures from the following equation:

    n1,n2 parts by volume of the separate gases 1,2 dynamic viscosity of the separate

    gases Z1,Z2 constant

    According to Herning-Zipperer, the constants Z1and Z2of the gases contained in the mix-ture are as follows:

    Gas type N2 CO CO2 H2 CH4 CmHn*Constant 59 62 116 8 55 96

    * Composition in parts by volume: 0.80 C2H4+ 0.20 C3H6

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    50/221

    GESTRA Guide 55

    Fig. 35 Dynamic viscosity of steam at various temperatures (according to

    Timroth)

    Fig. 34 Dynamic viscosity of some gases at various temperatures

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    51/221

    56 3 Properties of Substances

    3.3 Various Properties of Substances

    3.3.1 Solid and liquid substances , t0, tS, , cColumn 1: Referred to +20 C (* for +15 C)Column 2: Values with * are softening or setting points.Column 3: Referred to 1013.25 mbar. For substances for which there is no liquid phase

    (sublimation): numerical values in brackets.Column 4: Referred to 20 C or to the temperatures given next to the substance names.Column 5: Typical values for temperatures between 0 and 100 C.

    Fig. 36

    Column 1 2 3 4 5

    Substance Density Melting Boiling Thermal Specific point to point ts conductivity heat c

    kg/dm3 C C W/mK kJ/kg K

    Acetone 0.791 -94.800 56.20 0.162 2.1560

    Alcohol, ethyl (95 vol.%) 0,789 -114.200 78.30 0.167 2.3950Alcohol, methyl (95 vol.%) 0.792 -97.600 64.70 0.202 2.4950Aluminium, pure (99.5%) 2.730 658.500 227000, 221000, 0.9090

    Aluminium, cast 2.560 658,000 ~ 220000, 209000, 0.9040

    Aluminium oxide 3.960 2046,000 298000, 000 0.0800Ammonia water (25%) 0.910 -77.800 -33.50 0.494 4.1900

    Ammonium chloride 1.520 000 000 000 000

    Asbestos, pure 2.1...2.8 1500,000 000 0.17...0.19 0.8160Asbestos sheets 2.000 000 000 0.700 0.7500

    Ashes 0.700 from 500* 000 0.700 0.8000

    Asphalt (pitch) 1.1...1.5 27*...57* 000 0.700 0.9200Bakelite 1.330 000 000 0.230 1.6040

    Benzene 0.710 -150 90...100 0.160 2.0900

    Benzol 0.879 5.400 80.20 0.140 1.8000Bitumen (tar) 1.100 60*...160* 000 0.167 1.6300

    Board, asbestos 1.200 000 000 0.1...0.16 0.8400

    Board, cardboard 0.800 000 000 0.07...0.22 1.2600Boiler scale 2.4...2.6 ~ 120000, ~ 280000, 0.08...2.3 0.8000

    Brass 8.4...8.7 900...980 230000, 81...116 0.3850Bronze, aluminium 7.700 1050000, 230000, 83000, 0.4350

    Bronze, phosphor 8.800 950000, 000 35...81 0.3600Bronze, tin 8.73...8.85 1020...1070 000 35...151 0.3810Carbon disulphide 1.100 -111.80 46.300 0.160 1.0100

    Carbon, pure 3.510 000 (3540)00 8.400 0.8540

    Carbon tetrachloride 1.594 -22.90 76.700 0.107 1.2600Carborundum stone 3.120 > 220000, 000 15.200 000

    Cast steel 7.860 ~ 135000, 250000,0 52000, 0.5020

    Caustic potashsolution (27%) 1.260 000 000 0vv 3.6000

    Caustic soda

    solution (66%) 1.700 000 000 000 3.7700Celluloid 1.380 000 000 0.210 1.2600

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    52/221

    GESTRA Guide 57

    Column 1 2 3 4 5

    Substance Density Melting Boiling Thermal Specific point to point ts conductivity heat c

    kg/dm3 C C W/mK kJ/kg K

    Fig. 36 Continued

    Chalky sandstone 1.80...1.92 1500*00 260000, 0.9...1.0 0.7100

    Chromium 7.100 176500, 266000, 000 0.4520Clay, dry 1.800 160000, 298000, 0.840 0.8330

    Clay, wet 2.600 160000, 298000, 1.10...2.2 0.9200

    Clinker 2.6...2.7 1600*00, 0000 0.5...0.9 0.8400Coal, hard 1.2...1.5 000 0000 0.16...0.27 1.0100

    Glance coal 1.2...1.7 000 0000 0.330 1.0900

    Lump coal 1.2...1.5 000 0000 0.210 1.2600 Coal dust 0.6...0.75 000 0000 0.190 1.3000

    Coal briquettes 1.25...1.3 000 0000 0.290 1.5900

    Concrete, gravel 1.8...2.3 000 0000 1.280 0.8800Concrete, pumice stone 1.200 000 0000 0.470 1.0100

    Concrete, slag 0.8...1.2 000 0000 0.5...0.7 0.9200Constantan 8.890 ~ 160000, 240000, 22.700 0.4100

    Copper, pure 8.930 108300, 259500, 393000, 0.3890

    Copper, rolled 8.9...9.0 10800v, 231000, 372000, 0.3890Cork sheets 0.1...0.3 000 0000 0.03...0.06 1.5900

    Corundum 4.000 205000, 295000, 0.700 0.8500

    Diamond 3.510 000 (3540)00 8.400 0.6030Diatomite 2.0...2.6 > 10000v, 0000 0.06...0.17 0.8800

    Ether, diethyl (abs.) 0.714 -116.300 34.60 0.138 2.3360

    Ether, sulphuric 0.730 -129000 3500, 0.140 2.2600

    Fats 0.92...0.94 30...175 ~ 30000, 0.210 0.63...0.75Felt 0.15...0.3 000 0000 0.03...0.07 0,0

    Fibre 1.0...1.5 000 0000 0.210 1.2600Fireclay brick 1.85...2.2 1400*...1700* 29000,0 0.500 0.80...0.88

    Glass, window 2.4...3.0 ~ 70000, 260000, 0.76...0.80 0.75...0.80

    Glass, plexiglass 1.2000 80*00 0000 0.190 1.8800Glycerol 1.2600 19 or 0* 29000, 0.280 2.4300

    Granite 2.6...3.0 1400*...1600* 0000 2.9...4.1 0.8400

    Graphite, natural 1.8...2.3 000 (3900)00 12...174 0.8200Gunmetal (red bronze) 8.5...8.7 95000. 23000.0 60000, 0.3810

    Gutta-percha 0.96...1.02 14800, 18000, 0.190 000Gypsum, burnt, powdered 1.81...1.82 14500v, 0000 0.240 1.0900Gypsum, cast, dry 0.970 45000, 0000 0.43...0.6 0.8400

    Hemp fibres, dry 0.045 000 0000 0.049 000Hydrochloric acid (25%) 1.150 1400, 1020,0 0.470 3.1400

    Ice at 0 C 0.917 000, 10000, 2.230 2.1100

    Iron, cast (grey cast iron) 7.250 1132...1350 250000, 42...63 0.532... ...0.5400

    Iron, pure 7.860 153300, 273000, 71000, 0.4650

    Iron, wrought 7.79...7.85 ~ 120000, 250000, 58000, 0.4770Jute fibres, loose, ruffled 0.056 000 0000 0.036 1.3400

