78
講義ノート3:多期間モデル 稲葉 大 June 24th, 2010 @ Gakushuin E-mail: [email protected] http://masaru.inaba.googlepages.com/ 稲葉 大 () 多期間モデル 2010/06/24 @ Gakushuin 1 / 78

Slide Lecture3

Embed Size (px)

DESCRIPTION

DP

Citation preview

  • June 24th, 2010 @ Gakushuin

    E-mail: [email protected]://masaru.inaba.googlepages.com/

    () 2010/06/24 @ Gakushuin 1 / 78

  • () 2010/06/24 @ Gakushuin 2 / 78

  • I

    () 2010/06/24 @ Gakushuin 3 / 78

  • I.1

    maxct ;it ;kt+1

    TXt=0

    tu(ct)

    subject toct + it = f (kt)kt+1 kt = it kt; t = 0; ;T;k0 = k0kT+1 0:

    0 < < 1 (discount factor)u(0) = 0; u0() > 0; u00() < 0; u0(0) = 1; u0(1) = 0

    () 2010/06/24 @ Gakushuin 4 / 78

  • it

    maxct ;kt+1

    TXt=0

    tu(ct)

    subject to

    kt+1 kt = f (kt) ct kt t = 0; ; T; ( (transition equation))k0 = k0kT+1 0:

    () 2010/06/24 @ Gakushuin 5 / 78

  • L =TX

    t=0tu(ct)+

    TXt=0

    ttnf (kt)ctkt+1+(1)kt

    o+1(k0k0)+kT+1:

    (1)kt (state variable)ct (control variable)tt (costate variable)

    () 2010/06/24 @ Gakushuin 6 / 78

  • @L@ct

    = tu0(ct) tt = 0 (t = 0; 1; 2; ;T )@L@kt+1

    = tt + t+1t+1nf 0(kt+1) + (1 )

    o= 0 (t = 0; 1; 2; ;T 1)

    @L@kT+1

    = TT + = 0@L@t

    = tnf (kt) ct kt+1 + (1 )kt

    o= 0 (t = 0; 1; 2; ;T )

    @L@1

    = k0 k0 = 0:

    kT+1 0; 0; kT+1 = 0:

    () 2010/06/24 @ Gakushuin 7 / 78

  • u0(ct) = t (t = 0; 1; 2; ;T ) (2)t = t+1

    nf 0(kt+1) + (1 )

    o(t = 0; 1; 2; ;T 1) (3)

    TT = (4)kt+1 kt = f (kt) ct kt (t = 0; 1; 2; ;T ) (5)k0 = k0 (6)kT+1 0; 0; kT+1 = 0: (7)

    () 2010/06/24 @ Gakushuin 8 / 78

  • (2)(3)Euler

    u0(ct) = u0(ct+1)nf 0(kt+1) + (1 )

    o(8)

    (7)

    TT kT+1 = 0 (9)TT > 0

    kT+1 = 0:

    () 2010/06/24 @ Gakushuin 9 / 78

  • I.2t 1 (shadow price) (3)

    t = t+1nf 0(kt+1) + (1 )

    o(for t = 0; 1; 2; ;T 2) (10)

    (forward-looking variable)

    TT kT+1 = 0

    T kT+1 kT+1

    () 2010/06/24 @ Gakushuin 10 / 78

  • II

    () 2010/06/24 @ Gakushuin 11 / 78

  • II.1

    maxct ;kt+1

    1Xt=0

    tu(ct)

    s.t. kt+1 kt = f (kt) ct ktk0 = k0:

    L =1X

    t=0tu(ct)+

    1Xt=0

    ttnf (kt)ctkt+1+ (1)kt

    o+1(k0k0) (11)

    () 2010/06/24 @ Gakushuin 12 / 78

  • kt+1ct

    @L@ct

    = tu0(ct) tt = 0@L@kt+1

    = tt + t+1t+1nf 0(kt+1) + (1 )

    o= 0

    @L@t

    = tnf (kt) ct kt+1 + (1 )kt

    o= 0

    @L@1

    = k0 k0 = 0:

    () 2010/06/24 @ Gakushuin 13 / 78

  • u0(ct) = u0(ct+1)nf 0(kt+1) + (1 )

    o(12)

    kt+1 kt = f (kt) ct kt (13)k0 = k0 (14)

    T ! 1limt!1

    tu0(ct)kt+1 = 0: (15)

    () 2010/06/24 @ Gakushuin 14 / 78

  • II.1 (steady state)(1/3) (optimal path)

    u0(ct) = u0(ct+1)nf 0(kt+1) + (1 )

    o(16)

    kt+1 kt = f (kt) ct kt (17)k0 = k0

    ck

    u0(c) = u0(c)nf 0(k) + (1 )

    ok k = f (k) c k

    () 2010/06/24 @ Gakushuin 15 / 78

  • (steady state)(2/3)

    1 = nf 0(k) + (1 )

    o(18)

    c + k = f (k) (19)

    () 2010/06/24 @ Gakushuin 16 / 78

  • (steady state)(3/3)c

    kk

    ct+1 = ct

    kt+1 = ktE

    kg

    c

    () 2010/06/24 @ Gakushuin 17 / 78

  • (modified golden rule) kg(19)

    f 0(kg) =

    k > kg (dynamic inefficiency).k kg (dynamic efficiency).

    k (18)

    f 0(k) = 1 1 +

    . f 0()k < kg =) k

    () 2010/06/24 @ Gakushuin 18 / 78

  • II.3.(i): (phasediagram)(1/6)

    (optimal path)

    u0(ct) = u0(ct+1)nf 0(kt+1) + (1 )

    o(20)

    kt+1 kt = f (kt) ct kt (21)k0 = k0

    () 2010/06/24 @ Gakushuin 19 / 78

  • (phase diagram)(2/6)(ct+1 = ct)ct+1 = ct k < k f 0(k)

    1 < f 0(k) + (1 )

    (20)u0(ct)

    u0(ct+1) = nf 0(kt+1) + (1 )

    o> 1

    ()u0(ct) > u0(ct+1)()ct+1 > ct

    u0()ct+1 = ctct+1 = ct

    () 2010/06/24 @ Gakushuin 20 / 78

  • (phase diagram)(3/6)

    k < k

    .

    .

    .

    1 f 0(k) + (1 )

    .

    .

    .

    2

    .

    .

    .

    3 ct+1 > ct.

    k > k

    .

    .

    .

    1 f 0(k) + (1 )

    .

    .

    .

    2

    .

    .

    .

    3 ct+1 < ct

    () 2010/06/24 @ Gakushuin 21 / 78

  • (phase diagram)(4/6)c

    kk

    ct+1 = ct

    kgFigure: ct+1 = ct

    () 2010/06/24 @ Gakushuin 22 / 78

  • (phase diagram)(5/6)(kt+1 = kt)kt+1 = kt kt+1 = kt c + k = f (k) kc

    c + k > f (k)(21)

    kt+1 kt = f (kt) ct kt < 0()kt+1 < kt

    kt+1 = kt

    () 2010/06/24 @ Gakushuin 23 / 78

  • (phase diagram)(6/6)c

    k

    kt+1 = kt

    kgFigure: kt+1 = kt

    () 2010/06/24 @ Gakushuin 24 / 78

  • (ii): (optimalpath)(1/7)c

    kk

    ct+1 = ct

    kt+1 = ktE

    kg

    c

    IV

    III

    III

    Figure: () 2010/06/24 @ Gakushuin 25 / 78

  • (optimal path)(2/7)

    k0

    u0(ct) = u0(ct+1)nf 0(kt+1) + (1 )

    okt+1 kt = f (kt) ct ktk0 = k0

    c0

    () 2010/06/24 @ Gakushuin 26 / 78

  • (optimal path)(3/7)c

    kk

    ct+1 = ct

    kt+1 = ktE

    kgk0

    cl0

    c0cu0

    O E0

    Figure: II () 2010/06/24 @ Gakushuin 27 / 78

  • (optimal path)(4/7)c0cu0

    .

