24
Национальный исследовательский ядерный университет «МИФИ» На правах рукописи Булгадарян Даниэль Грантович Рассеяние протонов кэвных энергий как инструмент анализа тонких слоев на поверхности материалов ТЯР 01.04.08 – Физика плазмы АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2020

Рассеяние протонов кэвных энергий как инструмент анализа

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview




01.04.08 –
-
«»
- , , ­
:
- , , « » ­ «»
- , , ­ « ­ » c
- , -10 « ­ »
«18» 2020 . 15:00 .01.04 « «» (115409, . , , 31).
http://ds.mephi.ru ­ ­ « «».
« » 2020 .
, , .
, - ..
, ,

, ­
, , . ,

, ,

. ­
­
, ,
. ­
— ,

­
.
, ­
ex situ, ,
.
in
situ ,
.

­

­

,
3
:
1.
,
, ­

.
» ­
.
3. , ­


.

.
.

­
,
.
2. ­

,
.
­
.
4. ­
­
­
, .


, ­
­
.
, ­

, , ,
.
1.
5–25
.
2.
­
,
.
3.
.
4.

.
,
.

,
­
.
­
.
­
:
2020)
» (, 2018)
, 2018)
5. 5th International Symposium on Liquid metals Applications for Fusion
(, 2017)
, 2017)
8. VII «
» (, 2017)
2017)
6
10. 7th International Workshop & Summer School on Plasma Physics (,
, 2016)
.4241.9.17.1007 ­
- ( — ­
«»)
17-12-01575 « in situ
».
9 ,
6 [1]—[6], 3
[7]–[9]. 2655666 « ­

()» [10].

.
,
. ­
.
.

. 116 , 65 .
149 .
,
7
.

() (). ­
,
,
in situ .
­
LEIS c
,
, ­
,
.
SCATTER [11] ,
1–35 c ­
, .
, c
0 = 5 . . . 25 = 30 . . . 60 ­

c
.
2.1 ,
(. 1) ­
, .
.
2.2
(. 2), ­

.
, 0
.
8
.
1 0
2 0
3 0
4 0
si g
n al
1 2 n m
1 5 n m
1 8 n m
. 1: 0 = 5 , , = 60
0 5 1 0 0
2 0 0
4 0 0
6 0 0
1 n m
2 n m
3 n m
4 n m
5 n m
6 n m
7 n m
8 n m
. 2: 0 = 10 , , = 60
9
in situ
.
3.1 « -­
»,
.
3.2 ­
, .
,
,
Au Si - ­
[12]—[14].
Xe+ (IBSD).
,
, ­
c .
­

c , ­
(. 3, . 4).
(FWHM) Xe+ . 3

Xe [15] Au ­
,
[16].
. ,
(0 = 25 , = 38)
∼ 7 , —∼ 40 , c
±0,8 .
10
0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 0 0
1
2
3
4
5
6
7
)
X e + f l u e n c e ( a . u . )
0 1 2 3 4 5 6 7
Au lay
nm )
. 3: FWHM Au IBSD . , (7 ). Au, FWHM
0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 0
8





. 4: IBSD Si Xe+. ­ 40 , . Si,
11
c
.
­
[17], [18],
[19]. ­
430 ,
, ­
, (
, Inficon)
(20× 10× 0,3 ) 1 .
­


.
,
,

. . 5
, .
10 ­
(0 = 25 , = 38)
55 ,
.

. , , ,
, ±2,5 .
, c ­
, ­
-,
,
, , .
12

: 2 Li + 2 H2O −−→ 2 LiOH + H2,
[20]. ,
, ­

.
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5
8








. 5: , ,
3.4
— ,

, [21], [22]
( ∼ 1020 − 1021 −2, ∼ 1000 − 2000 ∼ 20 − 200 ).
­
, ,
[23].
, ­
13
(. 6), .
, ­
: ,
. ,
, —
.
,
. ­
c Ar+
. -
Ar+

∼ 1/94. , ­

c , , ­

in vacuo.
0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 0
0 , 0
0 , 2
0 , 4
0 , 6
0 , 8
1 , 0
W w i t h o u t f u z z
1 3 k e V
1 7 k e V
2 2 k e V
2 4 k e V
2
1
. 6: , , . 1 — , 2 —
14
­
c
­
-2 , .
4.1
. . 7.
­

,
.
,
. ­

- .
. 7:
15
, , , -
,
. , ,
. ­
, ,
­
- . 3
8 ­
,
.
­
c ,
JET. , ­
.
4.2 ­

-2. 40 × 300 × 250 ,
, ­
, «» .
-2 0,15
.