    Lead, cast 11.25...11.37 32600 152500, 35000, 0.1300

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    53/221

    58 3 Properties of Substances

    Column 1 2 3 4 5

    Substance Density Melting Boiling Thermal Specific point to point ts conductivity heat c

    kg/dm3 C C W/mK kJ/kg K

    Fig. 36 Continued

    Lead, red 8.6...9.1 90000, 000 0.700 0.2500Lead, pure 11.340 327.400 169200, 27.100 0.1310

    Lime, burnt 0.9...1.3 257000, 000 0.840 000

    Lime, slaked 1.15...1.25 000 000 000 000Limestone (amorphous) 2.46...2.84 destr. 825 000 0.15...2.3 0.9090

    Linoleum 1.15...1.3 000 000 0.15...0.19 000

    Magnesia(magnesium oxide) 3.2...3.6 264200, 280000, 13.400 1.0100

    Magnesia powder 0.3...0.4 264200, 280000, 0.06...0.07 0.9600

    Magnesite 3.0...5.1 1600-1800 000 1.340 1.0900Magnesium, pure 1.740 65000, 110200, 172000, 1.0340

    Manganese 7.300 124400, 215200, 50000, 0.4980

    Marble 2.5...2.8 1290...1340* 287000, 2.1...3.5 0.80...1.01Mercury 13.550 -38.89 357.250 8.400 0.1380

    Mica 2.9...3.1 130000, 000 0.420 0.8800

    Naphthalene 1.145 80.20 217.900 0.300 1.2810Nickel, pure 8.800 145300, 317700, 87000, 0.4140

    Nitric acid (100%) 1.520 -4700, 860,0 0.530 1.7200Oil, heating/fuel 0.84...0.92* -500, 175...350 0.120 1.9700

    Oil, linseed 0.94* -2000, 3160,0 0.150 1.9700

    Oil, machine 0.910 -500, 380...400 0.126 1.6700Paper, cellophane 1.420 000 000 0.170 1.4700

    Paper, cellulose 0.7...1.1 000 000 0.07...0.14 1.3400Paraffin 0.87...0.93 35...52 3000,0 0.21...0.29 3.2700Peat, air-dry 0.5...0.9 000 000 0.06...0.08 1.8800

    Phenol 1.3...1.7 40.90 181.200 0.220 1.6300

    Phosphorus, red 2.200 59000, 2000,0 000 0.84...1.05Phosphorus, white 1.830 44.20 2870,0 000 0.75...0.84

    Platinum 21.400 177400, 38040,0 71000, 0.1331

    Porcelain 2.3...2.5 167000, 000 0.8...1.9 0.80...0.92Quartz 2.1...2.65 147000, 25900,0 1.260 0.80...0.92

    Rubber, foam 0.06...0.09 000 v00 0.060 000

    Rubber, hard 1.2...1.8 000 000 0.15...0.17 1.4200Salt, sat.

    solution of table salt 1.200 1800, 10800, 0.480 3.2700

    Salt, table 2.1...2.4 80100, 146500, 000 0.9200Sandstone, artificial 1.9...2.5 ~ 1650 000 1.700 0.9200

    Sandstone, natural 2.6...2.7 1500*...1600* 26000,0 1.3...1.9 0.9200

    Silk, artificial 1.25...1.6 000 000 0.049 000Silk, raw 1.560 000 000 0.042 2.3070

    Silver, pure 10.500 960.50 21700,0 419000, 0.2340Slag, blast furnace 2.6...3.3 1300...1430 000 0.10...0.17 000

    Slag, boiler 1.700 ~ 135000, 000 0.14...0.16 000

    Snow, loose (at 0 C) 0.100 000, 1000,0 0.05...2.2 2.1000

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    54/221

    GESTRA Guide 59

    Column 1 2 3 4 5

    Substance Density Melting Boiling Thermal Specific point to point ts conductivity heat c

    kg/dm3 C C W/mK kJ/kg K

    Fig. 36 Continued

    Soapstone 2.6...2.8 1400*00 000 2.7...3.4 0.8800

    Soda, calcined 2.530 85000, 000 0.600 3.6000Soda, crystalline 1.450 000 000 0.600 3.5600Soot 1.6...1.7 000 (3540)000 0.07...1.2 000

    Spirits (95 vol.%) 0.830 -9000, 7800,0 0.160 2.3900

    Stearin 0.940 43...68 35000,0 000 000Steel, C (structural) 7.84...7.85 1470...1500 2500,000 47...58 0.4770

    Steel, Cr (VM) 7.7...7.75 148000, 250000,0 21...40 0.46...0.50

    Steel, Cr-Ni (VA, VCN) 7.7...7.88 1370...1500 25000v,0 13...16 0.4940Steel, Cr-Ni-Mn (BM) 6.400 155000, 260000,0 20000, 0.4980

    Steel, Ni 7.850 148000, 250000,0 ~ 47000, 0.4860

    Sulphur, crystalline 1.960 118.95 444.600 0.290 0.7200Sulphur, natural 1.96...2.07 112.80 444.600 0.270 0.7500

    Sulphuric acid (96%) 1.840 10.50 3380v.0 0.500 1.4700

    Sulphurous acid 1.490 -7300, -1000,0 0.200 1.3400Tar from hard coal 1.200 -1500, 300000, 0.190 1.6700

    Tin, pure 7.280 231.80 2430000, 65000, 0.2300Titanium 4.430 172700. >3000000, 000 0.6110

    Toluol 0.868 -94.50 110.600 0.141 1.7200Tungsten 19.100 338000, 6000000. 163000, 0.1340

    Vanadium 5.600 172600, 3000000, 000 0.5000

    Wax 0.96...1.04 4600, 65...70 0.084 3.4300

    Wool, asbestos 0.300 1100*00 000 0.090 000Wool, cotton, dry 1.47...1.50 000 000 0.070 1.2730

    Wood-fibre boards 1.52...1.60 000 000 0.06...0.07 000Wool, glass 0.100 400*00 000 0.060 0.8000

    Wool, sheep 0.200 000 000 0.041 1.7200

    Wool, slag 0.2...0.3 1500*00 000 0.03...0.06 0.7500Wool, viscose staple fibre 1.500 000 000 0.080 1.3570

    Xylol, meta- 0.864 -47.90 139.200 0.142 1.7170

    Xylol, ortho- 0.879 -25.30 144.400 0.144 1.7330Xylol, para- 0.861 13.30 138.400 0.130 1.7000

    Zinc, cast 6.860 41900, 920000, 110000, 0.3800Zinc, injection-moulded 6.800 39300, ~ 1000000, 140000, 0.3800Zinc, pure 7.140 419.40 907000. 121000, 0.3890

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    55/221

    60 3 Properties of Substances

    3.3.2 Gases and vapours

    Referred to 0 C and 1013.25 mbar

    Fig. 371 Averaged between 0 ...1013 mbar

    2 For approximate calculations only

    Melting point

    Gas or vapour Chemical Molar Density Relative Volume Tempe- Fusion

    symbol mass density rature heat

    (S.G.)M /air to

    for

    kg/kmol kg/m3 air = 1 m3/kg C kJ/kg

    Acetone C3H6O 58.080 2.590 2.003 0.386 - 094.8 96.30

    Acetylene C2H2 26.040 1.171 0.906 0.854 - 083.3 96.30

    Air (dry) (28.96)0 1.293 1.000 0.774 - 2130. 00

    Alcohol, ethyl C2H6O 46.070 2.055 2.590 0.487 - 114.2 108.00

    Alcohol, methyl CH4O 32.040 1.429 1.106 0.700 - 097.6 103.00

    Ammonia NH3 17.030 0.771 0.597 1.296 - 077.9 339.10Argon Ar 39.940 1.784 1.378 0.561 - 189.3 29.30

