40
Rethinking sound Computerassisted reading interven5on with a phonics approach for deaf and hard of hearing children using cochlear implants or hearing aids Tänka om ljud Fonologisk lästräning vid datorn för döva och hörselskadade barn som använder cochleaimplantat eller hörapparat Doctoral Thesis No. 63 SIDR, Linköping University Cecilia Nakeva von Mentzer PhD, SLP Uppsala University Sweden

Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

 Rethinking  sound  

   

Computer-­‐assisted  reading  interven5on  with  a  phonics  approach  for  deaf  and  hard  of  hearing  children  using  cochlear  implants  or  hearing  aids  

   Tänka  om  ljud  

Fonologisk  lästräning  vid  datorn  för  döva    och  hörselskadade  barn  som  använder    

cochleaimplantat  eller  hörapparat    

Doctoral  Thesis  No.  63  SIDR,  Linköping  University    

Cecilia  Nakeva  von  Mentzer  PhD,  SLP  

Uppsala  University  Sweden  

Page 2: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Linköping Studies in Arts and Science No. 627

Studies from the Swedish Institute for Disability Research No. 63

R!"#$%&$%' S()%*

Computer-assisted reading intervention with a phonics approach

for deaf and hard of hearing children using cochlear implants or hearing aids

Cecilia Nakeva von Mentzer

Cecilia Nakeva von Mentzer, Fredricia 18th of March 2015

Page 3: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Interdisciplinary  project      

   Between  the  Swedish  Disability  Ins1tute,    HEAD  Graduate  school  HEaring  and  Deafness,            Linköping  University  

               Cogni1on,  Communica1on  and  Learning,  Lund  University          Karolinska  University  hospital,  Karolinska  Ins5tutet    

                                   Department  of  Linguis1cs,  Stockholm  University            

Cecilia Nakeva von Mentzer, Fredricia 18th of March 2015

Page 4: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Vikten  av  hörsel  Hearing      

Spoken  language  acquisiMon          

Literacy            

Academic  achievement        

Job  opportuniMes          

       

Background  

Page 5: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

P1  normalhörande  Background  

create a grand average waveform for individualsubjects. P1 was defined as the first robust positivityin the waveform. In the case of a double-peaked P1response, P1 latency was typically marked on thefirst peak. Latency values were determined for P1without regard to the chronological age and the ageof implantation of subjects.

RESULTS

Normal-Hearing ChildrenThe latency of P1 as a function of age is shown in

Figure 1. The line of best fit and the 95% confidenceinterval are superimposed on the raw data. The datawere best-fit by a growth function based on the naturallog of age (latency ! 155.6 "(-32.746)*(LN(Age));R2 ! 0.78; p # 0.0001). Visual inspection indicatesthat latencies decrease rapidly in the first decadeof life, and then decrease more gradually in thesecond decade of life. These results are consistent withthose reported by Sharma et al. (1997), Ponton et al.(2000), and Cunningham et al. (2000). As can be seenin Figure 1, P1 latency continues to decrease from 15to 20 yr of age. This finding is consistent with thatreported by Cunningham et al. (2000) who showedthat P1 latency decreased significantly from 13 to 15yr to 19 to 27 yr of age.

Children with ImplantsA 1-way ANOVA showed that the subjects in the

early, middle and late-implanted groups were notsignificantly different with respect to their durationof implant use (F ! 0.05; p ! 0.90). The latencies forthe implanted children are shown in Figure 2 as afunction of chronological age at time of testing. Thesolid functions on each plot are the 95% confidence

