35
Recent NMR Results in NCKU C. S. Lue ( 呂呂呂 ) Department of Physics, National Cheng Kung University ( 呂呂呂呂呂呂呂呂呂 )

Recent NMR Results in NCKU

  • Upload
    grazia

  • View
    45

  • Download
    0

Embed Size (px)

DESCRIPTION

Recent NMR Results in NCKU. C. S. Lue ( 呂欽山 ) Department of Physics, National Cheng Kung University ( 國立成功大學物理系 ). Outline:. I: Fundamental NMR principles: (i) NMR frequency shifts (ii) Quadrupole interactions (ii) Spin-lattice relaxation rates II: Studied systems: - PowerPoint PPT Presentation

Citation preview

Page 1: Recent NMR Results in NCKU

Recent NMR Results in NCKU

C. S. Lue (呂欽山 )

Department of Physics,

National Cheng Kung University

(國立成功大學物理系 )

Page 2: Recent NMR Results in NCKU

Outline:

I: Fundamental NMR principles:

(i) NMR frequency shifts

(ii) Quadrupole interactions

(ii) Spin-lattice relaxation rates

II: Studied systems:

(i) 27Al NMR study of electronic structure of Al3M

(ii) 51V NMR study of spin gap nature of BaCu2V2O8

(iii) 51V NMR study of pseudogap characteristics of Fe2VAl

Page 3: Recent NMR Results in NCKU

Bulk Properties: collective response of the system to an external perturbation

• Electronic property: = E/J• Magnetic property: = M/H• Thermal property: C = U/T• Optical property:

Page 4: Recent NMR Results in NCKU

Merits of NMR: local probe of electronic and magnetic features

• Site selected • Impurity phase isolated• Sensitive to the excitation near the Fermi-level

Page 5: Recent NMR Results in NCKU

Central transition 71Ga NMR line shape in NbGa3

91.6 91.7 91.8 91.9

71G

a NM

R sig

nals

Frequency (MHz)

Ga-II

Ga-I

D022 crystal structure

Page 6: Recent NMR Results in NCKU

Simple resonance theory:

Zeeman energy: E = oh = nHo

Nuclear spin I: 2I +1 energy states

For I = 3/2,

(MHz)

H = 0 H = Ho

Page 7: Recent NMR Results in NCKU

NMR in Solids:

3 3

8( )

32

( )[ ] ]

3[m B n s r

r r s s l

r rH I

(i) Magnetic hyperfine interactions: couplings between nuclear magnetic moment n and electronic magnetic moment e

Fermi-contact dipolar orbitals-like e- non-s-character e-

Ks Kan Korb

Page 8: Recent NMR Results in NCKU

NMR frequency shifts:

0

0 00 (1 )

HK K

H

Site-IoNMR

signal

Site-II

(MHz)

Site-I

Site-II

Page 9: Recent NMR Results in NCKU

NMR Shift & Magnetic susceptibility

(a) Simple metals: (s-electrons)

(b) d-electron based materials:

Note: Bulk diamagnetic term L does not enter because of the small hyperfine field.

ss hf sK H

total s d VV L

s d orbtotal hf s hf d hf VVK H H H

Page 10: Recent NMR Results in NCKU

(ii) Electric hyperfine interactions: couplings between nuclear quadrupole moment eQ and electric field gradient

(For I > 1/2 in the non-cubic environments with axial symmetry )

+q +q

-q

-q

-q

-q

+q+q

2 2 2

3Quadrupole fr

[ (3 )] [3 ( 1)]4 (2

equency

1) 4 (2 1)

2 (2 1)

zzQ zz z m

zzQ

eQVeQH V I I E m

eQV

I II I I

I h

I

I

-q

-q -q

-q

+q-q +q +q

Ea > Eb

Page 11: Recent NMR Results in NCKU

Satellite Lines:

I = 3/2

EFG = 0 EFG 0

o o+ Q/2o- Q/2o

Page 12: Recent NMR Results in NCKU

27Al (I = 5/2) NMR powder pattern in Cr2AlC

76 77 78 79 80

27 A

l NM

R s

ignal

Frequency (MHz)

Cr2AlC

Page 13: Recent NMR Results in NCKU

Spin-lattice relaxation time (T1):

M(t)

t

Page 14: Recent NMR Results in NCKU

Recovery curve of 11B in ZrB2

0.1 1 10 100-0.8

-0.4

0.0

0.4

0.8

del (ms)