    Ethane C2H6 30.070 1.356 1.049 0.738 - 183.3 93.00

    Ether, diethyl C4H10O 74.120 3.307 2.558 0.302 - 116.3 100.50

    Ethylene C2H4 28.050 1.261 0.975 0.793 - 169.5 104.70

    Benzol C6H6 78.110 3.485 2.695 0.287 +0.5.4 127.70

    Blast furnace gas 2) (28.33)0 1.260 0.977 0.791 - 2100, 00

    Butane C4H10 58.120 2.593 2.005 0.386 - 138.4 77.50

    Carbon dioxide CO2 44.010 1.977 1.529 0.506 - 056.6 184.20

    Carbon disulphide CS2 76.140 3.397 2.628 0.294 - 111.5 57.80

    Carbon monoxide CO 28.010 1.250 0.967 0.800 - 205.0 30.10Carbon tetrachloride CCl4 153.840 6.863 5.308 0.146 -022.9 16.30

    Chlorine Cl 70.910 3.164 2.447 0.316 - 100.5 188.40

    Flue gas 2) (29.30)0 1.340 1.033 0.749 - 2000, 00

    Hydrogen chloride HCI 36.470 1.639 1.268 0.610 - 111.2 56.10

    Helium He 4.003 0.179 0.138 5.602 - 270.7 3.52

    Hydrogen H2 2.020 0.090 0.070 11.127 -259.2 58.20

    Hydrogen sulphide H2S 34.080 1.251 1.191 0.650 -085.6 69.50

    Methane CH4 16.040 0.717 0.555 1.395 - 182.5 58.60

    Nitrogen N2 28.020 1.250 0.967 0.800 - 210.5 25.70

    Oxygen O2 32.000 1.429 1.105 0.700 - 218.8 13.82

    Producer gas 2) (25.70)0 1.150 0.886 0.873 - 2100, 00

    Propane C3H8 44.090 2.019 1.562 0.495 - 187.7 80.00

    Propylene C3H6 42.080 1.877 1.452 0.530 - 185.0 70.00

    Sulphur dioxide SO2 64.070 2.926 2.264 0.342 - 075.5 116.80

    Sulphur trioxide SO3 80.070 3.572 2.763 0.280 + ,16.8 311.90

    Toluol C7H8 92.130 4.110 3.179 0.243 - 094.5 72.00

    Town gas 2) (11.7)0 0.520 0.390 1.920 - 2300, 00

    Water H2O 18.020 0.804 0.622 1.244 0.0 332.40

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    56/221

    GESTRA Guide 61

    Boiling point Specific heat 1)

    Tempe- Eva- Density Gas Thermal Adiaba-

    rature poration of constant conduc- tic ex-

    heat the tivity co- ponent1)

    ts liquid R efficient cp c Cp Cv r J W kJ kJ kJ kJ x

    C kJ/kg kg/dm3 kg K m K kg K kg K m3K m3K = cp/cv

    +056.2 523.4 0.749 143.2 0.0097 1.239 1.097 3.211 2.839 1.131

    -083.6 829.0 0.613 319.4 0.0184 1.616 1.298 1.892 1.520 1.245

    - 192.3 196.8 0.875 287.0 0.0243 1.005 0.716 1.298 0.925 1.404

    + 078.3 845.7 0.747 180.5 0.0138 1.524 1.344 3.132 2.763 1.134

    + 064.7 1101.1 0.737 259.5 0.0140 1.340 1.080 1.913 1.545 1.240

    - 033.4 1369.1 0.680 488.2 0.0217 2.056 1.566 1.587 1.210 1.313- 185.9 159.1 1.820 208.2 0.0163 0.519 0.314 0.925 0.557 1.665

    -088.6 489.9 0.546 276.5 0.0180 1.650 1.373 2.236 1.863 1.201

    -034.6 360.1 0.698 112.2 0.0126 1.444 1.331 4.777 4.405 1.085

    - 103.7 523.4 0.568 296.5 0.0167 1.461 1.164 1.892 1.507 1.255

    +080.1 394.4 0.894 106.5 0.0088 0.950 0.846 3.312 2.939 1.127

    - 1700, 0 0 293.2 0.0219 1.009 0.716 1.277 0.904 1.410

    -000.5 385.6 0.602 143.1 0.0138 1.599 1.457 4.145 3.722 1.114

    - 078.2 573.6 1.219 189.0 0.0142 0.816 0.628 1.616 1.243 1.300

    + 046.3 351.7 1.193 109.2 0.0067 0.582 0.473 1.976 1.608 1.230

    - 191.6 217.7 0.801 296.8 0.0222 1.038 0.741 1.298 0.925 1.401+ 076.7 195.1 1.481 54.0 0 0.523 0.469 3.592 3.220 1.116

    - 034.0 259.6 1.512 117.3 0.0085 0.473 0.356 1.499 1.126 1.329

    - 1800, 0 0 277.5 0 1.009 0.729 1.348 0.976 1.380

    - 084.8 443.8 1.135 228.0 0.0084 0.795 0.569 1.302 0.934 1.397

    - 268.9 20.9 0.125 2077.1 0.1434 5.200 3.123 0.929 0.557 1.665

    - 252.8 460.5 0.071 4124.5 0.1754 14.051 9.931 1.264 0.892 1.415

    - 060.4 548.5 0.957 244.0 0.0126 0.992 0.749 1.239 0.938 1.324

    - 161.5 510.4 0.415 518.3 0.0306 2.165 1.645 1.553 1.181 1.316

    - 195.7 201.0 0.810 296.7 0.0238 1.038 0.729 1.298 0.913 1.425

    - 182.9 213.5 1.131 259.9 0.0242 0.909 0.649 1.298 0.925 1.400

    - 1700, 0 0 323.6 0.0216 1.160 0.833 1.327 0.959 1.388

    - 042.1 426.2 0.585 188.6 0.0151 1.549 1.361 3.128 2.747 1.138

    - 047.8 438.4 0.686 197.6 0 1.424 1.227 2.671 2.303 1.160

    - 010.0 401.9 1.460 129.8 0.0084 0.586 0.456 1.717 1.336 1.284

    + 044.8 519.2 1.311 103.9 0 0.607 0.502 2.169 1.796 1.208

    + 110.6 355.9 0.781 90.2 0.0129 1.030 0.938 4.233 3.856 1.098

    - 2100, 0 0 7130, 0.0605 2.646 1.934 1.377 1.005 1.369

    + 100.0 2256.3 0.958 461.5 0.0251 1.842 1.382 1.482 1.114 1.332

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    57/221

    62 3 Properties of Substances

    3.3.3 Refrigerants

    In addition to the classic refrigerants such as sulphur dioxide (SO2), methyl chloride(CH3Cl) and ammonia (NH3) - which do not meet all the safety requirements, owing to theirchemical and physical effects, and the chlorofluorohydrocarbons (CFCs) known as safetyrefrigerants under the trademark Freon, refrigerating brines are also used in industry.