limits for normal-hearing children (taken from Fig.1). P1 latencies for 20 out of 21 late-implantedpersons (triangles) were outside the 95% confidencelimit for age-matched normal-hearing children. Thelatencies of 19 of the 29 children in the middle group(crosses) were outside the range of normal. In con-trast, 55 out of the 57 children in the early group(circles) had latencies within the range of normal.The proportion of latencies falling within the rangeof normal differed significantly between the early-implanted group and the late-implanted group(Fishers Exact Test for two proportions, p !0.0000001). The proportion of latencies fallingwithin the range of normal differed significantlybetween the early-implanted group and the middle-implanted group (Fishers Exact Test for two propor-tions, p ! 0.0000001). Figure 3 shows a grandaverage waveform for a subset of 18 early-implantedchildren (average age 3.8 yr) and an age-matchedgroup of normal-hearing peers (average age 3.5). A1-way ANOVA showed that the ages of the childrenin the two groups was not significantly different (F! 0.01; p ! 0.18). The average duration of implantuse for the group of 18 early implanted children was1.8 yr. As shown in Figure 3, the peak latencies of P1for the early-implanted children and their normal-hearing peers are similar. Figure 4 shows a grandaverage waveform for a subset of 13 late-implantedchildren (average age 15.1 yr) and an age-matched

Figure 1. P1 latencies as a function of age for normal-hearingchildren. The line of best-fit and the 95% confidence intervalare superimposed on the raw data. Figure 2. P1 latencies as a function of chronological age for

children with cochlear implants. The solid functions are the95% confidence limits for normal-hearing children. P1 laten-cies for children implanted before age 3.5 yr (early-implantedgroup) are shown as circles. P1 latencies for children im-planted between age 3.5 yr and 6.5 yr (middle-implantedgroup) are shown as crosses. P1 latencies for children im-planted after age 7 yr (late-implanted group) are shown astriangles.

EAR & HEARING, VOL. 23 NO. 6 535

create a grand average waveform for individualsubjects. P1 was defined as the first robust positivityin the waveform. In the case of a double-peaked P1response, P1 latency was typically marked on thefirst peak. Latency values were determined for P1without regard to the chronological age and the ageof implantation of subjects.

RESULTS

Normal-Hearing ChildrenThe latency of P1 as a function of age is shown in

Figure 1. The line of best fit and the 95% confidenceinterval are superimposed on the raw data. The datawere best-fit by a growth function based on the naturallog of age (latency ! 155.6 "(-32.746)*(LN(Age));R2 ! 0.78; p # 0.0001). Visual inspection indicatesthat latencies decrease rapidly in the first decadeof life, and then decrease more gradually in thesecond decade of life. These results are consistent withthose reported by Sharma et al. (1997), Ponton et al.(2000), and Cunningham et al. (2000). As can be seenin Figure 1, P1 latency continues to decrease from 15to 20 yr of age. This finding is consistent with thatreported by Cunningham et al. (2000) who showedthat P1 latency decreased significantly from 13 to 15yr to 19 to 27 yr of age.

Children with ImplantsA 1-way ANOVA showed that the subjects in the

early, middle and late-implanted groups were notsignificantly different with respect to their durationof implant use (F ! 0.05; p ! 0.90). The latencies forthe implanted children are shown in Figure 2 as afunction of chronological age at time of testing. Thesolid functions on each plot are the 95% confidence

limits for normal-hearing children (taken from Fig.1). P1 latencies for 20 out of 21 late-implantedpersons (triangles) were outside the 95% confidencelimit for age-matched normal-hearing children. Thelatencies of 19 of the 29 children in the middle group(crosses) were outside the range of normal. In con-trast, 55 out of the 57 children in the early group(circles) had latencies within the range of normal.The proportion of latencies falling within the rangeof normal differed significantly between the early-implanted group and the late-implanted group(Fishers Exact Test for two proportions, p !0.0000001). The proportion of latencies fallingwithin the range of normal differed significantlybetween the early-implanted group and the middle-implanted group (Fishers Exact Test for two propor-tions, p ! 0.0000001). Figure 3 shows a grandaverage waveform for a subset of 18 early-implantedchildren (average age 3.8 yr) and an age-matchedgroup of normal-hearing peers (average age 3.5). A1-way ANOVA showed that the ages of the childrenin the two groups was not significantly different (F! 0.01; p ! 0.18). The average duration of implantuse for the group of 18 early implanted children was1.8 yr. As shown in Figure 3, the peak latencies of P1for the early-implanted children and their normal-hearing peers are similar. Figure 4 shows a grandaverage waveform for a subset of 13 late-implantedchildren (average age 15.1 yr) and an age-matched

