38
1 Ruslan Miftakhov Master of Science in Petroleum Engineering Joined FURSST group in Aug 2012

Ruslan Miftakhov Master of Science in Petroleum

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

1

Ruslan Miftakhov

Master of Science in Petroleum Engineering

Joined FURSST group in Aug 2012

β„› 𝒰𝑛+1; 𝒰𝑛, Δ𝑑 = 0

Chose Δ𝑑 Perform Newton iterations

If failed, chop Δ𝑑 and try again!

2

3

𝝏𝑺

𝝏𝒕+𝝏𝑭

𝝏𝒙= 𝟎

v

𝓑 = 𝑺𝒏+𝟏 βˆ’ 𝑺𝒏 +βˆ†π’•

𝑽𝑭(𝑺𝒏+𝟏) βˆ’ π‘­π’Šπ’π’‹

𝑆 βˆ†π‘‘π‘“π‘–π‘›π‘Žπ‘™

| β„› |

0

π‘žπ‘–π‘›π‘— 𝐹(𝑆)

𝑆

4

Failed

𝝏𝑺

𝝏𝒕+𝝏𝑭

𝝏𝒙= 𝟎

v

𝓑 = 𝑺𝒏+𝟏 βˆ’ 𝑺𝒏 +βˆ†π’•

𝑽𝑭(𝑺𝒏+𝟏) βˆ’ π‘­π’Šπ’π’‹

𝑆 βˆ†π‘‘π‘“π‘–π‘›π‘Žπ‘™

| β„› |

0

π‘žπ‘–π‘›π‘— 𝐹(𝑆)

𝑆

5

Converged

𝑆 βˆ†π‘‘π‘“π‘–π‘›π‘Žπ‘™

| β„› |

0

Δ𝑑

v

v

𝝏𝑺

𝝏𝒕+𝝏𝑭

𝝏𝒙= 𝟎

𝓑 = 𝑺𝒏+𝟏 βˆ’ 𝑺𝒏 +βˆ†π’•

𝑽𝑭(𝑺𝒏+𝟏) βˆ’ π‘­π’Šπ’π’‹

π‘žπ‘–π‘›π‘— 𝐹(𝑆)

𝑆

Safeguards

Classical

Trust Region

Line Search

Heuristic

Eclipse Appleyard (EA)

Modified Appleyard (MA)

Modified Trust-region (X. Wang)

6

Stiff Physics:

Thermal Simulation

Compositional Simulation

Coupled with geomechanics

7

8

𝒰 Δ𝑑

β„›

v

v

v

vv

πœ†

Zero level curve: β„› 𝒰 πœ† ,Δ𝑑 πœ† = 0

Parameterized curve: 𝑑ℛ

π‘‘πœ†= π’₯

d𝒰

π‘‘πœ†+πœ•β„› 𝒰𝑛+1,𝒰𝑛;Δ𝑑

πœ•Ξ”π‘‘

dΔ𝑑

π‘‘πœ†= 0

𝑑 =𝑑𝒰

π‘‘πœ†= βˆ’π’₯βˆ’1

πœ•β„›

πœ•Ξ”π‘‘

𝑑Δ𝑑

π‘‘πœ†

9

10

Drawbacks:

1. Convergence neighborhood

2. Too many residual evaluations

3. No optimal steplength, 𝛼

Choice of parameterization

Order of approximation accuracy

Robust steplength selection

11

Δ𝑑 parameterization:

-Requires no additional equation

Parameterization

unknown

Residual Equation Parameterization

πœ† β„› 𝒰 πœ† , Δ𝑑 πœ† = 0 𝑑ℛ

π‘‘πœ†=πœ•β„›

πœ•π’°

d𝒰

π‘‘πœ†+πœ•β„›

πœ•Ξ”π‘‘

dΔ𝑑

π‘‘πœ†= 0

Δ𝑑 β„› 𝒰 Δ𝑑 , Δ𝑑 = 0 𝑑ℛ

dΔ𝑑=πœ•β„›

πœ•π’°

d𝒰

πœ•Ξ”π‘‘+πœ•β„›

πœ•Ξ”π‘‘= 0

𝒰

Δ𝑑

β„›

πœ†12

Choice of parameterization

Order of approximation accuracy

Robust steplength selection

13

Taylor series expansion :

𝒰pred = 𝒰0 + Δ𝑑𝑑𝒰

𝑑Δ𝑑+Δ𝑑2

2!