    Refrigerating brines are aqueous salt solutions, e.g. of table salt, calcium chloride or mag-nesium chloride. They are used for indirect cooling to low temperatures, when water is nolonger suitable or when other compounds e.g. hydrocarbons cannot be used becauseof increasing viscosity or because the solidification point is reached.

    Solute Mass Density Associated Specific heat c fraction% kg/l point kJ/kg K on the

    ice curve

    20 C +20 0 -10 -20 -30

    NaCl 10 1.071 -06.8 3.735 3.70515 1.108 -11.5 3.567 3.546 3.534

    20 1.148 -17.5 3.425 3.408 3.400 25 1.189 -11.2 3.295 3.278 3.270 3.329

    CaCl2 15 1.129 -10.1 20 1.177 -17 3.123 3.077 3.052 25 1.228 -27.8 2.943 2.893 2.868 2.843

    30 1.282 -51.5 2.788 2.738 2.713 2.688 2.663

    MgCl2 10 1.083 -07.7 3.605 3.571 15 1.128 -16.4 3.341 3.291 3.270 3.245 20 1.176 -30.7 3.111 3.056 3.031 3.010 2.981 25 1.225 -24.0 2.901 2.851 2.826 2.801 30 1.278 -16.2 2.705 2.650 2.625

    Fig. 38a

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    58/221

    GESTRA Guide 63

    Solute Dynamic viscosity Thermal conductivity coefficient Pa s 10-3 W/m K

    +20 0 -10 -20 -30 0 -10 -20 -30

    NaCl 1.18 2.06 0.557 0, 0, 0, 1.37 2.35 3.33 0.552 0.536 0, 0, 1.57 2.75 4.12 0.547 0.531 0, 0, 1.86 3.33 5.20 0.542 0.527 0, 0,

    CaCl2 1.47 2.55 4.12 0.549 0.534 0, 0, 1.86 3.14 4.90 0.543 0.528 0, 0, 2.55 4.02 6.28 10.10 0.537 0.522 0.509 0.495 3.63 5.69 9.12 14.71 22.06 0.531 0.516 0.504 0.490

    MgCl2 1.47 2.75 0.540 0, 0, 0,

    1.96 3.82 5.39 0.527 0.511 0, 0, 2.65 5.30 8.04 11.67 0.514 0.498 0.480 0.462 4.12 8.34 13.24 21.18 0.501 0.485 0.469 0, 6.37 13.14 22.36 0.488 0.473 0, 0,

    Fig. 38b

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    59/221

    64 3 Properties of Substances

    3.3.4 Thermal conductivity (t) for metalsThe values of the metals rise and fall with the degree of purity. Moreover, they are depen-dent on the structure. The manufacturing process and the treatment therefore exert a con-siderable influence.

    Properties at 20 C Thermal conductivity in W/m K

    cp Reference temperature in C kg kJ WMetals m3 kg K m K 0 100 200 300 400

    Pure aluminium 2700 0.896 229 229 229 229 229Duraluminium 2780 0.883 164 159 181 194Tin, pure 7280 0.226 64 66 59 57Zinc, pure 7130 0.381 112 113 110 106 101 93Copper, pure 8930 0.381 385 386 379 373 369 364

    Brass, 70 Cu, 30 Zn 8500 0.385 112 107 128 144 148 148Bronze, 75 Cu, 25 Sn 8650 0.343 26Aluminium bronze, 95 Cu, 5 AI 8650 0.410 83Gunmetal, 85 Cu, 9 Sn, 6 Zn 8700 0.385 60 58 71Iron, pure 7870 0.452 72 73 67 62 55 49Cast iron, C 4 % 7250 0.420 52Forged steel, C < 0.5 % 7830 0.460 59 59 57 52 48 44Carbon steel, C 0.5 % 7820 0.465 53 55 52 49 44 42Carbon steel, C 1.5 % 7740 0.486 36 36 36 36 35 34Nickel steel, invar, Ni = 36 % 8120 0.460 11

    Chrome steel, Cr = 10 % 7760 0.460 31 31 31 31 30 24Chrome steel, Cr = 20 % 7670 0.460 23 23 23 23 23 29Chrome nickel steel, 18 Cr, 8 Ni 7800 0.460 16 16 17 17 19 20Fig. 39

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    60/221

    GESTRA Guide 65

    3.3.5 Thermal conductivity (t)for insulating materials

    Fig. 40

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    61/221

    66 3 Properties of Substances

    3.4 Humidity of air

    For a particular temperature, air can only hold a certain amount of moisture in the form ofwater vapour.

    Example:

    a) When saturated with water vapour (= 100 % relative air humidity), air at 23 C has a

    moisture content of 21 g/m.b) Air at 23 C with a relative air humidity of 70 % contains about 14.5 g/m of moisture

    and can be cooled down to about 17 C (dashed line). This is the corresponding dew-point; if cooled further, the water vapour will condense.

    Fig. 41

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    62/221

    GESTRA Guide 67

    3.5 Steam pressure curves of important substances

    Fig. 43 contains the steam pressure curves of the substances named in Fig. 42 togetherwith their chemical formulae; the curves for other substances can be added, often withperfectly adequate accuracy, if at least two or three points are known. Note that intersec-tions with the existing curves are possible. In Fig. 43, the boiling points at 1013 mbar areindicated by the dashed line. Critical points are marked with a circle.

    Substance Formula Substance Formula

    Nitrogen N2 Ethyl chloride C2H5Cl

    Oxygen O2 Methyl alcohol CH3OH

    Methane CH4 Ethyl alcohol C2H5OH

    Ethylene C2H4 Water H2O

    Carbon dioxide CO2 Chlorobenzene C6H5Cl

    Ethane C2H6 Aniline C6H5 NH2

    Hydrogen sulphide H2S Naphthalene C10H8

    Propane C3H8 Mercury Hg

    Sulphur dioxide SO2

    Fig. 42

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    63/221

    68 3 Properties of Substances

    Fig. 43

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    64/221

    GESTRA Guide 69

    3.6 Steam tables

    The following tables are taken from the h,s diagram (enthalpy-entropy diagram) accor-ding to Mollier.3.6.1 Saturation pressure table

    Absolute Tempe- Specific Specific Steam Enthalpy Enthalpy Evapo-

    pressure rature volume of steam density of of ration boiling water volume water steam heat p ts h h r bar C m3/kg m3/kg kg/m3 kJ/kg kJ/kg kJ/kg

    0.010 6.98 0.0010001 129.200000 0.00774 29.34 2514.4 2485.0 0.015 13.04 0.0010006 87.980000 0.01137 54.71 2525.5 2470.7 0.020 17.51 0.0010012 67.010000 0.01492 73.46 2533.6 2460.2 0.025 21.10 0.0010020 54.260000 0.01843 88.45 2540.2 2451.7 0.030 24.10 0.0010027 45.670000 0.02190 101.00 2545.6 2444.6 0.035 26.69 0.0010033 39.480000 0.02533 111.85 2550.4 2438.5

    0.040 28.98 0.0010040 34.800000 0.02873 121.41 2554.5 2433.1 0.045 31.04 0.0010046 31.140000 0.03211 129.99 2558.2 2428.2 0.050 32.90 0.0010052 28.190000 0.03547 137.77 2561.6 2423.8 0.055 34.61 0.0010058 25.770000 0.03880 144.91 2564.7 2419.8 0.060 36.18 0.0010064 23.740000 0.04212 151.50 2567.5 2416.0 0.065 37.65 0.0010069 22.020000 0.04542 157.64 2570.2 2412.500 0.070 39.03 0.0010074 20.530000 0.04871 163.38 2572.6 2409.2 0.075 40.32 0.0010079 19.240000 0.05198 168.77 2574.9 2406.2 0.080 41.53 0.0010084 18.100000 0.05523 173.86 2577.1 2403.2