Figure 1. P1 latencies as a function of age for normal-hearingchildren. The line of best-fit and the 95% confidence intervalare superimposed on the raw data. Figure 2. P1 latencies as a function of chronological age for

children with cochlear implants. The solid functions are the95% confidence limits for normal-hearing children. P1 laten-cies for children implanted before age 3.5 yr (early-implantedgroup) are shown as circles. P1 latencies for children im-planted between age 3.5 yr and 6.5 yr (middle-implantedgroup) are shown as crosses. P1 latencies for children im-planted after age 7 yr (late-implanted group) are shown astriangles.

EAR & HEARING, VOL. 23 NO. 6 535

Cecilia Nakeva von Mentzer, Fredricia 18th of March 2015

Page 6: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Background  

What  is  phonological  processing  skills  in  spoken  language?          

perceive  

learn  new  words  

tell  a  story  

play  with  words  

read    pronounce  

write  a  story  

comprehend  

spell  store  

mentally  represent  speech  segments  

process  

Page 7: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Par5cipants  

•  Deaf  and  hard  of  hearing  children  DHH  (N=32)  – Audiological  clinics  at  Karolinska,  Lund  and  Uppsala  University  Hospital  

•  Children  with  normal  hearing,  NH  (N=16)    –  In  and  outside  the  city  of  Stockholm  

Cecilia Nakeva von Mentzer, Fredricia 18th of March 2015

Page 8: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Inclusion/exclusion  criteria  for  DHH  1.  Mild,  moderate  to  severe/profound  bilateral  

sensorineural  hearing  loss      2.  Full  Mme  users  of  cochlear  implants    (CI)  and/or  

hearing  aids  (HA)  

3.  No  other  disability  that  could  affect  their  speech  and  language  development  and/or  their  cogniMve  development  

4.  Speak  Swedish  at  pre-­‐/school  

 

Page 9: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Background  variables  

Cecilia Nakeva von Mentzer, Fredricia 18th of March 2015

Page 10: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Beyond  interven5on  study  

•  Development  of  a  new  method  – Availability  at  home  

•  Less  travelling    •  Less  pressure  on  families    

Cecilia Nakeva von Mentzer, Fredricia 18th of March 2015

Page 11: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Graphogame  –  A  phonics  approach  

•  InnovaMve  digital  based  learning  games  •  Jyväskylä  University,  Nilo-­‐Mäki  InsMtute,    Finland  •  Available  in  different  languages  •  The  Swedish  version  for  beginning  readers;  

phonemic  orthography  

•  Based  on  the  scien1fic  follow-­‐up  study  of  Finnish  children  from  birth  to  reading,  Lyy1nen  et  al.  

Cecilia Nakeva von Mentzer, Fredricia 18th of March 2015

Page 12: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

So  what  exactly  is  phonics?  •  Phonics  teaches  the  child  three  main  things:  

– Phoneme  grapheme-­‐correspondence  – Blending  – SegmenMng  

Cecilia Nakeva von Mentzer, Fredricia 18th of March 2015

Page 13: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Baseline  1   4  weeks   Baseline  2   4  weeks   Post-­‐interven5on  

Phonological  processing  &  leber  knowledge,  8  tasks  

Same  as  B1    +  cogniMve  tasks  &  reading  

IntervenMon  Graphogame  

Same  as  B1    +  cogniMve  tasks  &  reading    

ERP:  MMN  N400  

ERP:  MMN  N400  

5,  6  and  7-­‐  year  olds      

5,  6  and  7-­‐  year  olds,  reference  group  

Design    

Mild,  Moderate  to  severe  

hearing  loss  

Normally  hearing  children  

Page 14: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Computer-­‐assisted  training  