    . .1 I

    .

    .

    .

    2 kt+1 = kt IV

    .

    .

    .

    3 IV

    .

    .

    .

    4 (c; k) = (0; 0)

    .

    .

    .

    1

    .

    .

    .

    2 limc!0 u0(c) = 1.

    .

    .

    .

    3

    .

    .

    .

    4 cu0 () 2010/06/24 @ Gakushuin 28 / 78

  • (optimal path)(5/7)

    cl0

    .

    .

    .

    1 I

    .

    .

    .

    2 ct+1 = ct II

    .

    .

    .

    3

    .

    .

    .

    4 E0

    () 2010/06/24 @ Gakushuin 29 / 78

  • (optimal path)(6/7)

    .

    .

    .

    1 limc!0 u0(c) = 1

    .

    .

    .

    2 E0

    .

    .. 3 E0 kg

    f 0(k) <

    .

    .

    .

    4 (20)u0(ct+1)u0(ct) =

    1 f 0(kt+1) + (1 ) > 1

    u0(ct) 1t

    .

    .

    .

    5 limt!1 tu0(ct) = 1 limt!1 kt = kE0

    limt!1

    tu0(ct)kt+1 = 1

    .

    .

    .

    6 cl0 () 2010/06/24 @ Gakushuin 30 / 78

  • (optimal path)(7/7)

    c0 4 cl0

    (saddle path)

    () 2010/06/24 @ Gakushuin 31 / 78

  • II.4

    .

    .

    .

    1

    .

    .

    .

    2

    () 2010/06/24 @ Gakushuin 32 / 78

  • (i)

    u0(ct) = u0(ct+1)nf 0(kt+1) + (1 )

    o(22)

    kt+1 kt = f (kt) ct kt: (23) (constant relative risk aversion, CRRA)

    u(c) = c1

    1 1

    f (k) = Ak

    ct = ct+1

    nAk1t+1 + (1 )

    o(24)

    kt+1 kt = Akt ct kt (25)1 Y = AK(L)1 y = Ak

    () 2010/06/24 @ Gakushuin 33 / 78

  • II.5 (shooting algorithm)

    k0(24)(25) c0 c0 c0 (shooting algorithm)

    () 2010/06/24 @ Gakushuin 34 / 78

  • (steady state)(24) (25)

    1 = nAk1 + (1 )

    o(26)

    c + k = Ak (27)

    k =8>>>:

    1 (1 )A

    9>>=>>;1

    1

    (28)

    c = Ak k (29)

    () 2010/06/24 @ Gakushuin 35 / 78

  • (i): (shootingalgorithm)

    .

    .

    .

    1

    .

    .

    .

    2 cl cu

    .

    .

    .

    3 c0 =cl+cu

    2

    .

    .

    .

    4 k0 c0(24)(25)t = 1; 2; 3; ;

    .

    .

    .

    5 t

    .

    .

    .

    1 kt > kcl = c0step 3

    .

    .

    .

    2 kt < kcu = c0step 3

    .

    .

    .

    3 k kt <

    .

    .

    .

    6 c0ct; kt

    () 2010/06/24 @ Gakushuin 36 / 78

  • (ii) Matlab Code (1/10)% determinisitic model

    % shooting algorithm for simple optimal growth model

    % u(c)=c^(1-sigma)/(1-sigma)

    % y=Ak^alpha

    % 2008/11/22

    % Masaru Inaba at YNU

    % 6Matlab% shootingclear all;

    close all;

    set(0,'defaultAxesFontSize',12);

    set(0,'defaultAxesFontName','century');

    set(0,'defaultTextFontSize',12);

    set(0,'defaultTextFontName','century');

