50

Rrs(λ - IOCCG

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rrs(λ - IOCCG
Page 2: Rrs(λ - IOCCG

Rrs(λ) IOPs

What to do with the retrieved IOPs?

Page 3: Rrs(λ - IOCCG

Chlorophyll concentration: [Chl]

)(pha

)()()()( 21 dgphw aMaMaa

))(),(()( brs baFR

Examples: Carder et al (1999), GSM (2002), GIOP (2013)

:)(pha Varies with temperature in Carder et al (1999); Fixed globally in GSM (Maritorena et al 2002); Varies with [Chl] in GIOP (Werdell et al 2013)

Page 4: Rrs(λ - IOCCG

“On a global scale, marine phytoplankton consume fifty thousand million tones of carbon every year in a process referred to as primary production.” -- IOCCG Report #2

“One of the principal applications of satellite ocean color data is to derive net primary production (NPP).” --- McClain (Annu. Rev. Mar. Sci., 2009)

food chain; carbon cycle

1. Estimate global primary production (PP)

Why chlorophyll concentration?

Page 5: Rrs(λ - IOCCG

Elements of photosynthesis:

CO2 + H2O + phytoplankton + light + nutrient chemical energy

Page 6: Rrs(λ - IOCCG

Components for PP quantification:

(Platt and Sathyendranath, 2007)

1. Phytoplankton 2. Light penetration

3. Photosynthesis parameters

Page 7: Rrs(λ - IOCCG

[chl]

Traditional strategy: [chl] centered system

Works for waters where IOPs co-vary with [Chl].

Ocean color spectrum

Light field

Page 8: Rrs(λ - IOCCG

color

PP

auxi.

Works for most waters.

Kd()

IOPs

a, bb, aph

IOP-based approach:

Page 9: Rrs(λ - IOCCG

1.1 Estimation of diffuse attenuation coefficient (Kd) (for light field)

)(

)()490(

2

1

Rrs

RrsKd

Or,

ChlKd )(

Page 10: Rrs(λ - IOCCG

2

3

b

1

a

21

)490(

aa)490(

XbK

or

XK

d

d

)551(

)488(

)551(

)488(

Rrs

RrsX

or

Lwn

LwnX

with

Page 11: Rrs(λ - IOCCG

(Darecki and Stramisk, 2004)

Ratio-derived Kd

Page 12: Rrs(λ - IOCCG

odbdoubuu EbrEbraEdz

d )(

odbdoubud EbraEbrEdz

d)(

Aas (1987) two-stream solution:

')','()','()cos(4

wdLLczd

Ld

Page 13: Rrs(λ - IOCCG

oubuodbdodd EbrEbrbEcEdz

d )(

u

u

bud

d

bdd E

brE

braE

dz

d

b

u

u

d

d

d

d bRrra

K

oubuodbdd EbrEbraEdz

d )(

)( bdd baDK

Empirical approximation:

Page 14: Rrs(λ - IOCCG

bd baK v)005.01( s

)52.01(18.4v 8.10 ae

Rrs a&bb dK

(Lee et al. 2005)

No division of “Case 1” or “Case 2” waters.

Page 15: Rrs(λ - IOCCG

Kd(490) - measured [m-1

]

0.03 0.05 0.3 0.5 3 50.1 1

Kd(4

90

) [

m-1

]

0.03

0.05

0.3

0.5

3

5

0.1

1

1:1

Arabian Sea

GOM

Baltic

)490(dK

(IOP-model)

(Lee et al. 2005) 0.03 0.05 0.3 0.5 3 50.1 1

0.25

0.75

1.25

1.75

2.25

0.00

0.50

1.00

1.50

2.00Arabian Sea

GOM

Baltic

)4

90

(d

er

dK

)4

90

(m

ead

K/

)490(dK - measured [m-1]

(IOP-model)

0.75

1.25

Oceanic & Coastal waters

Page 16: Rrs(λ - IOCCG

Other wavelengths:

X Data

350 400 450 500 550

Y D

ata

0.0

0.1

0.2

0.3

profile-Kd

IOPs-Kd

X Data

350 400 450 500 550

Y D

ata

0.00

0.02

0.04

0.06

0.08

profile-Kd

IOPs-Kd

Wavelength [nm]

Kd [

m-1

]

Wavelength [nm]

Kd [

m-1

]

(a) (b)

(Lee et al 2013)

Page 17: Rrs(λ - IOCCG

zKPARePARzPAR

)0()(

1.2 Attenuation of PAR (KPAR)

Good for earlier days, Not so good for the 21st century

(Morel, 1988, JGR)

Page 18: Rrs(λ - IOCCG

Change of light quality with depth:

deEzPAR zzK

700

400

),(

0 )0,()(

(Kirk 1994)

Light at deeper depth is associated with lower attenuation coefficient

)0(

)(ln

1

PAR

zPAR

zK PAR

KPAR is light-quality weighted!

Page 19: Rrs(λ - IOCCG

Broadband attenuation is light dependent, so no-longer additive!

Page 20: Rrs(λ - IOCCG

zzK parePARzPAR)(

)0()(

5.0

21

)1()(

z

KKzKPAR

Euphotic depth (zeu):

%1)0(

)(

PAR

zPAR

)(

6.4

euPAR

euzK

z

Key: KPAR varies with depth, especially in the upper water column!

Page 21: Rrs(λ - IOCCG

[Chl]

Zeu (water clarity) rsR

PAR(0)

PAR(zeu)

1.3 Euphotic depth (Zeu)

%1)0(

)(

PAR

zPAR eu

Page 22: Rrs(λ - IOCCG

(Morel 1988)

[Chl] approach

[Chl] (empirical) approach:

Rrs(λ) [Chl] zeu

Page 23: Rrs(λ - IOCCG

IOP approach:

Rrs(λ) a(λ)&bb(λ) KPAR(z) zeu

5.0

21

)1(

))490(&)490(()490(&)490()(

z

baKbaKzK b

bPAR

Page 24: Rrs(λ - IOCCG

Measured Zeu

[m]

0 20 40 60 80

Rrs

deri

ved Z

eu [

m]

0

20

40

60

80 1:1

1:1 R

rs-d

eri

ved

Zeu [m

]

Measured zeu [m]

IOP approach

Water clarity (zeu)

(Lee et al 2005)

Page 25: Rrs(λ - IOCCG

water clarity (m)

Global distribution of Zeu

Page 26: Rrs(λ - IOCCG

Zeu can be ‘measured’ with modern optical-electronic system

Page 27: Rrs(λ - IOCCG

Ocean color Kd, aph PP

dtdzaztEzPP ph ),(),,()( 0

1.4 IOP based PP estimation:

(Kiefer and Mitchell, 1983, L&O)

ϕ

represents ‘photosynthesis’

φ: quantum yield of photosynthesis

Page 28: Rrs(λ - IOCCG

measured production (mol/l/day)

0.3 31 10

calc

ula

ted

pro

duct

ion

(

mol

/l/d

ay)

0.3

3

1

10 aph-centered

Chl-centered

1:1

(Lee et al., Appl. Opt., 1996) (Lee et al., JGR, 2011)

Remotely-estimated PP compared with measured PP

Page 29: Rrs(λ - IOCCG

Essence of present satellite Chl product:

b

brs

ba

bGR

)550()550(

)440()440(

)440(

)550(

)550(

)440(

bpbw

bpbw

rs

rs

bb

bb

a

a

R

R

Chlaaa

Chlaaa

a

a

R

R

phdgw

phdgw

rs

rs

)440()440()440(

)550()550()550(

)440(

)550(

)550(

)440(*

*

Change of Rrs band ratio not necessarily represents change of [Chl]!

)(

)(

2

1

rs

rs

R

RfunChl

Why aph based approach is likely better?