•  Children  pracMced  7  min/day  •  No  difference  regarding  levels,  except  for  age  – Older  children  reached  higher  levels  and  accuracy  

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 15: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

                               

                             T  

Method  – Phonological  composite  score  –  7  different  accuracy  measures  of  phonological  processing  skills  (lower-­‐–level  i.e.  phoneme  discriminaMon,  higher–level  i.e.  decision  making  about  the  phonemic  structure  of  a  nonword  or  vs.  real  words,  and  output  phonology)    

•  Reflect  children’s  general  phonological  processing  skills  

•  Enable  a  general  comparison  of  the  children.    

– Median  split  –  Phonologically  skilled/less  skilled  

Page 16: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Study  1    Computer-­‐assisted  training  of  phoneme-­‐grapheme  

correspondence  for  children  who  are  deaf  and  hard  of  hearing:  Effects  on  phonological  processing  skills.  

 Cecilia  Nakeva  von  Mentzer1,  Björn  Lyxell1,  Birgiba  Sahlén2,6,  Malin  Wass1,  Magnus  Lindgren2,4,  Marianne  Ors2,  Peber  

Kallioinen5  &  Inger  Uhlén3    

SLP-­‐News,  2012    

Interna1onal  Journal  of  Pediatric  Otorhinolaryngology,  2013  

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 17: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

 Take  home  message  study  1    1.  Children  with  NH  outperformed  DHH  children  on  the  

majority  of  phonological  processing  tasks.    

2.  All  parMcipaMng  children  improved  their  accuracy  in  phoneme–grapheme  correspondence  and  output  phonology  aper  four  weeks  of  computer-­‐assisted  intervenMon.    

3.  For  the  whole  group  of  children,  and  specifically  for  children  with  CI,  a  lower  iniMal  phonological  composite  score  was  associated  with  a  larger  phonological  gain.    

 

Page 18: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

4.  Eighteen  DHH  children  whereof  11  children  with  CI,  showed  specific  intervenMon  effects  on  their  phonological  processing  skills    5.  Finally,  intervenMon  can  be  accomplished  with  means  of  a  computer  -­‐  based  program  

–  Realizing  this  study  enables  studies  within  other  groups  of  children  

Take  home  message  study  1    

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 19: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Study  2      The phonics approach in Swedish children

using cochlear implants or hearing aids: Inspecting phonological gain.

Journal of Communication Disorders, Deaf Studies &

Hearing Aids, 2014 2(3) Cecilia  Nakeva  von  Mentzer1,  Björn  Lyxell1,  Birgiba  Sahlén2,6,  Örjan  

Dahlström1,  Magnus  Lindgren2,4,  Marianne  Ors2,  Peber  Kallioinen5  &  Inger  Uhlén3  

 

   

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 20: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Background      

 CogniMve  processes  and  abiliMes  are  important  factors  to  study  in  DHH  children  

– Crucial  for  understanding,  explaining  and  predicMng  the  variability  in  outcomes  

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 21: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Background;    CogniMve  profiles  DHH  children    

•  Comparable  levels  as  NH  children:  Visuo-­‐spaMal  WM,  Complex  WM,  InducMve  reasoning  

•  Reduced  capacity  compared  to  NH:  Phonological  working  memory  Lexical  access  

 Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 22: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

 Take  home  message  study  2  

   1.  DHH  children  performed  at  a  lower  level  than  NH  children  

on  lexical  access  but  at  comparable  levels  on  complex  and  visual  working  memory.    

2.  A  significant  correlaMon  between  complex  working  memory  and  the  phonological  composite  score  was  evident  in  DHH  children  but  not  in  children  with  NH.    