    () 2010/06/24 @ Gakushuin 37 / 78

  • Matlab Code (2/10)% ================

    % parameters

    % ================

    alpha=0.3; % capital share

    beta=0.98; % discount factor

    delta=0.08; % depreciation rate

    sigma=2; % relative risk aversion

    T=100; % maximum time for simulation

    A=1*ones(T,1); % productivity (which is constant for all t)

    % ====================

    % steady state values

    % ====================

    A_ss=1; %productivity in ss

    % ss capital, equation (28)

    k_ss=((1/beta-(1-delta))/(alpha*A_ss))^(1/(alpha-1));

    % ss consumption, equation(29)

    c_ss=A_ss*k_ss^alpha-delta*k_ss;

    () 2010/06/24 @ Gakushuin 38 / 78

  • Matlab Code (3/10)

    % =====================

    % initialization

    % =====================

    k_0=0.1; % initial value of capital

    % lower bound of initial value of consumption

    c_under=0.000000001;

    % upper bound of initial value of consumption

    c_upper=A_ss*k_0^alpha-delta*k_0;

    % initialize path vector of capital as zero vector

    k=zeros(T,1);

    % initialize path vector of consumption as zero vector

    c=zeros(T,1);

    () 2010/06/24 @ Gakushuin 39 / 78

  • Matlab Code (4/10)

    % ======================

    % shooting algorithm

    % ======================

    % start while iteration

    while (abs(k(T)-k_ss)>1e-8)&(abs(c(T)-c_ss)>1e-8);

    % initialize path vector of capital as zero vector k=zeros(T,1);% initialize path vector of consumption as zero vector c=zeros(T,1); c0temp=(c_upper+c_under)/2; % initialization of c_0

    () 2010/06/24 @ Gakushuin 40 / 78

  • Matlab Code (5/10)

    %-----------% at t=1%----------- t=1; % note that Matlab can not apply the number of index 0 k(t)=k_0; c(t)=c0temp;% equation (25) k(t+1)=A(t)*k(t)^alpha-c(t)-delta*k(t)+k(t);% equation (24) c(t+1)=(c(t)^(-sigma).../(beta*(alpha*A(t+1)*k(t+1)^(alpha-1)+(1-delta))))^(-1/sigma);

    () 2010/06/24 @ Gakushuin 41 / 78

  • Matlab Code (6/10)

    %---------------% for t=2 to T-1%--------------- for t=2:T-1;% equation (25) k(t+1)=A(t)*k(t)^alpha-c(t)-delta*k(t)+k(t);% flag 1 means k(t) is too big if k(t+1)>2*k_ss; flag=1; break; end;% flag 2 means k(t) is too small if k(t+1)

  • Matlab Code (7/10)%---------------% diagnosis%--------------- if t==T-1; if k(T)>k_ss; flag=1 % flag 1 means k(T) is too big else flag=2 % flag 2 means k(T) is too small end end if flag==1; c_under=c0temp elseif flag==2; c_upper=c0temp end clear flagend % end of while iteration loop

    disp('We found!'); % the end of shooting algorithm.

    () 2010/06/24 @ Gakushuin 43 / 78

  • Matlab Code (8/10)% =============================

    % code for the graph plottings

    % =============================

    % data for equation (27);

    k_Eprime=(delta/A_ss)^(1/(alpha-1)); % position of E'

    % data for plotting equation (27)

    k_27=linspace(0,k_Eprime,1000); % vector of k in (27)

    c_27=A_ss.*k_27.^alpha-delta.*k_27; % vector of c in (27)

    % data for plotting equation (26)

    c_26=linspace(0,2*c_ss,100);

    k_26=k_ss*ones(100,1);

    % data for initial value plotting

    k_initial=k_0*ones(100);

    c_kinitial=linspace(0,(A_ss*k_0^alpha-delta*k_0),100);

    % data for optimal initial consumption

    coptini=c(1,1)*ones(100);

    koptini=linspace(0,k_0,100);