Page 30: Rrs(λ - IOCCG

(Szeto et al 2011, JGR)

Page 31: Rrs(λ - IOCCG

The change of Rrs ratio really reflects change of total absorption!

(Lee et al, 2010, JGR)

Rat

io-d

eriv

ed C

hl

Page 32: Rrs(λ - IOCCG

(Carder et al, 1999, JGR)

To accurately retrieve spatially and temporally varying Chl from Rrs, we need:

1. Remove the influence of detritus/CDOM and particles 2. Take into account the spatial/temporal variation of a*ph

A promising effort:

Brief summary about current satellite Chl product: • The map of Rrs ratio represents a map of total absorption coefficient. • The GSM-derived Chl represents more of phytoplankton absorption coefficient.

Page 33: Rrs(λ - IOCCG

pb:

(Platt et al 2008, RSE)

Pb is also dependent on a*ph,

which is not a constant either for a given Chl nor for varying Chl!

(Behrenfeld and Falkowski, 1997)

*

phm

b ap

Page 34: Rrs(λ - IOCCG

Carbon based Production Model (CbPM)

)(/)( 0 geu IfIhZChlNPP

actually aph from GSM )(/ gIf

C

Chl

(Behrenfeld et al 2005; Westberry et al 2008)

Another example of using remotely sensed IOPs for PP

bbp

aph from GSM

‘IOP-based growth rate’

‘IOP-based NPP’

Page 35: Rrs(λ - IOCCG

color

Works for most waters.

Kd()

KPAR

IOP

a, bb, aph

[chl]

ZSD, Zeu

[SPM]

{others}

2. Example of other applications of IOP products

PP

Page 36: Rrs(λ - IOCCG

2.1 Secchi depth (ZSD)

Water clarity

Page 37: Rrs(λ - IOCCG

(Olmanson et al 2008)

empirical approach:

Page 38: Rrs(λ - IOCCG

(Doron et al 2007) )490(&)490( bba

IOP approach:

Page 39: Rrs(λ - IOCCG

(Arnone et al 2004)

2.2 Water mass classification

Page 40: Rrs(λ - IOCCG

(Carnizzaro et al 2006)

2.3 HAB identification-1

aph(657)

Page 41: Rrs(λ - IOCCG

(Lee and Carder 2004)

2.3 HAB identification-2

Rrs(λ) aph(λ) = a(λ) – adg(λ) – aw(λ) QAA

Page 42: Rrs(λ - IOCCG

(Craig et al 2006)

K. b

revi

s

Page 43: Rrs(λ - IOCCG

(Shang et al, 2012)

2.4 Bloom dynamics

Distribution of aph(440) at Luzon Street

Page 44: Rrs(λ - IOCCG

(Shang et al, 2012)

Monthly distribution of aph(440) at Luzon Street

Page 45: Rrs(λ - IOCCG

2.5 Global physiology of ocean phytoplankton

φ: quantum yield of fluorescence (Behrenfeld et al 2009)

(Behrenfeld et al 2009)

IOP

Page 46: Rrs(λ - IOCCG

(Vodacek et al 1997)

2.6 Salinity estimation

Page 47: Rrs(λ - IOCCG

(Castellio et al 1999) SSS = x aCDOM + y

Page 48: Rrs(λ - IOCCG

Lohrenz and Cai (2006) pCO2 = f(T, S, Chl)

2.7 pCO2 estimation

Page 49: Rrs(λ - IOCCG

2.8 Concentrations of mineral particles (SPM; TSM)

Many publications in the literature

bbp [SPM]

(Neukermans et al 2009)

Page 50: Rrs(λ - IOCCG

Key Points:

1. Many applications traditionally built around [Chl] can be built around IOPs.

2. Remote sensing and applications centered around IOPs avoided, when necessary, concentration-normalized optical properties.

3. With IOPs as inputs, many products, e.g. Kd, Zeu, PP, could be estimated easily and more accurately.

4. When IOPs are known, many other applications could

be carried out. Be creative!!!