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 23: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

! NH D/HH D/HH, phonologically less skilled

1. Phonological change 1.0 1.0 1.0

2. Lexical access; expected answers -.58* -.36* -.43

3. Lexical access; semantically accepted .11 -.01 .07

4. Lexical access; semantically deviant .05 .04 .04

5. Lexical access; other .67** .40* .42

6. Complex WM .03 -.26 .03

7. Visual WM -.34 -.00 .12

8. Nonword repetition (pnwc) -.23 -.29 -.17

9. Nonword repetition (pcc) -.37 -.37* -.55*

10. Output phonology (pwc) .20 -.34 -.44

11. Output phonology (pcc) .21 -.38* -.51*

12. Phonological representation -.1 -.58** -.65**

13. Nonword discrimination (accuracy) -.24 -.42* -.54*

14. Nonword discrimination (latency) -.23 -.32 .24

15. Phoneme Identification (accuracy) -.49 -.29 -.12

16. Phoneme Identification (latency) -.23 -.31 -.38

17. Phonological coding–letter sounds .54* .12 .51*

18. Phonological coding–letter names .32 .06 .40*

19. Phonological coding- letter naming .21 .04 .62*

20. Nonverbal intelligence-rs .04 .03 .06

   

   

Results  post  interven5on  

Page 24: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

 Take  home  message  study  2    

3.  Weak  iniMal  performance  on  a  task  for  phonological  representaMons  was  the  only  significant  predictor  of  phonological  change  in  DHH  children.    

4.  Weak  iniMal  performance  was  observed  in  children  who  were  older  when  diagnosed,  later  implanted  and  in  those  with  shorter  usage-­‐Mme  with  CI.  

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 25: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Take  home  message  study  2  5.  Children  with  weak  phonological  

processing  skills  had  addiMonal  cogniMve  difficulMes  

6.  Leber  knowledge  worked  as  a  driving  force  to  phonological  gain  in  children  with  weak  phonological  processing  skills  

Page 26: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Study  3  

Computer-­‐assisted  reading  intervenMon  with  a  phonics  approach  for  children  using  cochlear  

implants  or  hearing  aids    Nakeva  von  Mentzer,  C.,  Lyxell,  B.  Sahlén,  B.  Dahlström,  Ö.,  

Lindgren,  M.  Ors,  M.,  Kallioinen,  P.  &  Uhlén,  I.  (2013).      

LogopednyJ,  2013  (4),  18-­‐23.  Swedish  Scandinavian  Journal  of  Psychology,  2014,  55(5),  448-­‐455.  doi:  

10.1111/sjop.12149    

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 27: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Background  study  3  •  A  conMnuing  pedagogical  quesMon  has  been  how  

students  who  are  deaf  or  hard  of  hearing    opMmally  develop  reading  ability.    

•  Two  pedagogical  methods;  “whole  language”  vs.  “bobom-­‐up”  approaches,  i.e.,  to  support  semanMc  processing  and  predicMon,  or  to  support  lexical  as  well  as  sub-­‐lexical  processing  to  develop  reading.  

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 28: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

New  •  We  studied  reading  accuracy  (decoding  and  

comprehension)  as  well  as  decoding  errors.  

Table 4. Decoding errors in percent (mean; ± sd, range) in reading children pre and post intervention (NH, n = 12, DHH, n = 19)

Note: NH = normal hearing, DHH = deaf and hard of hearing, an = 10 *a statistically significant difference from pre to post intervention was observed, p < .05

NH DHH

Pre Post Pre Post

TOWRE – words TOWRE – nonwords TOWRE – words and nonwords

28a ± 21.2 (1-60) 43 ± 27.6 (4-100) 40 ± 26.0 (7-83)

33 ± 24.4 (6-88) 33 ± 13.7 (12-59)* 31 ± 15.0 (11-58)*

41 ± 27.0 (5-100) 54 ± 26.0 (20-100) 47 ± 24.9 (19-87)

36 ± 21.6 (7-73) 46 ± 24.0 (5-85)* 40 ± 21.4 (13-75)*

       

   

   

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 29: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Main  message  study  3  •  Age  comparisons  revealed  a  staMsMcally  significant  higher  

reading  ability  in  the  NH  7-­‐year  olds  compared  to  the  DHH  7-­‐year  olds.  