𝑑2𝒰

𝑑Δ𝑑2+Δ𝑑3

3!

𝑑3𝒰

𝑑Δ𝑑3+Δ𝑑4

4!

𝑑4𝒰

𝑑Δ𝑑4…

Order of

approximation

Terms

(1) Zero Order 𝒰pred = 𝒰0

(2) First Order𝒰pred = 𝒰0 + Δ𝑑

𝑑𝒰

𝑑Δ𝑑

(3) Second Order𝒰pred = 𝒰0 + Δ𝑑

𝑑𝒰

𝑑Δ𝑑+Δ𝑑2

2!

𝑑2𝒰

𝑑Δ𝑑2

Δ𝑑

(1) (2) (3)

𝒰 1 𝒰 2 𝒰 3

Solution

path

𝒰𝑛+1

14

Parameterization

unknown

First order

approximationSecond order approximation

Δ𝑑 𝑑𝒰

𝑑Δ𝑑= βˆ’π’₯βˆ’1

πœ•β„›

πœ•Ξ”π‘‘

𝑑2𝒰

𝑑Δ𝑑2= βˆ’π’₯βˆ’1

πœ•π’₯

πœ•π’°β¨‚π‘‘π’°

𝑑Δ𝑑+πœ•π’₯

πœ•Ξ”π‘‘

𝑑𝒰

𝑑Δ𝑑+πœ•πΊ

πœ•π’°

𝑑𝒰

𝑑Δ𝑑+πœ•πΊ

πœ•Ξ”π‘‘

𝐺 =πœ•β„›

πœ•Ξ”π‘‘β¨‚ - Tensor-vector multiplication

15

16

Δ𝑑 = 0.8

(1) (2) (3)

𝒰 1 𝒰 2 𝒰 3

Solution

path

𝒰𝑛+1

Order of

approximationTerms

Predicted

valueError, 𝜺𝟎

(1) Zero Order Spred = 𝑆0 0.0 -0.6255

(2) First Order 𝑆pred = 𝑆0 + Δ𝑑𝑑𝑆

𝑑Δ𝑑0.80 0.1745

(3) Second Order 𝑆pred = 𝑆0 + Δ𝑑𝑑𝑆

𝑑Δ𝑑+Δ𝑑2

2!

𝑑2𝑆

𝑑Δ𝑑20.7488 0.1233

π‘žπ‘–π‘›π‘— 𝐹(𝑆)

𝑆𝑖𝑛𝑖𝑑 = 0.0

π‘†π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› 𝑆𝑛+1 = 0.6255

πœ€0

Choice of parameterization

Order of approximation accuracy

Robust steplength selection

17

18

𝛼

𝛼

𝒰

Δ𝑑

β„°0( 𝛼)

𝑑1

𝑑21 2 3 4 5

19

𝛼

𝛼

𝒰

Δ𝑑

𝑑1

𝑑21 2 3 4 5

πœ€

β„°0( 𝛼)

20

𝛼

𝛼

𝒰

Δ𝑑

β„°0( 𝛼)

𝑑1

𝑑2

1 2 3 4

πœ€

1 2 3 4 5

πœ€

π‘ˆ 𝑑 + Δ𝑑 = π‘ˆ 𝑑 + π›Όπ‘‘π‘ˆ 𝑑

𝑑Δ𝑑+𝛼2

2!π‘˜ 𝑑 𝑁 𝑑 + 𝑂 𝛼3

π‘ˆπ‘π‘Ÿπ‘’π‘‘ = π‘ˆ 𝑑 + π›Όπ‘‘π‘ˆ 𝑑

𝑑Δ𝑑

β„°0 = π‘ˆπ‘˜ βˆ’ π‘ˆπ‘π‘Ÿπ‘’π‘‘ β‰ˆπ›Ό2

2!π‘˜ 𝑑 𝑁 𝑑

Take 𝛼2

2!π‘˜ 𝑑 𝑁 𝑑 ≀ 𝛼

π‘‘π‘ˆ 𝑑

𝑑Δ𝑑

21

𝛼

π‘ˆπ‘˜ β‰ˆ π‘ˆβˆž π‘ˆ0

22

πœ‘ πœ€ =πœ€ + 10 βˆ’ πœ€2

5 βˆ’ πœ€2

πœ‘ πœ€ =πœ€2

3 βˆ’ 2πœ€

πœ‘ πœ€ = πœ€π‘

Assume Quadratic convergence

(Newton-Kantorovich):

