51
Role of Nuclear Energy and University Research Yoshiaki Oka Professor, Waseda University Shinjukuku, Tokyo, Japan Emeritus professor, University of Tokyo Special panel session celebrating the 75 th anniversary of the discovery of fission , November 13, 2013, American Nuclear Society, Winter Meeting. Washington DC, USA 1

Role of Nuclear Energy and University Research of Nuclear Energy and University Research Yoshiaki Oka Professor, WasedaUniversity Shinjuku‐ku, Tokyo, Japan Emeritus professor, University

Embed Size (px)

Citation preview

Role of Nuclear Energy and University Research

Yoshiaki OkaProfessor, Waseda UniversityShinjuku‐ku, Tokyo, Japan

Emeritus professor, University of Tokyo

Special panel session celebrating the 75th anniversary of the discovery of fission , November 13, 2013, American Nuclear Society, Winter Meeting. Washington DC, USA

1

Outline

• Energy sources, Global warming, Nuclear energy

• Role of University Research• Super LWR and Super FR studies, • High breeding by light water cooling, • R&D of Thermal hydraulics and materials• New textbooks of nuclear engineering

2

Energy sources

3

Fossil fuels are major primary energy source since industrial revolution for 250 years

Source; http://www.fepc.or.jp/library/publication/pamphlet/nuclear/zumenshu/index.html 4

Source; http://www.fepc.or.jp/library/publication/pamphlet/nuclear/zumenshu/index.html 5

Source; http://www.fepc.or.jp/library/publication/pamphlet/nuclear/zumenshu/index.html 6

Many countries depend on imported energy sources

Source; http://www.fepc.or.jp/library/publication/pamphlet/nuclear/zumenshu/index.html

US energy (basic) policy : Less than 25% of import dependence for national security

7

Global warming

8

Source; http://www.fepc.or.jp/library/publication/pamphlet/nuclear/zumenshu/index.html 9

Temperature rise in 2000‐09 Compared to average temperatures recorded between 1951 and 1980 

The most extreme warming, shown in red, was in the Arctic

Source: Wikipedia;Global warming10

Source; http://www.fepc.or.jp/library/publication/pamphlet/nuclear/zumenshu/index.html 11

Nuclear energy

12

US electricity production costNuclear is the cheapest after depreciation of the construction cost

Source: http://world‐nuclear.org/info/inf02.html13

Natural gas prices (2005‐2012)not stable

Source:JOGMEC, http://www.jogmec.go.jp/library/contents8_05.html

USA

Japan

UK 

Germany 

Japan(imported LNG)USA(NYMEX)UK (ICE)Germany (Russian boarder)

Combined cycle gas turbine power plantsInnovation of power plant technology

Source: Wikipedia

What necessary for future nuclear power?

• Improve NPP operation& maintenance; Safe operation, decrease in outages etc.

• Improvement of LWR technologies• New construction: keeping work force and skills• Decrease in capital cost of LWR; Compete with CCGT in construction

• Innovation of nuclear power plant technologiesLarge plantsSmall plants? Seek innovation?

• Raising human resources for the future

Types of researches• Industries: Work for commercial products 

Unknowns should not remain and be avoided.

• Research institutes : Work for projects

• Universities: Explore unknown area and raise human resources: 

• Information exchange among the parties is important

SCWR, Supercritical‐pressure water cooled reactors

• Not constructed before, nor similar plants• Reactor concept itself needs to be explored through design study (by numerical simulation)

• Good subject for students to learn methods and fundamentals of LWR design and safety

• Difference is small, but need to develop methods/concepts and ideas for SCWR

What is supercritical water?• No boiling phenomenon • High specific enthalpy

SolidLiquid

Gas

Critical point(22.1MPa, 374℃)

Supercritical

Temperature

Pres

sure

Phase diagram of water

Temperature [℃]Spec

ific

heat

[kJ/

kg/K

]

0

10

20

30

40

50

100 200 300 400 500 600

24 MPa7 MPa

0

200

400

600

800

1000

100 200 300 400 500 600

24 MPa

7 MPa

Temperature[℃]

Den

sity

[kg/

m3 ]

19

20

Circular Boiler

Water tube boiler

Once-through boiler

LWR

Super LWR, Super FR (SCWR)

Evolution of boilers

Water level

Water level

21

Control rods

Supercritical water

Turbine Generator

Condenser

PumpHeat sink

Reactor

Core280℃

500℃

Super LWR and Super FR• Super LWR: reactor developed at Univ. of Tokyo and Waseda

university• Super FR: Fast reactor version of Super LWR (MOX fuel) • Once‐through direct coolant cycle 