•  Reading  improvement  was  associated  with  PhPS  skills  and  complex  WM  in  NH  children.    

•  Correspondent  associaMons  were  observed  with  visual  WM  and  leber  naming  in  the  DHH  children.    

•  DHH  children’s  beginning  reading  may  be  influenced  by  visual  strategies  that  might  cause  the  observed  reading  delay  in  older  children.    

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 30: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

 Study  4    

Segmental  and  suprasegmental  properMes  in  nonword  repeMMon  –  An  exploraMve  study  of  the  associaMon  with  

nonword  decoding  in  children  with  NH  children  with  bilateral  CI  

 Cecilia  Nakeva  von  Mentzer,  Björn  Lyxell,  Birgiba  Sahlén,  Örjan  Dahlström,  

Magnus  Lindgren,  Marianne  Ors,  Peber  Kallioinen,  Elisabet  Engström  &  Inger  Uhlén  

Clinical  Linguis1cs  &  Phone1cs  (2014)  

22  children,  6.5  years,  individually  matched  for  age    

Page 31: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Background  

•  Given  their  relaMvely  poor  phonological  processing  skills,  researchers  have  someMmes  claimed  that  children  with  CI  read  beber  than  what  can  be  expected  (Asker-­‐Árnason,  Wass,  Gustavsson,  Sahlén,  2014;  Wass  et  al.,  2010).    

•  This  pabern  has  also  been  demonstrated  in  studies  of  children  with  mild  to  moderate  hearing  loss  (HL)  (Park,  Lombardino,  &  Riber,  2013).    

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 32: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

?  •  Do  children  with  CI  use  other  decoding  strategies?  

•  Are  they  more  visually  oriented?  – Do  they  focus  more  on  leber  and  word  paberns?  

– Do  they  develop  orthographic  decoding  strategies  earlier?  

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 33: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Aim  •  In  a  more  penetraMng  way  than  previous  studies  we  examined  HOW  children  with  CI  used  their  phonological  processing  skills,  as  measured  by  nonword  repeMMon,  and  HOW  these  were  associated  to  nonword  decoding  

Pinpoint  how  the  children  used  their  phonological  processing  skills    in  phonological  decoding!  

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 34: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Results     Table 7. Correlation analysis for nonword decoding and nonword repetition in NH children (N = 11) and children with bilateral CI (N = 11)

Note: NH = normal hearing, CI = cochlear implants, * = p < .05, ** = p < .01

NONWORD DECODING

Whole words Phonemes Trials

NH CI NH CI NH CI

NO

NW

OR

D R

EPET

ITIO

N

Whole words .76** .43 .70** .33 .67** .33

Phonemes .83** .51 .76** .48 .72** .44

Consonants

Total .79** .49 .71** .50 .68** .52

No clusters .60 .51 .55 .45 .51 .39

Legal clusters .47 .42 .36 .45 .34 .48

Illegal clusters .61** .58 .57 .56 .53 .56

Vowels

Total .82** .46 .79** .36 .79** .28

No clusters .79** .54 .73** .42 .76** .32

Legal clusters .49 .33 .49 .25 .46 .25

Illegal clusters .65* .38 .60 .32 .58 .29

Syllable number .78** .50 .83** .53 .84** .57

Primary stress .24 .11 .22 .08 .24 .01

   

   

   

   

   

   

       

   

   

   

   

   

   

   

   

   

   

   

   

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 35: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Results    Table 8. Correlation analysis for nonword decoding and cluster repetition in nonwords in children with NH (N = 11) and children with CI (N =11)

Note: NH = normal hearing, CI = cochlear implants. * = p < .05, ** = p < .01.