    0.085 42.69 0.0010089 17.100000 0.05848 178.69 2579.2 2400.5 0.090 43.79 0.0010094 16.200000 0.06171 183.28 2581.1 2397.9 0.095 44.83 0.0010098 15.400000 0.06493 187.65 2583.0 2395.3

    0.100 45.83 0.0010102 14.670000 0.06814 191.83 2584.8 2392.9 0.150 54.00 0.0010140 10.020000 0.09977 225.97 2599.2 2373.2 0.200 60.09 0.0010172 7.650000 0.13070 251.45 2609.9 2358.4 0.250 64.99 0.0010199 6.204000 0.16120 271.99 2618.3 2346.4 0.300 69.12 0.0010223 5.229000 0.19120 289.30 2625.4 2336.1 0.400 75.89 0.0010265 3.993000 0.25040 317.65 2636.9 2319.200

    0.450 78.74 0.0010284 3.576000 0.27960 329.64 2641.7 2312.0 0.500 81.35 0.0010301 3.240000 0.30860 340.56 2646.0 2305.4 0.550 83.74 0.0010317 2.964000 0.33740 350.61 2649.9 2299.3 0.600 85.95 0.0010333 2.732000 0.36610 359.93 2653.6 2293.6 0.650 88.02 0.0010347 2.535000 0.39450 368.62 2656.9 2288.3 0.700 89.96 0.0010361 2.365000 0.42290 376.77 2660.1 2283.300 0.750 91.79 0.0010375 2.217000 0.45110 384.45 2663.0 2278.6 0.800 93.51 0.0010387 2.087000 0.47920 391.72 2665.8 2274.0 0.850 95.15 0.0010400 1.972000 0.50710 398.63 2668.4 2269.8 0.900 96.71 0.0010412 1.869000 0.53500 405.21 2670.9 2265.6

    0.950 98.20 0.0010423 1.777000 0.56270 411.49 2673.2 2261.7 1.000 99.63 0.0010434 1.694000 0.59040 417.51 2675.4 2257.90Fig. 44

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    65/221

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    66/221

    GESTRA Guide 71

    Fig. 44

    29000, 231.97 0.0012126 0.068930 14.51000 999.53 2802.2 1802.6

    30000, 233.84 0.0012163 0.066630 15.01000 1008.40 2802.3 1793.932000, 237.45 0.0012237 0.062440 16.02000 1025.40 2802.3 1776.934000, 240.88 0.0012310 0.058730 17.03000 1041.80 2802.1 1760.336000, 244.16 0.0012381 0.055410 18.05000 1057.60 2801.7 1744.238000, 247.31 0.0012451 0.052440 19.07000 1072.70 2801.1 1728.4

    40000, 250.33 0.0012521 0.049750 20.10000 1087.40 2800.3 1712.942000, 253.24 0.0012589 0.047310 21.14000 1101.60 2799.4 1697.844000, 256.05 0.0012657 0.045080 22.18000 1115.40 2798.3 1682.946000, 258.75 0.0012725 0.043040 23.24000 1128.80 2797.0 1668.348000, 261.37 0.0012792 0.041160 24.29000 1141.80 2795.7 1653.9

    50000, 263.91 0.0012858 0.039430 25.36000 1154.50 2794.2 1639.7

    55000, 269.93 0.0013023 0.035630 28.07000 1184.90 2789.9 1605.060000, 275.55 0.0013187 0.032440 30.83000 1213.70 2785.0 1571.365000, 280.82 0.0013350 0.029720 33.65000 1241.10 2779.5 1538.470000, 285.79 0.0013513 0.027370 36.53000 1267.40 2773.5 1506.075000, 290.50 0.0013677 0.025330 39.48000 1292.70 2766.9 1474.280000, 294.97 0.0013842 0.023530 42.51000 1317.10 2759.9 1442.8

    85000, 299.23 0.0014009 0.021930 56.61000 1340.70 2752.5 1411.790000, 303.31 0.0014179 0.020500 48.79000 1363.70 2744.6 1380.9

    95000, 307.21 0.0014351 0.019210 52.06000 1386.10 2736.4 1350.2100000, 310.96 0.0014526 0.018040 55.43000 1408.00 2727.7 1319.7110000, 318.05 0.0014887 0.016010 62.48000 1450.60 2709.3 1258.7120000, 324.65 0.0015268 0.014280 70.01000 1491.80 2689.2 1197.40130000, 330.83 0.0015672 0.012800 78.14000 1532.00 2667.0 1135.0140000, 336.64 0.0016106 0.011500 86.99000 1571.60 2642.4 1070.7150000. 342.13 0.0016579 0.010340 96.71000 1611.00 2615.0 1004.0160000, 347.33 0.0017103 0.009308 107.40000 1650.50 2584.9 934.3170000, 352.26 0.0017696 0.008371 119.50000 1691.70 2551.6 859.9180000, 356.96 0.0018399 0.007489 133.40000 1734.80 2513.9 779.1

    00190000, 361.43 0.0019260 0.006678 149.80000 1778.70 2470.6 692.0200000, 365.70 0.0020370 0.005877 170.20000 1826.50 2418.4 591.9220000, 373.69 0.0026714 0.003728 268.30000 2011.10 2195.6 184.5221.200 374.15 0.0031700 0.003170 315.50000 2107.40 2107.4 00,

    Absolute Tempe- Specific Specific Steam Enthalpy Enthalpy Evapo-pressure rature volume of steam density of of ration boiling water volume water steam heat p ts h h r bar C m3/kg m3/kg kg/m3 kJ/kg kJ/kg kJ/kg

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    67/221

    GESTRA Guide 7372 3 Properties of Substances

    3.6.2 Specific enthalpy of superheated steam

    Pressure Specific enthalpy in kJ/kg for a steam temperature in C Specific enthalpy in kJ/kg for a steam temperature in C Pressure p p bar 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 bar

    1 2875.4 2915.0 2954.6 2994.4 3034.4 3074.5 3114.8 3155.3 3196.0 3237.0 3278.2 3319.7 3361.4 3403.4 3445.6 3488.1 1 2 2870.5 2910.8 2951.1 2991.4 3031.7 3072.1 3112.6 3153.3 3194.2 3235.4 3276.7 3318.3 3360.1 3402.1 3444.5 3487.0 2 3 2865.5 2906.6 2947.5 2988.2 3028.9 3069.7 3110.5 3151.4 3192.4 3233.7 3275.2 3316.8 3358.8 3400.9 3443.3 3486.0 3 4 2860.4 2902.3 2943.9 2985.1 3026.2 3067.2 3108.3 3149.4 3190.6 3232.1 3273.6 3315.4 3557.4 3399.7 3442.1 3484.9 4 5 2855.1 2898.0 2940.1 2981.9 3023.4 3064.8 3106.1 3147.4 3188.8 3230.4 3272.1 3314.0 3356.1 3398.4 3441.0 3483.8 5 6 2849.7 2893.5 2936.4 2978.7 3020.6 3062.3 3103,9 3145.4 3187.0 3228.7 3270.6 3312.6 3354.8 3397.2 3439.8 3482.7 6