• Pressure: 25 MPa• Inlet: 280℃• Outlet (average): 500℃• Flow rate: 1/8 of BWR

Super LWR:a thermal reactor concept

3‐D N‐T Coupled Core Calculation• T‐H calculation based on single channel model

• Neutronic calculation; SRAC

Core consists of homogenized fuel elements

Fuel assembly

HomogenizedFuel

element

1/4 core Single channel T-H analyses

3-D core calculation

qc(i) qw(i)

pelletCladding

Coolant

Moderator

Water rodwall

Single channel T-H model

23

Coolant flow scheme (two pass core) 

Mix

Inlet:

Outlet:

OuterFA

Inner FA

CR guide tube

Coolant ModeratorInner FA Upward DownwardOuter FA Downward Downward

Flow directions

To keep high average coolant outlet temperature

Kamei, et al., ICAPP’05, Paper 552724

Two pass core (previous)   One pass core (improved)

Improvement flow scheme of Super LWRone pass core

Fuel loading pattern of the core

Inner and peripheral core assembliesof high temperature core

Characteristics of high and low temperature cores of Super LWR

Cores High T. core Low T. core

Thermal power/electric power[MW] 3492/1530 2804/1200

Thermal efficiency[%] 43.8 43.1Operating pressure[MPa] 25 ←

Temperature inlet/outlet[⁰C] 280/500 280 / 465

Max. Cladding Surface Temp.[⁰C] 656 650Number of fuel assembly 129 121Average fuel enrichment 7.31 7.30Fuel/cladding UO2/SS ←Average power density[MW/m3] 97.6 93.4Core effective height/diameter 4.20/3.31 3.70/3.23Discharge burnup[GWd/t] 45.3 43.3Max. Linear Heat Gene. Rate[kW/m] 37.4 38.5

To be presented tomorrow at 1pm 

Safety principle of Super LWR• Keeping coolant inventory is not suitable due to no water level and 

large density change.• Coolant inventory is not important due to no circulation. • No natural circulation

Safety principle is keeping core coolant flow rate.

Coolant supply (main coolant flow rate)

Coolant outlet (pressure)

BWR PWR Super LWR

Requirement RPV inventory PCS inventory Core flow rate

MonitoringRPV water

levelPressurizer water level

Main coolant flow rate, Pressure

29

LPCI line

SLCSControl rods

RPV

Turbine bypass valves

Turbine control valves

Condenser

LP FW heaters

HP FW heaters

Reactor coolant pump(Main feedwater pump)

LPCI

AFS

Turbine

AFS

AFS

Condensate water storage tank

LPCI

LPCI Suppression chamber

SRV/ADSContainment

Deaerator

Cond

ensate 

pumps

Booster pumps

Plant and safety system

MSIV

30

31

Analysis code for supercritical‐pressure

Mass conservation

Energy conservation

Momentum conservation

-downcomer / water rod

-average / hot channels

Radial heat transfer

-Oka-Koshizuka correlaiton

Point kinetics 31

Summary of safety analysis results

0

100

200

300

400

500

600

Transients Accidents ATWS without alternative action ATWS with alternative action (ADS)

1 2 3 4 9 1 2 3 5 6 1 2 3 4 6 7 9

Criterion for transient

Criterion for accident and ATWS

Event number

Incre

ase o

f te

mpera

ture

fro

m initia

l va

lue [

℃]

100

120

140

160

180

200

8 3 7 6 9

Criterion for powerrising rate of 0.1-1%

Criterion for power rising rate of 1-10%

Criterion for powerrising rate of ovre 10%

Transient number

Peak

pow

er

[%]

25

26

27

28

29

30

31

2 3 4 8 9

Transients Accidents ATWS without alternative action ATWS with alternative action (ADS)

3 4 2 3 4 7 8 9

Criterion for transient

Criterion for accident and ATWS

Event number

Peak

pre

ssure

[M

Pa]

Transients Accidents1. Partial loss of reactor coolant flow2. Loss of offsite power3. Loss of turbine load4. Isolation of main steam line5. Pressure control system failure6. Loss of feedwater heating 7. Inadvertent startup of AFS8. Reactor coolant flow control system failure9. Uncontrolled CR withdrawal at normal operation10. Uncontrolled CR withdrawal at startup

1. Total loss of reactor coolant flow 2. Reactor coolant pump seizure3. CR ejection at full power 4. CR ejection at hot standby5. Large LOCA 6. Small LOCA

32

Super FRa fast reactor concept

34

Advantages of Super Fast Reactor Same plant system as Super LWRHigh power density of Super FR is an advantage in capital cost over Super LWR and LWR Capital cost; Super FR< Super LWR< LWR

