smd 357

Embed Size (px)

Citation preview

  • 7/30/2019 smd 357

    1/6

    April 1997

    NDS351AN

    N-Channel Logic Level Enhancement Mode Field Effect Transistor

    General Description Features

    _________________________________________________________________________________

    Absolute Maximum Ratings T A = 25C unless otherwise notedSymbol Parameter NDS351AN Units

    VDSS Drain-Source Voltage 30 V

    VGSS Gate-Source Voltage - Continuous 20 V

    ID Maximum Drain Current - Continuous (Note 1a) 1.2 A

    - Pulsed 10

    P D Maximum Power Dissipation (Note 1a) 0.5 W(Note 1b) 0.46

    TJ ,T STG Operating and Storage Temperature Range -55 to 150 C

    THERMAL CHARACTERISTICS

    R JA Thermal Resistance, Junction-to-Ambient (Note 1a) 250 C/W

    R JC Thermal Resistance, Junction-to-Case (Note 1) 75 C/W

    NDS351AN Rev. C

    1.2A, 30 V. R DS(ON) = 0.25 @ V GS = 4.5 V R DS(ON) = 0.16 @ V GS = 10 V.

    Industry standard outline SOT-23 surface mount packageusing proprietary SuperSOT TM-3 design for superior

    thermal and electrical capabilities.

    High density cell design for extremely low R DS(ON) .

    Exceptional on-resistance and maximum DC currentcapability.

    Compact industry standard SOT-23 surface mount

    D

    SG

    These N-Channel logic level enhancement mode power fieldeffect transistors are produced using Fairchild's proprietary,high cell density, DMOS technology. This very high densityprocess is especially tailored to minimize on-state resistance.These devices are particularly suited for low voltageapplications in notebook computers, portable phones, PCMCIAcards, and other battery powered circuits where fastswitching, and low in-line power loss are needed in a very smalloutline surface mount package.

    19 97 Fairchild Semiconduct or Corporat ion

  • 7/30/2019 smd 357

    2/6

    Electrical Characteristics (T A = 25C unless otherwise noted)Symbol Parameter Conditions Min Typ Max Units

    OFF CHARACTERISTICS

    BVDSS Drain-Source Breakdown Voltage V GS = 0 V, I D = 250 A 30 V

    IDSS Zero Gate Voltage Drain Current VDS = 24 V, V GS = 0 V 1 A

    TJ =125C 10 AIGSSF Gate - Body Leakage, Forward V GS = 20 V DS = 0 V 100 nA

    IGSSR Gate - Body Leakage, Reverse VGS = -20 V, V DS = 0 V -100 nA

    ON CHARACTERISTICS (Note 2)

    VGS(th) Gate Threshold Voltage V DS = VGS , ID = 250 A 0.8 1.7 2 V

    TJ =125C 0.5 1.3 1.5

    RDS(ON) Static Drain-Source On-Resistance VGS = 4.5 V, I D = 1.2 A 0.19 0.25

    TJ =125C 0.28 0.37

    VGS = 10 V, I D = 1.4 A 0.125 0.16

    ID(ON) On-State Drain Current VGS = 4.5 V, V DS = 5 V 3.5 A

    gFS Forward Transconductance VDS = 5 V, I D= 1.2 A, 1.8 S

    DYNAMIC CHARACTERISTICSC iss Input Capacitance VDS = 10 V, V GS = 0 V,

    f = 1.0 MHz125 pF

    C oss Output Capacitance 100 pF

    C rss Reverse Transfer Capacitance 90 pF

    SWITCHING CHARACTERISTICS (Note 2)

    td(on) Turn - On Delay Time V DD = 10 V, I D = 1 A,VGS = 10 V, R GEN = 50

    6 15 ns

    tr Turn - On Rise Time 15 30 ns

    td(off) Turn - Off Delay Time 14 30 ns

    tf Turn - Off Fall Time 18 40 ns

    Q g Total Gate Charge V DS = 10 V, I D = 1.2 A,VGS = 4.5 V

    1.9 2.7 nC

    Q gs Gate-Source Charge 0.5 nC

    Q gd Gate-Drain Charge 0.9 nC

    NDS351AN Rev. C

  • 7/30/2019 smd 357

    3/6

    Electrical Characteristics (T A = 25C unless otherwise noted)Symbol Parameter Conditions Min Typ Max Units

    DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

    IS Maximum Continuous Drain-Source Diode Forward Current 0.42 A

    ISM Maximum Pulsed Drain-Source Diode Forward Current 5 A

    VSD Drain-Source Diode Forward Voltage V GS = 0 V, I S = 1.2 A (Note 2) 0.8 1.2 VNotes:

    1. R JA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the sol der mounting surface of the drain pins. R JC is

    guaranteed by design while R CA is determined by the user's board design.