    () 2010/06/24 @ Gakushuin 44 / 78

  • Matlab Code (9/10)

    figure(1);

    % plot equation(27)

    plot(k_27,c_27);axis([0,1.05*k_Eprime,0,1.3*c_ss]);hold on;

    % plot equation(26)

    plot(k_26,c_26);

    plot(k,c,'m','LineWidth',2);% plot for optimal path

    plot(k_initial,c_kinitial,':'); % plot for k_0

    plot(koptini,coptini,':'); % plot for optimal c_0

    text(k_0,-0.15,'k_{0}');

    text(-0.8,c(1,1),'c_0');

    text(k_ss,-0.15,'k_{ss}');

    text(k_ss,1.03*c_ss,'E');

    text(k_Eprime,-0.15,'E^\prime');

    hold off;

    () 2010/06/24 @ Gakushuin 45 / 78

  • Matlab Code (10/10)figure(2);

    % plot equation(27)

    plot(k_27,c_27);axis([0,1.3*k_ss,0,1.3*c_ss]);hold on;

    % plot equation(26)

    plot(k_26,c_26;

    plot(k,c,'m','LineWidth',2);% plot for optimal path

    plot(k_initial,c_kinitial,':'); % plot for k_0

    plot(koptini,coptini,':'); % plot for optimal c_0

    text(k_0,-0.15,'k_{0}');

    text(-0.2,c(1,1),'c_0');

    text(k_ss,-0.15,'k_{ss}');

    text(k_ss,1.03*c_ss,'E');

    text(k_Eprime,-0.15,'E^\prime');

    hold off;

    Matlab

    () 2010/06/24 @ Gakushuin 46 / 78

  • 1 by shooting algorithm

    0 5 10 15 20 25 30 350

    0.5

    1

    1.5

    k0

    c0

    kss

    E

    E

    Figure: Phase diagram for shooting 1 () 2010/06/24 @ Gakushuin 47 / 78

  • 0 1 2 3 4 5 60

    0.5

    1

    1.5

    k0

    c0

    kss

    E

    Figure: Phase diagram for shooting 2 () 2010/06/24 @ Gakushuin 48 / 78

  • II.6

    () 2010/06/24 @ Gakushuin 49 / 78

  • (i): (1/6): f (x) a

    f (x) = f (a) + f 0(a)(x a) + 12!

    f 00(a)(x a)2 + 13! f000(x a)2 +

    () =1X

    n=0

    1n!

    f n(a)(x a)n

    f (x) f (a) + f 0(a)(x a) (30) () 2010/06/24 @ Gakushuin 50 / 78

  • (2/6) f (x) x = aax a

    a

    f (x)

    x

    f (x)

    f (a) + f 0(a)(x a)

    Figure: () 2010/06/24 @ Gakushuin 51 / 78

  • (3/6)

    f (x; y) = f (a; b) + fx(a; b)(x a) + fy(a; b)(y b)+

    12!

    nfxx(a; b)(x a)2 + 2 fxy(x a)(y b) + fyy(a; b)(y b)3

    o+

    fx = @ f (x;y)@x f (x; y) f (a; b) + fx(a; b)(x a) + fy(a; b)(y b) (31)

    () 2010/06/24 @ Gakushuin 52 / 78

  • (4/6) (log-linearization) xln xln a2

    x = eln x

    3 f (x) = feln x

    ln x

    (30)

    f (x) feln a

    +@ f

    eln x

    @ ln x

    (ln x ln a)() f (x) f (a) + a f 0(a)(ln x ln a)

    2ln3e dexdx = ex

    () 2010/06/24 @ Gakushuin 53 / 78

  • (5/6)

    x = eln x

    f (x) = feln x

    ln x

    @ feln x

    @ ln x

    =@ f (x)@x

    @eln x

    @ ln x= f 0(x)x

    () 2010/06/24 @ Gakushuin 54 / 78

  • (6/6)

    f (x) f (a) + a f 0(a)(ln x ln a)

    ln(x) ln(a) = ln

    x

    a

    = ln

    x a

    a+ 1

    x a

    a(32)

    xaax a

    apersentage deviationa

    () 2010/06/24 @ Gakushuin 55 / 78

  • (ii)