    7 2844.2 2888.9 2932.5 2975.4 3017.7 3059.8 3101.6 3143.4 3185.2 3227.1 3269.0 3311.2 3353.4 3395.9 3439.6 3481.6 7 8 2838.6 2884.2 2928.6 2972.1 3014.9 3057.3 3099.4 3141.4 3183.4 3225.4 3267.5 3309.7 3352.1 3394.7 3437.5 3480.5 8 9 2832.7 2879.5 2924.6 2968.7 3012.0 3054.7 3097.1 3139.4 3181.6 3223.7 3266.0 3308.3 3350.8 3393.5 3436.3 3479.4 9 10 2826.8 2874.6 2920.6 2965.2 3009.0 3052.1 3094.9 3137.4 3179.7 3222.0 3264.4 3306.9 3349.5 3392.2 3435.1 3478.3 10 11 2820.7 2869.6 2916.4 2961.8 3006.0 3049.6 3092.6 3135.3 3177.9 3220.3 3262.9 3305.4 3348.1 3391.0 3434.0 3477.2 11 12 2814.4 2864.5 2912.2 2958.2 3003.0 3046.9 3090.3 3133.2 3176.0 3218.7 3261.3 3304.0 3346.8 3389.7 3432.8 3476.1 12

    13 2808.0 2859.3 2908.0 2954.7 3000.0 3044.3 3088.0 3131.2 3174.1 3217.0 3259.2 3302.5 3345.4 3388.5 3431.6 3475.0 13 14 2801.4 2854.0 2903.6 2951.0 2996.9 3041.6 3085.6 3129.1 3172.3 3215.3 3258.2 3301.1 3344.1 3387.2 3430.5 3473.9 14 15 2794.7 2848.6 2899.2 2947.3 2993.7 3038.9 3083.3 3127.0 3170.4 3213.5 3256.6 3299.7 3342.8 3386.0 3429.3 3472.8 15 16 0 2843.1 2894.7 2943.6 2990.6 3036.2 3080.9 3124.9 3168.5 3211.8 3255.0 3298.2 3341.4 3384.7 3428.1 3471.7 16 18 0 2831.7 2885.4 2935.9 2984.1 3030.7 3076.1 3120.6 3164.7 3208.4 3251.9 3295.3 3338.7 3382.2 3425.8 3469.5 18 20 0 2819.9 2875.9 2928.1 2977.5 3025.0 3071.2 3116.3 3160.8 3204.9 3248.7 3292.4 3336.0 3379.7 3423.4 3467.3 20 0

    22 0 2807.5 2866.0 2920.0 2970.8 3019.3 3066.2 3112.0 3156.9 3201.4 3245.5 3289.4 3333.3 3377.1 3421.1 3465.1 22 24 0 0 2855.7 2911.6 2963.8 3013.4 3061.1 3107.5 3153.0 3197.8 3242.3 3386.5 3330.6 3374.6 3418.7 3462.9 24 26 0 0 2845.2 2903.0 2956.7 3007.4 3056.0 3103.0 3149.0 3194.3 3239.0 3283.5 3327.8 3372.1 3416.3 3460.6 26 28 0 0 2834.2 2894.2 2949.5 3001.3 3050.8 3098.5 3145.0 3190.7 3235.8 3280.5 3325.1 3369.5 3413.9 3458.4 28 30 0 0 2822.9 2885.1 2942.0 2995.1 3045.4 3093.9 3140.9 3187.0 3232.5 3277.5 3322.3 3367.0 3411.6 3456.2 30 32 0 0 2811.2 2875.8 2934.4 2988.7 3040.0 3089.2 3136.8 3183.4 3229.2 3274.5 3319.5 3364.4 3409.2 3454.0 32 0

    34 0 0 0 2866.2 2926.6 2982.2 3034.5 3084.4 3132.7 3179.7 3225.9 3271.5 3316.8 3361.8 3406.8 3451.7 34 36 0 0 0 2856.3 2918.6 2975.6 3028.9 3079.6 3128.4 3175.9 3222.5 3268.4 3314.0 3359.2 3404.4 3449.5 36 38 0 0 0 2846.1 2910.4 2968.9 3023.3 3074.8 3124.2 3172.2 3219.1 3265.4 3311.2 3356.6 3402.0 3447.2 38 40 0 0 0 2835.6 2902.0 2962.0 3017.5 3069.8 3119.9 3168.4 3215.7 3262.3 3308.3 3354.0 3399.6 3445.0 40 42 0 0 0 2824.8 2893.5 2955.0 3011.6 3064.8 3115.5 3164.5 3212.3 3259.2 3305.5 3351.4 3397.7 3442.7 42 44 0 0 0 2813.6 2884.7 2947.8 3005.7 3059.7 3111.1 3160.6 3208.8 3256.0 3302.6 3348.8 3394.7 3440.5 44

    46 0 0 0 2802.0 2875.6 2940.5 2999.6 3054.6 3106.7 3156.7 3205.3 3252.9 3299.8 3346.2 3392.3 3438.2 46 48 0 0 0 0 2866.4 2933.1 2993.4 3049.4 3102.2 3152.8 3201.8 3249.7 3296.9 3343.5 3389.8 3435.9 48 50 0 0 0 0 2856.9 2925.5 2987.2 3044.1 3097.6 3148.8 3198.3 3246.6 3294.0 3340.9 3387.4 3433.7 50 55 0 0 0 0 2831.8 2905.7 2971.0 3030.5 3085.9 3138.6 3189.3 3238.5 3286.7 3334.2 3381.2 3427.9 55 60 0 0 0 0 2804.9 2885.0 2954.2 3016.5 3074.0 3128.3 3180.1 3230.3 3279.3 3327.4 3375.0 3422.2 60

    70 0 0 0 0 0 2839.4 2918.3 2987.0 3049.1 3106.7 3161.2 3213.5 3264.2 3313.7 3362.4 3410.6 70 080 0 0 0 0 0 2786.8 2878.7 2955.3 3022.7 3084.2 3141.6 3196.2 3248.7 3299.7 3349.6 3398.8 80

    90 0 0 0 0 0 0 2834.3 2920.9 2994.8 3060.5 3121.2 3178.2 3232.7 3285.3 3336.5 3386.8 90 100 0 0 0 0 0 0 2783.5 2883.4 2964.8 3035.7 3099.9 3159.7 3216.2 3270.5 3323.2 3374.6 100 110 0 0 0 0 0 0 2723.5 2841.7 2932.8 3009.6 3077.8 3140.5 3199.4 3255.5 3309.6 3362.2 110 120 0 0 0 0 0 0 0 2794.7 2898.1 2982.0 3054.8 3120.7 3182.0 3240.0 3295.7 3349.6

    130 0 0 0 0 0 0 0 2740.6 2860.2 2952.7 3030.7 3100.2 3164.1 3224.2 3281.6 3336.8 130