    P D (t ) =T J T AR JA (t )

    =T J T A

    R JC + R CA (t )= I D

    2 (t ) R DS (ON ) T J

    Typical R JA using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

    a. 250 oC/W when mounted on a 0.02 in 2 pad of 2oz copper.b. 270 oC/W when mounted on a 0.001 in 2 pad of 2oz copper.

    Scale 1 : 1 on letter size paper

    2. Pulse Test: Pulse Width < 300s, Duty Cycle < 2.0%.

    NDS351AN Rev. C

    1 a 1b

  • 7/30/2019 smd 357

    4/6

    NDS351AN Rev. C

    Figure 1. On-Region Characteristics .

    0 1 2 30

    1

    2

    3

    4

    5

    V , DRAIN-SOURCE VOLTAGE (V)

    I , D

    R A I N - S

    O U R C E C U R R E N T ( A )

    3.5

    3.0

    6.0V =10VGS

    DS

    D

    4.04.5

    5.0

    Figure 2. On-Resistance Variationwith Drain Current and Gate Voltage .

    0 1 2 3 40.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    I , DRAIN CURRENT (A)

    D R A I N - S

    O U R C E O N - R

    E S I S T A N C E

    T = 125CJ

    25C

    D

    V = 4.5 VGS

    -55C R

    , N O R M A L I Z E D

    D S ( o n )

    Figure 4. On-Resistance Variationwith Drain Current and Temperature .

    -50 -25 0 25 50 75 100 125 1500.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    T , JUNCTION TEMPERATURE (C)

    D R A I N - S

    O U R C E O N - R

    E S I S T A N C E

    J

    V = 4.5VGS

    I = 1.2AD

    R

    , N O R M A L I Z E D

    D S ( O N )

    Figure 3. On-Resistance Variationwith Temperature .

    0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    1

    2

    3

    4

    5

    V , GATE TO SOURCE VOLTAGE (V)

    I , D

    R A I N C U R R E N T ( A )

    25C

    125C

    V = 5.0VDS

    GS

    D

    T = -55CJ

    Figure 5. Transfer Characteristics.

    -50 -25 0 25 50 75 100 125 1500.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    T , JUNCTION TEMPERATURE (C)

    G A T E - S

    O U R C E T H R E S H O L D V O L T A G E

    J

    I = 250ADV = VDS GS

    V , N

    O R M A L I Z E D

    t h

    Figure 6. Gate Threshold Variationwith Temperature .

    0 1 2 3 40.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    I , DRAIN CURRENT (A)

    D R A I N - S

    O U R C E O N - R

    E S I S T A N C E

    V = 3.5VGS

    D

    4. 0

    7. 06.0

    10

    5.04.5

    R D S ( o n ) , N

    O R M A L I Z E D

    Typical Electrical Characteristics

  • 7/30/2019 smd 357

    5/6

    NDS351AN Rev. C

    Typical Electrical Characteristics (continued)

    - 50 -25 0 25 5 0 75 10 0 1 2 5 1500.92

    0.96

    1

    1.04

    1.08

    1.12

    T , JUNCTION TEMPERATURE (C)

    D R A I N - S

    O U R C E B R E A K D O W

    N V O L T A G E

    I = 2 5 0 AD

    B V

    , N O R M A L I Z E D

    D S S

    J

    Figure 7. Breakdown Voltage Variation withTemperature .

    0.1 0.2 0.5 1 2 5 10 20 3050

    80

    100

    150

    200

    300

    400

    V , DRAIN TO SOURCE VOLTAGE (V)

    C A P A C I T A N C E ( p F )

    DS

    C iss

    f = 1 MHzV = 0VGS

    C oss

    C rss

    Figure 9. Capacitance Characteristics .