ZrB2

T= 300 K

Page 15: Recent NMR Results in NCKU

T1 & Electronic origins

2

2

1

1

2

From a simple scattering theory

1( ) ( )[1

For a simple paramagneti

( )]

( )[1 ( )]

c

~

metal

1( )

( )

e n

F

F

i V j D E f E f E dE

D ET

T

f E f E E

1 11 1

1

1 1 1 11 1 1 1

(a) Simple metals:

( -electrons dominated)

Korringa relation

(b) -electron mate

( )

constant ( )

( )

rials

)

:

( ) (

s

s orb d

T T

TT

T

d

T

s

T T

Page 16: Recent NMR Results in NCKU

Magnetic dipolar broadening of rigid lattices:

(Simplest case: cubic)r ~ 2A and ~ 10-3 B

Hloc ~ /r3 ~ 1 gauss

Ho = 1 T = 104 gauss

Hloc /Ho = /o ~ 10-4

If o ~ 10 - 100 MHz,

intrinsic line width

~ 1 - 10 kHz

Motional narrowing: motional effects narrow the line width in normal liquids.

Page 17: Recent NMR Results in NCKU

Varian 300 Solid-State NMR

Home-built NMR probe-head(Top-loaded)

7.05 T superconducting magnet

Page 18: Recent NMR Results in NCKU

D023-type Al3Zr & Al3Hf

Potential aerospace applications:High melting point

Low mass density

Large elastic modulus

Shortage: Poor ductility

Interesting issues: Electronic properties

Structural stability

Page 19: Recent NMR Results in NCKU

27Al NMR central transitions of Al3Zr & Al3Hf

Central transition line shapes: Anisotropic Knight shift &

Quadrupole effects

High-frequency peak: Al-III

Low-frequency part: Al-I & Al-II

78.39 78.42 78.45 78.48 78.51

27A

l NM

R s

igna

l (ar

b. u

nits

)

Frequency (MHz)

Al3Hf

Al3Zr

27K=0

Page 20: Recent NMR Results in NCKU

Satellite lines for the three Al sites in Al3Zr and Al3Hf

77 78 79 80

S

pin-

echo

inte

gral

(ar

b. u

nits

)

Frequency (MHz)

Al-II

Al-I

Al-III

Al3Zr

77 78 79 80

Al-I

Al-III

Spi

n-ec

ho in

tegr

al (

arb.

uni

ts)

Frequency (MHz)

Al3Hf

Al-II

Page 21: Recent NMR Results in NCKU

Partial 27Al NMR results of Al3Zr & Al3Hf

6 2

1

1Using 1.9 10 gauss for Al and experimental 2 [ ] ( )

hf

s shf sB n Fh D Ek

TTH H

Alloy Al-I Al-II Al-III Total

Al3Zr 0.0147 0.0146 0.0223 0.0172

Al3Hf 0.0145 0.0232 0.0304 0.0227

Smaller Fermi-level DOS in Al3Zr → Al3Zr is more stable than Al3Hf with respect to the D023 structure, consistent with the fact that Al3Hf becomes more favorable with D022 as T > 650 C.

Fermi-level s-DOS (states/eV atom) for each Al crystallographic site

Page 22: Recent NMR Results in NCKU

Oxidation states: Magnetic Cu2+ (S = ½)

Nonmagnetic V5+

Spin chains:CuO4 square plaquette +

edge-sharing V(I)O4 tetrahedra

Alternating coupling ratio J2/J1 = 0.2

Spin gap = 230 K

Page 23: Recent NMR Results in NCKU

Bulk magnetic susceptibility of BaCu2V2O8

Ghoshray et al. PRB 71 (2005)He et al. PRB 69 (2004)

Page 24: Recent NMR Results in NCKU

Models for the S=1/2 one-dimensional spin chain compounds

1. Alternating-chain model

2. Dimer-chain model

/1( ) T

spin T eT

/

1( )

(3 )spin TT

T e

J1

J2

J J

J1J1

J JJ

From the analyses of the bulk susceptibility and heat capacity, He et al. concluded that the alternating chain model is more suitable for the understanding of the gap characteristics of BaCu2V2O8.