    (24) (25)(26) (27)

    k =8>>>:

    1 (1 )A

    9>>=>>;1

    1

    c = Ak k:

    () 2010/06/24 @ Gakushuin 56 / 78

  • (25)(25)

    kt+1 k + 1 (kt+1 k)kt k + 1 (kt k)

    Akt Ak + Ak1(kt k)ct c + 1 (ct c)kt k + (kt k)

    (25)kt+1 kt = Akt ct kt

    ()(k + kt+1 k) (k + kt k) = Ak + Ak1(kt k) (c + ct c) fk + (kt k)g

    ()(kt+1 k) (kt k) = Ak1(kt k) (ct c) (kt k)( (27))

    () 2010/06/24 @ Gakushuin 57 / 78

  • xt xt x (x)

    kt+1 kt = Ak1 kt ct kt()kt+1 = Ak1 + 1 )kt ct()kt+1 = 1

    kt ct ((26))

    ()kt+1 = 1 kt ct (33)1 = 1 > 0

    () 2010/06/24 @ Gakushuin 58 / 78

  • (24)(24)

    ct c c1(ct c)

    ct+1nAk1t+1 + (1 )

    o c

    nAk1 + (1 )

    o c1

    nAk1 + (1 )

    o(ct+1 c)

    + cn( 1)Ak2

    o(kt+1 k)

    (24)c1(ct c)

    = c1(ct+1 c) + cn( 1)Ak2

    o(kt+1 k)

    () 2010/06/24 @ Gakushuin 59 / 78

  • xt xt x c1ct = c1ct+1 +

    n( 1)Ak2

    okt+1

    , ct = ct+1 + 2 kt+1, ct+1 ct = 2 kt+1 (34)

    2 =

    n(1)Ak2

    oc1 > 0

    () 2010/06/24 @ Gakushuin 60 / 78

  • (33)(34)kt+1 = 1 kt ctct+1 ct = 2 kt+1

    ct

    kt+2 (1 + 1 + 2)kt+1 + 1 kt = 0, kt+2 3 kt+1 + 1 kt = 0

    3 = 1 + 1 + 2

    () 2010/06/24 @ Gakushuin 61 / 78

  • 2 3 + 1 = 01;2 =

    3p

    23412

    1 > 1 2 < 1=)

    kt k = b1t1 + b2t2

    1 > 1 2 < 1 0 kt = k b1 = 0

    () 2010/06/24 @ Gakushuin 62 / 78

  • ckk

    ct+1 = ct

    kt+1 = ktE

    kg

    c

    Figure: Linearized dynamics () 2010/06/24 @ Gakushuin 63 / 78

  • III

    () 2010/06/24 @ Gakushuin 64 / 78

  • III

    () 2010/06/24 @ Gakushuin 65 / 78

  • III.1

    (one representative household) (goods)

    () 2010/06/24 @ Gakushuin 66 / 78

  • (i)

    1Xt=0

    tu(ct): (35)

    u()u(0) = 0; u0() > 0; u00() < 0; u0(0) = 1; u0(1) = 0

    () 2010/06/24 @ Gakushuin 67 / 78

  • yt = f (kt) (36) f (kt)

    MPK = f 0(k) > 0f 00(k) < 0limk!0

    f 0(k) = 1limk!1

    f 0(k) = 0

    () 2010/06/24 @ Gakushuin 68 / 78

  • III.2.(i) (ConsumerProblem (CP))

    (CP) maxct ;it ;at+1

    1Xt=0

    tu(ct):

    s.t. ct + it = wt + rtat (37)at+1 at = it at (38)a0 = a0

    (37)ta a0w (real wage) w 1 r (real rental price)

    () 2010/06/24 @ Gakushuin 69 / 78

  • at+1ctt

    u0(ct) = u0(ct+1)nrt+1 + 1

    o

    at+1 at = wt + rtat ct ata0 = a0.