    140 0 0 0 0 0 0 0 2675.7 2818.1 2921.4 3005.6 3079.0 3145.8 3208.1 3267.1 3323.8 140 150 0 0 0 0 0 0 0 0 2770.8 2887.7 2979.1 3057.0 3126.9 3191.5 3252.4 3310.6 150 160 0 0 0 0 0 0 0 0 2716.5 2851.1 2951.3 3034.2 3107.5 3174.5 3237.4 3297.1 160 180 0 0 0 0 0 0 0 0 2569.1 2766.6 2890.3 2985.8 3066.9 3139.4 3206.5 3269.6 180 200 0 0 0 0 0 0 0 0 0 2660.2 2820.5 2932.9 3023.7 3102.7 3174.4 3241.1 200 250 0 0 0 0 0 0 0 0 0 0 2582.0 2774.1 2901.7 3002.3 3088.5 3165.9 250

    Fig. 45

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    68/221

    GESTRA Guide 7574 3 Properties of Substances

    3.6.3 Specific volume of superheated steam

    Pressure Specific volume in m3/kg for a steam temperature in C Specific volume in m3/kg for a steam temperature in C Pressure p p bar 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 bar

    1 2.1720 2.26600 2.35900 2.45300 2.54600 2.63900 2.73200 2.82400 2.917000 3.010000 3.102000 3.195000 3.288000 3.380000 3.47300 3.56500 1 2 1.0804 1.12800 1.17530 1.22240 1.26930 1.31620 1.36290 1.40950 1.456100 1.502700 1.549200 1.595600 1.642100 1.688500 1.73490 1.78120 2 3 0.7164 0.74860 0.78050 0.81230 0.84380 0.87530 0.90660 0.93790 0.969100 1.000300 1.031400 1.062500 1.093500 1.124500 1.15560 1.18650 3 4 0.5343 0.55890 0.58310 0.60720 0.63110 0.65490 0.67850 0.70210 0.725600 0.749100 0.772500 0.795900 0.819200 0.842600 0.86590 0.88920 4 5 0.4250 0.44500 0.46470 0.48410 0.50340 0.52260 0.54160 0.56060 0.579500 0.598400 0.617200 0.635900 0.654700 0.673400 0.69210 0.71080 5 6 0.3520 0.36900 0.38570 0.40210 0.41830 0.43440 0.45040 0.46630 0.482100 0.497900 0.513600 0.529300 0.545000 0.560600 0.57620 0.59180 60 7 0.2929 0.31470 0.32920 0.34350 0.35750 0.37140 0.38520 0.39890 0.412500 0.426100 0.439600 0.453100 0.466600 0.480100 0.49350 0.50690 7 8 0.2608 0.27400 0.28690 0.19950 0.31190 0.32410 0.33630 0.34830 0.360300 0.372300 0.384200 0.396000 0.407800 0.419600 0.43140 0.44320 8 9 0.2303 0.24230 0.25390 0.26530 0.27640 0.28740 0.29830 0.30900 0.319700 0.330400 0.341000 0.351600 0.362100 0.372600 0.38310 0.39360 9 10 0.2059 0.21690 0.22760 0.23790 0.24800 0.25800 0.26780 0.27760 0.287300 0.296900 0.306500 0.316000 0.325600 0.335000 0.34450 0.35400 10 11 0.1859 0.19610 0.20600 0.21550 0.22480 0.23390 0.24290 0.25180 0.260700 0.269500 0.278200 0.287000 0.295600 0.304300 0.31290 0.32150 11 12 0.1692 0.17880 0.18790 0.19680 0.20540 0.21390 0.22220 0.23040 0.238600 0.246700 0.254700 0.262700 0.270700 0.278700 0.28660 0.29450 1200000 13 0.1551 0.16410 0.17270 0.18100 0.18900 0.19690 0.20460 0.21230 0.219800 0.227300 0.234800 0.242200 0.249600 0.257000 0.26430 0.27160 13 14 0.1429 0.15150 0.15960 0.16740 0.17490 0.18230 0.18960 0.19670 0.203800 0.210800 0.217700 0.224600 0.231500 0.238400 0.24520 0.25200 14 15 0.1324 0.14060 0.14830 0.15560 0.16280 0.16970 0.17650 0.18320 0.189800 0.196400 0.202900 0.209400 0.215800 0.222300 0.22870 0.23500 15 16 0 0.13100 0.13830 0.14530 0.15210 0.15870 0.16510 0.17140 0.177700 0.183800 0.190000 0.196100 0.202100 0.208200 0.21420 0.22020 160 18 0 0.11500 0.12170 0.12820 0.13430 0.14020 0.14600 0.15170 0.157300 0.162900 0.168400 0.173800 0.179300 0.18470v 0.19000 0.19540 18 20 0 0.10210 0.10840 0.11440 0.12000 0.12550 0.13080 0.13600 0.141100 0.146100 0.151100 0.156100 0.161000 0.165900 0.17070 0.17560 20 0

    22 0 0.09152 0.09752 0.10309 0.10837 0.11343 0.11833 0.12311 0.127800 0.132430 0.137000 0.141520 0.146020 0.150480 0.15492 0.15934 22 24 0 0 0.08839 0.09367 0.09863 0.10336 0.10793 0.11237 0.116720 0.121000 0.125220 0.129400 0.133550 0.137660 0.14175 0.14582 24 26 0 0 0.08064 0.08567 0.09037 0.09483 0.09912 0.10328 0.107340 0.111330 0.115260 0.119140 0.122990 0.126810 0.13061 0.13438 26 28 0 0 0.07397 0.07880 0.08328 0.08751 0.09156 0.09548 0.099290 0.103030 0.106710 0.110350 0.113950 0.117520 0.12106 0.12458 28 30 0 0 0.06816 0.07283 0.07712 0.08116 0.08500 0.08871 0.092320 0.095840 0.099310 0.102730 0.106110 0.109460 0.11278 0.11608 30 32 0 0 0.06305 0.06759 0.07173 0.07559 0.07926 0.08279 0.086210 0.089550 0.092830 0.096060 0.099250 0.102410 0.10554 0.10865 32

    34 0 0 0 0.06295 0.06695 0.07068 0.07419 0.07756 0.080820 0.084000 0.087110 0.090170 0.093190 0.096180 0.09915 0.10209 34 36 0 0 0 0.05880 0.06270 0.06630 0.06968 0.07291 0.076030 0.079060 0.082020 0.084940 0.087810 0.090650 0.09347 0.09626 36 38 0 0 0 0.05508 0.05888 0.06237 0.06564 0.06875 0.071740 0.074640 0.077470 0.080250 0.083000 0.085700 0.08838 0.09104 38 40 0 0 0 0.05172 0.05544 0.05883 0.06200 0.06499 0.067870 0.070660 0.073380 0.076040 0.078660 0.081250 0.08381 0.08634 40 42 0 0 0 0.04865 0.05231 0.05562 0.05870 0.06160 0.064370 0.067060 0.069670 0.072220 0.074740 0.077220 0.07967 0.08209 42 44 0 0 0 0.04585 0.04946 0.05270 0.05569 0.05850 0.061190 0.063780 0.066300 0.068760 0.071170 0.073550 0.07590 0.07823 44

    46 0 0 0 0.04328 0.04685 0.05003 0.05294 0.05568 0.058280 0.060790 0.063210 0.065590 0.067910 0.070200 0.07247 0.07470 46 48 0 0 0 0 0.04444 0.04757 0.05042 0.05309 0.055610 0.056040 0.060390 0.062680 0.064930 0.067140 0.06931 0.07147 48 50 0 0 0 0 0.04222 0.04530 0.04810 0.05070 0.053160 0.055510 0.057790 0.060010 0.062180 0.064310 0.06642 0.06849 50 55 0 0 0 0 0.03733 0.04034 0.04302 0.04549 0.047800 0.050010 0.052130 0.054190 0.056200 0.058170 0.06011 0.06202 55 60 0 0 0 0 0.03317 0.03614 0.03874 0.04111 0.043300 0.045390 0.047380 0.049310 0.051180 0.053020 0.05482 0.05659 60

    70 0 0 0 0 0 0.02946 0.03198 0.03420 0.036230 0.038120 0.039920 0.041650 0.043310 0.044940 0.04653 0.04809 70 0 0 080 0 0 0 0 0 0.02426 0.02681 0.02896 0.030880 0.032650 0.034310 0.035890 0.037400 0.038870 0.04030 0.04170 80

    90 0 0 0 0 0 0 0.02269 0.02484 0.026690 0.028370 0.029930 0.031400 0.032800 0.034150 0.03546 0.03674 90 100 0 0 0 0 0 0 0.01926 0.02147 0.023310 0.024930 0.026410 0.027790 0.029110 0.030360 0.03158 0.03276 100 110 0 0 0 0 0 0 0.01628 0.01864 0.020490 0.022080 0.023510 0.024830 0.026080 0.027260 0.02840 0.02950 110 120 0 0 0 0 0 0 0 0.01619 0.018110 0.019690 0.021080 0.022360 0.023550 0.024670 0.02575 0.02679

    130 0 0 0 0 0 0 0 0.01401 0.016040 0.017640 0.019020 0.020250 0.021400 0.022470 0.02350 0.02440 130

    140 0 0 0 0 0 0 0 0.01200 0.014210 0.015860 0.017230 0.018440 0.019550 0.020590 0.02157 0.02251 140 150 0 0 0 0 0 0 0 0 0.012560 0.014280 0.015660 0.016860 0.017940 0.018950 0.01989 0.02080 150 160 0 0 0 0 0 0 0 0 0.011040 0.012870 0.014270 0.015460 0.016530 0.017510 0.01842 0.01929 160 180 0 0 0 0 0 0 0 0 0.008104 0.010400 0.011910 0.013110 0.014160 0.015100 0.01597 0.01678 180 200 0 0 0 0 0 0 0 0 0 0.008246 0.009947 0.011200 0.012240 0.013150 0.01399 0.01477 200 250 0 0 0 0 0 0 0 0 0 0 0.006014 0.007580 0.008696 0.009609 0.01041 0.01113 250

    Fig. 46

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    69/221

    76 3 Properties of Substances

    3.6.4 h,s diagram for steam according to Mollier

    Fig. 47 h,s diagram (Mollier diagram)

    Source: University of Applied Sciences, Zittau/Grlitz

    Enthalpy differences hcan be con-

    verted to flow velocities w by usingthe equation

    This yields the numerical value equa-tions:

    with hin kJ/kg, win m/s

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    70/221

    GESTRA Wegweiser 77

    Page

    4 Connection Examples for Heating and Cooling Systems

    4.1 Fundamentals 79

    4.1.1 Symbols for thermal power plants 79

    4.1.2 International symbols and abbreviations 84

    4.2 Connection Examples for Steam and Condensate Systems 85

    4.2.1 Steam trapping 85

    4.2.1.1 Steam headers 85

    4.2.1.2 Steam-line drainage 87

    4.2.1.3 Condensate collecting stations 89

    4.2.1.4 Flash vessels 92

    4.2.1.5 Group or individual trapping 93

    4.2.1.6 Start-up drainage 95

    4.2.1.7 Monitoring of heating surfaces and steam traps 97

    4.2.1.8 Protection against soiling 98

    4.2.1.9 Frost resistance 99

    4.2.2 Using the sensible heat of the condensate 99

    4.2.3 Air-venting of steam users 102

    4.2.4 Measures against waterhammer 104

    4.3 Connection Examples for Heating Systems using 108 Liquid Heating Media

    4.3.1 General 108

    4.3.2 Return-temperature control valves (type Kalorimat) 108

    4.3.3 Examples for applications of Kalorimat valves 109

    4.4 Connection Examples for Cooling Systems using 112

    Cooling Water or Brine

    4.4.1 General 1124.4.2 Cooling water control valves CW 114

    4.4.3 Self-acting temperature controllers (type Clorius) 115

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    71/221

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    72/221

    80 4 Connection Examples

    Fig. 49 Valves

    Shut-off valve, Valve Gate valve Cockgeneral

    Two-way valve Angle valve Three-way valve Pressure-reducing valve

    Valve with continuous Valve with Spring-loaded Counterweightedcontrol response safety function safety valve safety valve

    Check valve Swing check valve Butterfly valve Butterfly valve withcontinuous control

    response

    Shut-off valve, Shut-off valve, Shut-off valve, Shut-off valve,manually operated motorized solenoid-operated piston-operated

    Shut-off valve, Shut-off valve, Shut-off valve, Shut-off valve,diaphragm-operated fluid-operated pneumatic hydraulic

    Steam trap Steam trap Shut-off valve, Shut-off valve,

    closed open

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    73/221

    GESTRA Guide 81

    Fig. 50 Boilers, heat exchangers and equipment

    Heat exchanger Oil-fired boiler Feedwater Feedwater

    with crossflow for heating water preheater preheater(flowing steam) (condensing steam)

    Condensate cooler Heat exchanger, Oil cooler Air preheater(water-cooled) uniflow or counterflow (water-cooled) (heated by flue gas)

    Water preheater Steam condenser, Condenser Condenser

    (heated by exhaust gas) general with air cooling with water recooling

    Heat exchanger Desuperheater Injection condenser Mixer preheater,

    (mixing of the media) with water injection deaerator

    Steam boiler Steam converter Steam converter Steam converter(heated by steam) (heated by hot water)

    Steam boiler Gas-fired Steam user Steam user

    with superheater steam boiler without heating surface with heating surfacewith superheater

    Separator, Rotating separator Separator with Flash vessel

    general heat exchange

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    74/221

    82 4 Connection Examples

    Fig. 51 Vessels

    Open tank

    Vessel, general Vessel with dished end Vessel with coils

    Vessel with - and with Vessel with Steam accumulatortrickle deaeration steam feed spray tube deaeration

    Fig. 52 Machines

    Steam turbine Gas turbine Piston steam engine Diesel engine,

    petrol engine

    Electric motor, AC motor DC motor Rotating electric generator,general general

    AC generator DC generator Liquid pump, Centrifugal pump

    general

    Reciprocating pump Jet fluid pump Compressor, general Piston compressor,(vacuum pump) vacuum pump

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    75/221

  • 7/26/2019 Pro 818600 01 Gestra-guide En

    76/221

    84 4 Connection Examples

    4.1.2 International symbols and abbreviations

    These symbols and abbreviations make it possible to produce simple and clear plans forthe instrumentation of a plant by omitting the technical details of the equipment used. Allimportant details are compiled in separate documents, e.g. in the tender documents, in thetechnical specification or in detailed engineering drawings.

    Fig. 54 Partial overview, based on ANSI/ISA-5.1 (see also DIN 19227-17-2)

    Fig. 55 Example for application of the multi-letter symbols

    Letters used in multi-letter symbols as first letter as successive letters

    C Conductivity (QL) A Alarm D Density C Control F Flowrate, quantity D Difference H Hand (manual oper.) G Gauge (sightglass) L Level I Indicating M Moisture R Recording P Pressure S Switching S