SuperLinear error model:

23

π‘„π‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘ π‘π‘œπ‘›π‘£π‘’π‘Ÿπ‘”π‘’π‘›π‘π‘’ π‘šπ‘œπ‘‘π‘’π‘™: πœ‘ πœ€ =πœ€ + 10 βˆ’ πœ€2

5 βˆ’ πœ€2

πœ€π‘–+1 ≀ πœ‘(πœ€π‘–)

24

π‘†π‘’π‘π‘’π‘ŸπΏπ‘–π‘›π‘’π‘Žπ‘Ÿ π‘π‘œπ‘›π‘£π‘’π‘Ÿπ‘”π‘’π‘›π‘π‘’ π‘šπ‘œπ‘‘π‘’π‘™: πœ‘ πœ€ = πœ€π‘

πœ€π‘–+1 ≀ πœ‘(πœ€π‘–)

25

1 2 3 4 5 6

Iterations

πœ€

Error

26

1 2 3 4 5 6

Iterations

πœ€

Error

SubLinear

27

1 2 3 4 5 6

Iterations

πœ€

Error

SubLinear

SuperLinear

28

1 2 3 4 5 6

Iterations

πœ€

Error

SubLinear

SuperLinear

Quadratic

29

πœ€ 𝑁 = πœ€01 + exp 𝐡𝑀

1 + exp(βˆ’π΅(𝑁 βˆ’π‘€)), π‘€β„Žπ‘’π‘Ÿπ‘’ 𝐡 π‘Žπ‘›π‘‘ 𝑀 π‘Žπ‘Ÿπ‘’ 𝑓𝑖𝑑𝑑𝑖𝑛𝑔 π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘ 

𝐡 π‘‘π‘’π‘π‘’π‘›π‘‘π‘Žπ‘›π‘π‘¦ 𝑀 π‘‘π‘’π‘π‘’π‘›π‘‘π‘Žπ‘›π‘π‘¦

30

πœ€ 𝑁 = πœ€01 + exp 𝐡𝑀

1 + exp(βˆ’π΅(𝑁 βˆ’π‘€))

πœ€π‘–+1 ≀ πœ€π‘– Ξ²(𝐾)

Parameterization parameters

Order of Approximation accuracy

Robust Steplength selection

31

33

𝑑1

𝑑2

𝑑3Ξ”π‘‘π‘‘π‘Žπ‘Ÿπ‘”π‘’π‘‘

Ξ”t = 0

𝒰n+1𝑆0 = (𝒰n, 0)

𝑆2

𝑆3

Solution path

𝑆1Tiny initial

steplength

Steplength from

Adaptation

34

35

1D Buckley Leverett simulation :

36

π»π‘’π‘‘π‘’π‘Ÿπ‘œπ‘”π‘’π‘›π‘’π‘œπ‘’π‘  π‘”π‘Ÿπ‘–π‘‘ π‘€π‘–π‘‘β„Žπ·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ 60 Γ— 220 Γ— 50

6 π‘ƒπ‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘–π‘œπ‘› π‘Šπ‘’π‘™π‘™π‘ π‘ƒπ‘€π‘“ = 1500 𝑝𝑠𝑖.

2 πΌπ‘›π‘—π‘’π‘π‘‘π‘–π‘œπ‘› π‘Šπ‘’π‘™π‘™π‘ π‘ƒπ‘–π‘›π‘— = 5000 𝑝𝑠𝑖.

𝐼𝑛𝑐𝑙𝑒𝑑𝑒𝑑 πΊπ‘Ÿπ‘Žπ‘£π‘–π‘‘π‘¦ π‘Žπ‘›π‘‘πΆπ‘Žπ‘π‘–π‘™π‘™π‘Žπ‘Ÿπ‘¦ 𝑒𝑓𝑓𝑒𝑐𝑑𝑠

P1

P2

P3

P4

P5

P6

Inj1

Inj1

http://www.spe.org/

P1

P2

P3

P4

P5

P6

Inj1

Inj1

37

Modified Continuation-Newton:

Never cuts the timestep due to lack of convergence;

Devised a robust and automatic steplength selection strategy;

Showed that high-order CN methods are not competitive;

Future work:

Test on complex physics;

Implement in GENSOL.

38

39

Ruslan Miftakhov

Master of Science in Petroleum Engineering

Joined FURSST group in Aug 2012