    T ! 1limt!1

    tu0(ct)at+1 = 0: (39)

    () 2010/06/24 @ Gakushuin 70 / 78

  • a1 = w0 + (r0 + 1 )a0 c0 (t = 0) (40)a2 = w1 + (r1 + 1 )a1 c1 (t = 1) (41)a3 = w1 + (r1 + 1 )a2 c2 (t = 2) (42):::

    at+1 = wt + (rt + 1 )at ct (for all t) (43)(40) (41) a1

    c0

    1 + r0 +c1

    (1 + r0 )(1 + r1 ) +a2

    (1 + r0 )(1 + r1 ) =w0

    1 + r0 +w1

    (1 + r0 )(1 + r1 ) + a0

    () 2010/06/24 @ Gakushuin 71 / 78

  • (42)a2c0

    1 + r0 +c1

    (1 + r0 )(1 + r1 ) +c2

    (1 + r0 )(1 + r1 )(1 + r2 )+

    a3

    (1 + r0 )(1 + r1 )(1 + r2 )=

    w0

    1 + r0 +w1

    (1 + r0 )(1 + r1 )+

    w2

    (1 + r0 )(1 + r1 )(1 + r2 ) + a0:

    t (43)1X

    t=0

    ctQtj=0(1 + r j )

    + limt!1

    at+1Qtj=0(1 + r j )

    = a0 +

    1Xt=0

    wtQtj=0(1 + r j )Qt

    j=1 x j = x1 x2 xt

    () 2010/06/24 @ Gakushuin 72 / 78

  • limt!1

    at+1Qtj=0(1 + r j )

    at (no Ponzi gamecondition)

    limt!1

    at+1Qtj=0(1 + r j )

    = 0 (44)

    () 2010/06/24 @ Gakushuin 73 / 78

  • u0(ct) = u0(ct+1)

    nrt+1 + 1

    o() 1

    1 + rt+1 = u0(ct+1)u0(ct)

    (45)limt!1

    tu0(ct)at+1u0(c0)(1 + r0 ) = 0 (45)

    u0(c0)(1 + r0 ) = 1 (intertemporal budget constraint)

    1Xt=0

    ctQtj=0(1 + r j )

    = a0 +

    1Xt=0

    wtQtj=0(1 + r j )

    : (46)

    .

    () 2010/06/24 @ Gakushuin 74 / 78

  • III.3 (Firm Problem(FP))

    maxKt ;Lt

    Ft(Kt; Lt) rtKt wtLt (47)Lt

    maxkt

    f (kt) rtkt wt (48)

    kt

    f 0(kt) = rt (49) wt

    wt = f (kt) rtkt (50) () 2010/06/24 @ Gakushuin 75 / 78

  • III.4 (Competitive Equilibrium)

    market clearingcondition

    () 2010/06/24 @ Gakushuin 76 / 78

  • (allocation)ct; it; at+1; kt+1; yt (prices)wt; rt

    .

    ..

    1 wt; rtct, it, at+1

    .

    .

    .

    2 wt; rt kt

    .

    .

    .

    3 (market clearing)

    I 1 1I at kt

    .

    .

    .

    4

    ct + it = yt

    () 2010/06/24 @ Gakushuin 77 / 78

  • F.O.C.s

    u0(ct) = u0(ct+1)(1 + rt+1 ) (51)f 0(kt) = rt (52)wt = f (kt) rtkt (53)yt = f (kt) (54)ct + it = yt (55)it = kt+1 (1 )kt (56)k0 = k0: (57)

    () 2010/06/24 @ Gakushuin 78 / 78

    (steady state)(1/3)(shooting algorithm)

    (Firm Problem (FP))(Competitive Equilibrium)