Page 25: Recent NMR Results in NCKU

51V NMR investigation of BaCu2V2O8

50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

T (K)

V-I V-II

Kob

s (%

)

Page 26: Recent NMR Results in NCKU

T-dependent NMR shifts of BaCu2V2O8

0.003 0.006 0.009 0.012 0.015

10-3

10-2

10-1

(c)K (II) = 370 K

Ksp

inT

0.5 (

K0.5)

1/T (K-1)

(c)K (I) = 360 K

0.003 0.006 0.009 0.012 0.015

0.01

0.1

1

(d)K (II) = 470 K

Ksp

inT

(K

)

1/T (K-1)

(d)K (I) = 460 K

/1( ) T

spinK T eT

/

1( )

(3 )spin TK T

T e

Page 27: Recent NMR Results in NCKU

T-dependent NMR T1 of BaCu2V2O8

0.003 0.006 0.009 0.012

1

10

1/T

1 (s-1

)

1/T (K-1)

(c)R (II) = 440 K

0.003 0.006 0.009 0.012

1

10

1/T

1 (s

-1)

1/T (K-1)

(d)R (II) = 450 K

/

1

1 TeT

/1

1 1

(3 )TT T e

Page 28: Recent NMR Results in NCKU

NMR parameters of BaCu2V2O8

Alternating-chain model:

K(I) = 360 K

K(II) = 370 K

R(II) = 440 K

For V-II, R/K ~ 1.2

Dimer-chain model:

K(I) = 460 K

K(II) = 470 K

R(II) = 450 K

For V-II, R/K ~ 1

Summary: Both models seem to be suitable for the understanding of the spin gap nature in BaCu2V2O8.

Page 29: Recent NMR Results in NCKU
Page 30: Recent NMR Results in NCKU

L21 Heusler-type Fe2VAl

• Transport: semi-conducting behavior

• Magnetism: paramagnetic behavior (Pauli or Van-Vleck?)

• Low-T specific heat:

possible 3d heavy fermion = 14 mJ/mol K2

mass enhancement m*/m ~ 20 -70)

• LiV2O4: 3d heavy fermion?

• FeSi: 3d Kondo insulator

22 ( )

3 B Fk D E

Page 31: Recent NMR Results in NCKU

Theoretical calculations on Fe2VAl

• G. Y. Guo, G. A. Botton, and Y. Nishino, J. Phys.: Condens. Matter 10, L119 (1998).

• D. J. Singh and I. I. Mazin, Phys. Rev. B 57, 14352 (1998).

• R. Weht and W. E. Pickett, Phys. Rev. B 58, 6855 (1998).

• M. Weinert and R. E. Watson, Phys. Rev. B 58, 9732 (1998).

• A. Bansil, S. Kaprzyk, P. E. Mijnarends, and J. Tobola, Phys. Rev. B 60, 13396 (1999).

Page 32: Recent NMR Results in NCKU

1. Narrow NMR line width:

nonmagnetic

2. NMR shifts:

For 51V, Ko= 0.61% is not likely due

to the Pauli paramagnetism.

→ Van-Vleck mechanism dominated

Band splitting: Eg ~ 0.22 eV

/ 2( ) g BE k T

o T eKK T

Page 33: Recent NMR Results in NCKU

T-dependent NMR T1 of Fe2VAl

Eg ~ 0.27 eV

Low-T data:

V partial Fermi-level DOS

D(EF) = 0.023 states/eV atom

Total Fermi-level DOS

D(EF) = 0.055 states/eV atom

→ Semi-metallic characteristics

/ 22

1

1g BE k TbT eaT

T

2

1

12 [ ] (

1)

3( )

hf Fd

B nhk H D ETT

Page 34: Recent NMR Results in NCKU

1. Sample-dependent heat capacity

2. Solid line: C(T) = T +T3+T5

Small = 1.5 mJ/mol K2

3. Magnetic cluster induced low-T

upturn in

Page 35: Recent NMR Results in NCKU

Field-dependent specific heat in Fe2VAl

2 2 (2 1)2

2 (2 1) 2[ (2 1) ]( 1) ( 1)

,

3( 1) 3.7

20.0037 per formula unit

x J x

B x J x

B

B

B B

x e x eC Nk J

e e

g Hx

k T

J g J J

N

• Multi-level Schottky anomaly:

Conclusions: the reported enhancement is not intrinsic → Fe2VAl is a false d-electron heavy fermion.