    0 0.2 0.4 0.6 0.8 1 1.20.0001

    0.001

    0.01

    0.1

    1

    5

    V , BODY DIODE FORWARD VOLTAGE (V)

    I , R

    E V E R S E D R A I N C U R R E N T ( A )

    T = 125CJ

    25C

    -55C

    V = 0VGS

    SD

    S

    Figure 8. Body Diode Forward Voltage Variation withSource Current and Temperature .

    0 1 2 3 40

    2

    4

    6

    8

    10

    Q , GATE CHARGE (nC)

    V

    , G A T E - S

    O U R C E V O L T A G E ( V )

    g

    G S

    I = 1.2AD 10V

    15V

    V = 5VDS

    Figure 10. Gate Charge Characteristics .

    G

    D

    S

    VDD

    R LV

    V

    IN

    OU T

    VGSDU TR GEN

    Figure 11. Switching Test Circuit . Figure 12. Switching Waveforms .

    10 %

    50 %

    90 %

    10 %

    90 %

    90 %

    50 %V IN

    VOU T

    on off

    d(off) f r d(on)

    t tt ttt

    INVERTED10 %

    PULSE WIDTH

  • 7/30/2019 smd 357

    6/6

    NDS351AN Rev. C

    Typical Electrical Characteristics (continued)

    0 1 2 3 4 50

    1

    2

    3

    4

    5

    I , DRAIN CURRENT (A)

    g

    , T R A N S C O N D U C T A N C E ( S I E M E N S )

    T = -55CJ

    25C

    D

    F S

    V = 5.0VDS

    125C

    Figure 13. Transconductance Variation withDrain Current and Temperature .

    0 0.1 0.2 0.3 0.40

    0.2

    0.4

    0.6

    0.8

    1

    2oz COPPER MOUNTING PAD AREA (in )

    S T E A D Y - S

    T A T E P O W E R D I S S I P A T I O N ( W )

    2

    1b

    1a

    4.5"x5" FR-4 BoardT = 25 CStill Air A

    o

    Figue 15. SuperSOT TM _ 3 Maximum Steady-StatePower Dissipation versus Copper Mounting Pad Area.

    0.1 0.2 0.5 1 2 5 10 20 30 500.01

    0.03

    0.1

    0.3

    1

    35

    10

    20

    V , DRAI N-SOURCE VOLTAGE (V)

    I , D

    R A I N C U R R E N T ( A )

    DS

    D D C

    1 s

    1 0 m s

    1 0 0 m s

    1 0 s

    1 m s

    R D S ( O N

    ) L I M I T

    V = 4.5VSINGLE PULSE

    R =See Note1bT = 25C

    GS

    A

    JA

    Figure 14. Maximum Safe Operating Area.

    0 0.1 0.2 0.3 0.40. 8

    1

    1. 2

    1. 4

    1. 6

    2oz COPPER MOUNTING PAD AREA (in )

    I , S

    T E A D Y - S

    T A T E D R A I N C U R R E N T ( A )

    2

    1b

    1a

    D

    4.5"x5" FR-4 Board

    T = 25 C

    Still Air

    V = 4 .5V

    Ao

    GS

    Figure 16. Maximum Steady-State DrainCurrent versus Copper Mounting Pad Area .

    0.0001 0.001 0.01 0.1 1 10 100 3000.001

    0.002

    0.005

    0.01

    0.02

    0.05

    0.1

    0.2

    0.5

    1

    t , TIME (sec)

    T R A N S I E N T T H E R M A L R E S I S T A N C E

    Duty Cycle, D = t /t1 2

    R (t) = r(t) * RR = See Note 1b

    JAJA

    JA

    T - T = P * R (t)JA A

    J

    P(pk)

    t1t 2

    r ( t ) , N O R M A L I Z E D E F F E C T I V E

    1

    Single Pulse

    D = 0.5

    0.1

    0.05

    0.02

    0.01

    0.2

    Figure 17. Transient Thermal Response Curve.Note : Characterization performed using the conditions described in note 1b. Transient thermal response will

    change depending on the circuit board design.