NONWORD DECODING

Whole words Phonemes Trials

NH CI NH CI NH CI

NO

NW

OR

D R

EPET

ITIO

N

Legal clusters

Percent correct .78** .34 .77** .35 .78** .31

Consonant omissions -.55 -.66* -.51 -.59 -.55 -.40

Consonant substitutions -.45 .03 -.50 -.02 -.45 -.08

Vowel epenthesis -.45 . -.40 . -.45 .

Consonant additions . .00 . .20 . .50

Illegal clusters

Percent correct .85** .05 .88** -.01 .85** -.01

Consonant omissions -.67* .19 -.74** .35 -.74** .48

Consonant substitutions -.18 .25 -.08 .14 -.09 .12

Vowel epenthesis -.16 -.33 -.18 -.33 -.17 -.41

Consonant additions .54 .10 .59 .00 .56 .00

       

   

       

   

   

   

   

   

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 36: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Summary  

•  Children  with  CI  – QualitaMvely  different  integraMon  of  phonological  processing  skills  in  nonword  decoding      

– Less  specified  phonological  representaMons  -­‐>    guessing  oriented  reading  strategies/lexicalisaMons  

– Leber  knowledge  seemed  even  more  important  

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 37: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Clinical  implica5ons  

•  Phonological  training  should  aim  to  improve  awareness  and  producMon  of  consonant  clusters  and  syllable  structure  of  words.  In  this  way,  posiMve  effects  on  phonological  awareness  skills  will  follow,  as  children’s  phonological  representaMons  are  improved.  

•  In  addiMon,  leber  knowledge  exercises  should  not  be  overlooked  since  lebers  act  as  visual  support  for  acousMcally  elusive  elements  in  the  speech  signal.    

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 38: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

General  conclusions  

1.  Children  who  are  DHH  consMtute  a  heterogeneous  group.  Several  factors,  as  age  at  diagnosis,  duraMon  of  unaided  hearing  and  degree  of  HL  contribute  to  the  variaMon.    Early  intervenMon  is  the  most  crucial  factor,  which  serves  as    a  foundaMon  for  later,  successful  development.      

2.  Overall,  the  results  from  the  present  thesis  support  the  noMon  that  offering  a  computer-­‐assisted  intervenMon  program  delivered  at  home,  is  an  alternaMve  way  to  support  DHH  children’s  phonological  development  and  decoding  proficiency.    

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 39: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

General  conclusions  3.  Specifically,  children  with  a  longer  duraMon  of  

unaided  hearing  and  a  more  severe  HL  benefibed  comparably  more  from  the  intervenMon.    

4.  The  results  from  the  present  thesis  may  be  seen  as  a  contribuMon  to  fulfill  the  theme  of  UNESCO  for  2014:  “Equal  Right,  Equal  Opportunity:  EducaMon  and  Disability”.  ParMcularly,  by  acknowledging  reading  ability  as  one  of  the  most  important  tools  in  the  educaMon  of  DHH  children.  

   

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015

Page 40: Rethinking!sound! · Fonologisk&lästräning&vid&datorn&för&döva& och&hörselskadade&barn&som&använder& cochleaimplantateller&hörapparat& & Doctoral&Thesis&No.&63&SIDR,&Linköping&University&

Thanks  to...  All  children!  ....and  the  research  group!    Björn  Lyxell,  BirgiJa  Sahlén,  Örjan  Dahlström,  Magnus  Lindgren,  Marianne  Ors,  PeJer  Kallioinen,  Elisabet  Engström  &  Inger  Uhlén    

....and  the  conference  organizersJ        

Cecilia Nakeva von Mentzer Fredricia 18th of March 2015