LaB6. .
5 , ­

= 6,7 . = 20,

.
-
25-10,
. -
16
.
∼ 500, ­
— 150 ,
∼ 1 .

-2. ­
,
1 0,1 .
, ­
.
­
, . 8.
0 1 2 3 4 0 , 0
0 , 5
1 , 0
A u + C A u
. 8: c 0 = 4,5 , ­
, ­
c
.
:
/ .
2. , ­
­

,
, ­
. , ­
c
,
— c
.
.
in situ
, . ­
(0 = 25 , = 38, 0,01)
:
∼ 7 ≤ 0,5 ;
. ­
­
∼ 40 ± 0,8 ;
±2,5 .
,
c
, .
5. ­
/
c .
6. c
. ­



.
19

[1] D. Bulgadaryan, D. Kolodko, V. Kurnaev D. Sinelnikov, «Facility and
the method for MEIS analysis of layers redeposited in plasma devices,»
Journal of Physics: Conference Series, . 748, 1, . 012 016, . 2016.
doi: 10.1088/1742-6596/748/1/012016.
[2] D. Bulgadaryan, V. Kurnaev, D. Sinelnikov N. Efimov, «On the possibility
of thin layers thickness determination with low energy proton scattering,»
Journal of Physics: Conference Series, . 941, 1, . 012 022, . 2018,
issn: 1742-6588. doi: 10.1088/1742-6596/941/1/012022.
[3] D. Bulgadaryan, D. Sinelnikov, V. Kurnaev, S. Kajita, D. Hwangbo N.
Ohno, «Proton scattering from tungsten fuzz,» Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials
and Atoms, . 434, . 9—12, 1 . 2018, issn: 0168-583X. doi: 10.1016/
j.nimb.2018.07.038.
[4] D. Bulgadaryan, D. Sinelnikov, V. Kurnaev, N. Efimov, P. Borisyuk
Y. Lebedinskii, «Application of keV-energy proton scattering for thin film
analysis,» Nuclear Instruments and Methods in Physics Research Section
B: Beam Interactions with Materials and Atoms, . 438, . 54—57, January
2019 2019, issn: 0168583X. doi: 10.1016/j.nimb.2018.10.043.
[5] D. G. Bulgadaryan, D. N. Sinelnikov, I. A. Sorokin, V. A. Kurnaev,
and N. E. Efimov, “Built-In Surface Analyzer for Plasma Devices with
Magnetic Field”, Phys. Atom. Nuclei, vol. 82, no. 10, pp. 1364–1367,
Dec. 1, 2019, issn: 1562-692X. doi: 10.1134/S1063778819100089.
[6] . . , . . , . . . . ,
«
»,
. , . 84, 6, . 903—907, 2020, issn: 0367-6765.
doi: 10.31857/S036767652006006X.
[7] D. Sinelnikov, D. Bulgadaryan, V. Kurnaev N. Efimov, «Scattering of
hydrogen ion beam from tungsten fuzz,»
., : ­
"", 2017, . 235—238. url: https://elibrary.ru/item.asp?
id=30639646.
[8] D. Bulgadaryan, D. Sinelnikov V. Kurnaev, «MEIS analysis of Li
layers deposition,» 5TH INTERNATIONAL SYMPOSIUM ON LIQUID
METALS APPLICATIONS FOR FUSION book of abstracts and scientific
programme., Moscow: ­
"", 27 . 2017, . 66. url: https://elibrary.ru/item.
asp?id=32559791.
[9] D. Bulgadaryan, D. Sinelnikov, V. Kurnaev, and N. Efimov, “Application
of kev-energy proton scattering for surface analysis”, presented at the 24th
International Conference on Ion-Surface Interactions (ISI-2019), Moscow:
National Research Nuclear University MEPhI, 2019, pp. 174–177. [Online].
Available: https://elibrary.ru/item.asp?id=41169468 (visited on
03/30/2020).
[10] . . , . . . . , « ­

()», . 2 655 666, 29
2018. url: http://new.fips.ru/registers-doc-view/fips_servlet?
21