Low reactor coolant flow rate (due to high enthalpy rise) High head pumps Suitable for  tight fuel lattice core of Super FR No pumping power increase and instability problems of high conversion LWR

Coolant flow schemes of Super FR

Fuel assemblies and core of Super FR

seed fuel assembly

blanket assembly Loading pattern of one path core

Super FR (one pass core) characteristics

Power MWt/MWe 2337/1006Coolant pressure (MPa) 25.0Inlet/outlet temperature (oC) 280/501Active/overall power density (kW/L) 206/149Number of seed assembly 78Number of blanket assembly 37Active core height (m) 2.4Eq. active core diameter (m) 2.47Pu enrichment in seed assembly (wt%) 32(bottom)/25(top)Pu enrichment in bottom blanket (wt%) 10(bottom)Cycle length (EFPD)/fuel batch 200/3Average/max discharge burn-up (GWd/t) 53.8/72.7

High breeding by light water cooling

Tightly packed-rods fuel assembly

breeding core

Characteristics of high breeding core and  comparison with RMWR (reduced moderation BWR)

Scope of studies and Computer codes1.Fuel and core

Single channel thermal hydraulics (SPROD), 3D coupled coreneutronic/thermal-hydraulic (SRAC-SPROD), Coupled sub-channel analysis, Statistical thermal design method, Fuel rodbehavior (FEMAXI-6), Data base of heat transfer coefficientsof supercritical water

2. Plant system; Plant heat balance and thermal efficiency3. Plant control4. Safety; Transient and accident analysis at supercritical-and

subcritical pressure, ATWS analysis, LOCA analysis (SCRELA)5. Start-up (sliding-pressure and constant-pressure)6. Stability (TH and core stabilities at supercritical and

subcritical-pressure)7. Probabilistic safety assessment

42

43Super Fast Reactor R&D1st Phase (2005‐ 2010), 2nd phase (2010‐2014) 

1st phase: University of Tokyo, JAEA, Kyushu Univ. and TEPCO2nd phase: Waseda University, Univ. of Tokyo, JAEA, Kyushu Univ. Tohoku univ. TEPCO systemsentrusted by MEXT

Development of the Super FR concept

Thermal‐hydraulic experiments Materials experiments

Thermal hydraulic experiment with surrogate fluidSupercritical thermal hydraulic loop of Kyushu University

44

Thermal hydraulics R&D

1. Single tube/rod bundle experiments2. Critical heat flux experiment at subctritical‐

pressure3. Critical flow measurement4. Condensation experiment5. Cross flow measurement 

Surrogate Fluid (Freon) at Kyushu University

Supercritical water at JAEA1. Single rod/rod bundle experiment2. Single tube experiment at high temperature 45

Materials R&D• Developed 15Cr‐20Ni SS cladding material based on cladding material for  LMFBR

• Developed thermal insulating material, Yttria‐stabilized zirconia (YSZ)

• Measurement of Corrosion and elusion characteristics of cladding materials

47

Mass transfer experimentsElusion and deposition characteristics from 20C to 550C and to 20C

Diagram of mass transfer experiment loop

Auto crave

Control system

Super LWR design study started in 1989. 

Results of the design study (until 2009) are summarized.

Also a textbook of reactor design and anlysis: Core & fuel design, plant control, start‐up, plant heat balance, stability, safety design and analysis of Super LWR and Super FR as well as the comutational methods

Publidhed in July 2010 from Springer

2nd book “ supercritical pressure light water cooled reactors” is under preparation. 48

Source:http://www.springer.com/engineering/energy+technology/book/978‐1‐4419‐6034‐4

Contents: PSA in design and maintenance of ABWR, Passive ECCS of APWR, Severe accident mitigation features of APR1400, EPR core catcher, Severe accident research in China, Full MOX core design of ABWR, CFD applications, Digital I&C system, 3D-CAD application to construction, Progress in seisimic design

Available from Springer, 295 pages

Based on the lectures of International summer school of NPP and young generation work shop“; Bridgeing fundamental research and practical applications” in 2009 in Tokai-mura Japan

http://www.springer.com/engineering/energy+technology/book/978‐1‐4419‐7100‐5

最新の原子力教科書日本の優れた原子力発電技術と30年間の実用の進展を反映

英語版も作成中(Springerより出版)

第2号 第3号第1号 第4号

5050

英語版出版

第6号

英語原稿作成

第5号

第9号 第10号

英語原稿作成

第11号

50

英語原稿作成

第7号 第8号

英語原稿作成

第12号

英語原稿作成

Modern textbooks of nuclear engineeringincluding advancement in 30years

English versions are under preparation at U.Tokyo

Source:http://www.springer.com/engineering/energy+technology/book/978‐4‐431‐54194‐3

Thank you

51