[11] N. N. Koborov, A. I. Kuzovlev, V. A. Kurnaev, V. S. Remizovich N. N.
Trifonov, «Energy distributions of particles transmitted through free foils at
oblique incidence,» Nuclear Instruments and Methods in Physics Research,
Section B: Beam Interactions with Materials and Atoms, . 129, 1, . 5—10,
1997, issn: 0168583X. url: http://www.scopus.com/inward/record.url?
eid=2-s2.0-0031168115&partnerID=tZOtx3y1.
[12] D. Yamaura T. Ogino, «Fabrication of Si-nanowires controlled by
spontaneously formed nanoholes on annealed Au thin films,» Materials
Science in Semiconductor Processing, . 53, . 28—35, 2016, issn: 13698001.
doi: 10.1016/j.mssp.2016.05.018.
[13] J. H. Kim, D. H. Shin, H. S. Lee, C. W. Jang, J. M. Kim, S. W. Seo,
S. Kim S.-H. Choi, «Enhancement of efficiency in graphene/porous
silicon solar cells by co-doping of graphene with gold nanoparticles and
bis(trifluoromethanesulfonyl)-amide,» J. Mater. Chem. C, . 5, . 9005—
9011, Cvd 2017, issn: 2050-7526. doi: 10.1039/C7TC02686B.
[14] A. Vinod, M. S. Rathore S. R. Nelamarri, «Investigation of electrical
and compositional properties of SiO2/Au/SiO2 for nonvolatile memory
application,» Applied Physics A, . 124, 8, . 548, 2018, issn: 0947-8396.
doi: 10.1007/s00339-018-1961-2.
[15] M. Mateev, T. Lautenschlager, D. Spemann, A. Finzel, J. W. Gerlach, F.
Frost C. Bundesmann, «Systematic investigation of the reactive ion beam
sputter deposition process of SiO2,» The European Physical Journal B, . 91,
2, . 45, 2018, issn: 1434-6028. doi: 10.1140/epjb/e2018-80453-x.
[16] J. Derrien, C. Cohen, A. Cros, J. M. Layet, F. Salvan, F. Abel, J. C. Boulliard,
J. L. Domange M. Sotto, «Au on Si (111): A study of the interface under
UHV conditions and its modifications in air by surface techniques and MeV
ion scattering,» Applied Physics Letters, . 39, 11, . 915—917, 1981, issn:
00036951. doi: 10.1063/1.92605.
confinement devices”, Plasma Phys. Control. Fusion, vol. 61, no. 11,
p. 113 001, Oct. 2019, issn: 0741-3335. doi: 10.1088/1361-6587/ab4156.
[18] L. E. Zakharov, “On a burning plasma low recycling regime with P DT
= 23–26 MW, Q DT = 5–7 in a JET-like tokamak”, Nucl. Fusion,
vol. 59, no. 9, p. 096 008, Jul. 2019, issn: 0029-5515. doi: 10.1088/1741-
4326/ab246b.
[19] L. E. Zakharov, J. P. Allain, S. X. Bennett, M. A. E. Abdelghany, and
D. G. Bulgadaryan, “Low Recycling Divertor for JET Burning Plasma
Regime ($P {mathrm{}}DT}}$ > 25 MW, $Q {mathrm{}}DT}}$ >
5), Insensitive to Plasma Physics”, IEEE Transactions on Plasma Science,
vol. 48, no. 6, pp. 1849–1856, Jun. 2020, issn: 0093-3813, 1939-9375. doi:
10.1109/TPS.2019.2953591.
[20] I. E. Lyublinski, A. V. Vertkov, and V. A. Evtikhin, “Application of
lithium in systems of fusion reactors. 1. Physical and chemical properties
of lithium”, Plasma Devices and Operations, vol. 17, no. 1, pp. 42–72, Mar.
2009, issn: 1051-9998, 1029-4929. doi: 10.1080/10519990802703277.
[21] M. Baldwin R. Doerner, «Formation of helium induced nanostructure
‘fuzz’ on various tungsten grades,» Journal of Nuclear Materials, . 404, 3,
. 165—173, . 2010, issn: 00223115. doi: 10.1016/j.jnucmat.2010.
06.034.
[22] G. Wright, D. Brunner, M. Baldwin, R. Doerner, B. Labombard, B.
Lipschultz, J. Terry D. Whyte, «Tungsten nano-tendril growth in the
Alcator C-Mod divertor,» Nuclear Fusion, . 52, 4, . 042 003, . 2012,
issn: 0029-5515. doi: 10.1088/0029-5515/52/4/042003.
[23] J. Matejcek, V. Weinzettl, M. Vilemova, T. W. Morgan, G. De Temmerman,
M. Dimitrova, J. Cavalier, J. Adamek, J. Seidl A. Jager, «ELM-induced
arcing on tungsten fuzz in the COMPASS divertor region,» Journal of
Nuclear Materials, . 492, . 204—212, . 2017, issn: 00223115. doi: