47
Stellar/Planetary Atmospheres Part 0 Peter Hauschildt [email protected] Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 14. März 2018 1 / 47

Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt [email protected] Hamburger

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Stellar/Planetary AtmospheresPart 0

Peter [email protected]

Hamburger SternwarteGojenbergsweg 112

21029 Hamburg

14. März 2018

1 / 47

Page 2: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Allgemeines/Organisation

I Wie kann man mich erreichen:I Email: [email protected] Tel: 040 428 38 - 8512I nach der VorlesungI an der Sternwarte (bitte vorher Termin vereinbaren!)

I Bei Unklarheiten bitte sofort fragen!

2 / 47

Page 3: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Allgemeines/Organisation

I Vorkenntnisse:I Mathe/Physik: BSc. PhysikI (good) Astro: Einführung in die Astronomie I+III (helpful) Computer: Unix, Programmiersprache (Fortran

2008, C, C++, Perl, Python, Julia)I Format: Wöchentliche Vorlesung (3SWS) + 1SWS

Übungen

3 / 47

Page 4: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Leistungsnachweis

I Abschlussklausur (take home exam)/mündliche PrüfungI mind. 50% der möglichen Punkte aus der Klausur

4 / 47

Page 5: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Allgemeines/Organisation

I Script: Wird auf dem Web zum Herunterladen vor derVorlesung bereitgestellt

I http://hobbes.hs.uni-hamburg.de/~yeti/I User Name: HHstudentI Password: phoenix

I the script will be in English ...

5 / 47

Page 6: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Allgemeines/Organisation

I text booksI D.F. Gray: ’The observation and analysis of stellar

photospheres’, CAS 20, Camb. Univ. Press, 1990I A. Unsöld: ’Physik der Sternatmosphären’, 2nd Ed.,

Springer, 1955I D. Mihalas: ’Stellar Atmospheres’, 1st Ed., Freeman

1970, 2nd Ed., Freeman 1978I Rutten’s script: hunt for it on the Web!

6 / 47

Page 7: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Topics

I What do we want to do? Model Atmospheres!I What do we need? Basic equations!I description of radiationI radiative transferI radiative equilibrium

7 / 47

Page 8: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Topics

I LTE Equation of State (EOS)I continuum absorption & emissionI line absorption & emissionI convective energy transportI model atmospheresI analysis of stellar atmospheresI irradiated atmospheres (planets)I Novae/Supernovae/Stellar winds

8 / 47

Page 9: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

what can be done?

I construct detailed computer simulations of stellar &planetary atmospheres

I compare synthetic to observed spectraI examples:

9 / 47

Page 10: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Example: A starsI models work well for A0V’s . . .

10 / 47

Page 11: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Example: solar type starsI models work well for G2V’s . . .

11 / 47

Page 12: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Example: γ Sge

I PHOENIX model fit (Aufdenberg et al):

12 / 47

Page 13: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Example: γ SgeI PHOENIX model fit (Aufdenberg et al):

13 / 47

Page 14: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Example: Cool Atmospheres

14 / 47

Page 15: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Example: Cool Atmospheres

15 / 47

Page 16: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Stellar → Planetary AtmospheresI Trends (Allard et al, 2001)

I Teff = 2500, 1800, 1000KI age 5Gy (Chabrier et al, 2000)

16 / 47

Page 17: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Example: GG Tau

{

7

4

{

Mohanty et al, ApJ17 / 47

Page 18: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Example: Pre-CVsI Pre-CV: non-interacting WD+dMI model dM irradiated by WD

(Barman et al)

18 / 47

Page 19: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Example: GD 245I observable emission lines from the dM

19 / 47

Page 20: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

What is the atmosphere?

I outer region of the starI transition from stellar interior to ISMI connects the star to the ’outside world’I all energy generated in the star has to pass through the

atmosphereI atmosphere itself usually does not produce additional

energy!

20 / 47

Page 21: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

The photosphere

I region were most of the radiation escapes from the starI ’only’ part of the star that can be observed!I see also:

I chromosphereI corona

21 / 47

Page 22: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

The photosphere

I some numbers:I Sun: ∆h ≈ 1000 kmI white dwarf: ∆h ≤ 100mI red giant: ∆h/R ≈ 1.5

22 / 47

Page 23: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

What needs to be done?

23 / 47

Page 24: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Model Atmospheres

1. basic assumptions2. equations3. computation

24 / 47

Page 25: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Simplest Basic Assumptions

I 1D geometry: plane parallel or sphericalI hydrostatic equilibrium (but: stellar winds!)I all surface structure ignored (starspots, granulation,

activity)I no magnetic fields (they are evil!)I single object (but: planets!)

25 / 47

Page 26: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Hydrostatic Equilibrium

I total pressure gradient

dP

dr= −g(r)ρ

I g(r): gravity (= const. in plane parallel atm.)I ρ: density

26 / 47

Page 27: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Hydrostatic Equilibrium

I define ’standard’ optical depth τstd

dτstd = −χstddr = −(κstd + σstd)dr

I χstd: ’standard’ extinction coefficientI κstd: ’standard’ absorption coefficientI σstd: ’standard’ scattering coefficient

I ’standard’ denotes suitable average etc.I χstd is a complicated function . . .

27 / 47

Page 28: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Hydrostatic Equilibrium

I with this we have

dP

dτstd=

g(r)ρ

χstd

I significant radiation pressure Prad →

dPgas

dτstd=

g(r)ρ

χstd− dPrad

dτstd

gives an expression for the gas pressure Pgas

28 / 47

Page 29: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Insert: dPrad/dτstd

I dPrad/dτstd is a function of theopacity averaged radiation flux

dPrad

dτstd=π

c

∫∞0 χλFλ dλ

χstd

I Fλ: radiation flux

29 / 47

Page 30: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Hydrostatic Equilibrium

I solution P(τstd) depends onI χstd which is a function of

I temperatureI gas pressure (or density)I radiation field

I all of these are, initially, unknownI → solution only by iteration etc.I hydrostatic essentially determines Pgas(τstd)

30 / 47

Page 31: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Energy Conservation

I plane parallel geometryI all energy transported by radiation:

Frad =

∫ ∞

0Fλ dλ ≡ σT 4

eff = const.

I equivalent (but numerically different!) condition:

dFraddτstd

= 0

31 / 47

Page 32: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Energy Conservation

I → each volume element hasemission = absorption∫ ∞

0κ(λ) (Jλ − Sλ) dλ = 0

I Jλ: mean intensity (direction averaged)I Sλ: source function (simplest case: Planck-function)

32 / 47

Page 33: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Energy Conservation

I if convection is important we have

Ftotal = Frad + Fconv = σT 4eff

I Fconv: convective fluxI problem: no real theory to compute Fconv!

33 / 47

Page 34: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Energy Conservation

I energy conservation ’essentially’ determines the T (τstd)structure

I problem: need to know radiation flux!I → integral over radiation fieldI → need to know the whole radiation field!I → need to solve a number of

34 / 47

Page 35: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Auxiliary Equations

I convective energy transport prescriptionI mixing length theory

I radiative transfer equation ∀λI → continuum absorption and scatteringI → spectral line absorption and scattering

I → line profiles

I depend all on T , Pgas, chemical abundances, radiationfield

35 / 47

Page 36: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Auxiliary Equations

I absorption & scattering coefficients∑σji n

ji

I j : ionization stageI i : energy level within each ionization stageI σji : cross section [cm2]I nji : population density [1/cm3]

I∑

over all elements, processes, ionization stages, levelI σj

i from QM, measurementsI → tables of data, fit formulae etc.

36 / 47

Page 37: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Auxiliary Equations

I nji depend onI temperatureI gas pressureI abundancesI radiation field → ’NLTE’ (evil!!)

I need to solve equation of state!I gives relation (T ,Pgas, ρ)

I gives all nji

37 / 47

Page 38: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Computation of Model Atmospheres

I analytic solutions only for idealized casesI numerical solutions require iterationsI approximate solution (e.g., scaled semi-empirical)→ useful starting guesses

38 / 47

Page 39: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Dependency Chart

?

PHOENIX REALWIND

?

input parameters

T

e�

R

?

g(R

?

) Z

atmospheric structure

hydrodynamic hydrostatic

dv

dr

=

v

v

2

�a

2

��

2a

2

r

� 2a

da

dr

� g

e�

dP

d�

=

g

g

e�

= g(R�)

R�

2

r

2

1

c�(r)

4�

R

1

0

(r)H

d�

� =

_

M

4�r

2

v

special relativistic equation of radiative transfer

(�+ �)

@I

@r

+

@

@�

(1� �

2

)

(1+��)

r

2

(� + �)

@�

@r

I

@

@�

n

h

�(1��

2

)

r

+

2

�(�+ �)

@�

@r

i

�I

o

+

n

2�+�(3��

2

)

r

+

2

(1 + �

2

+ 2��)

@�

@r

o

I

= � � �I

equation of state

P = P (�;T )

rate equations

P

j<i

b

j

n

j

n

i

(R

ji

+ C

ji

)

�b

i

P

j<i

(R

ij

+ C

ij

)

+b

i

P

j>i

(R

ij

+ C

ij

)

= �

P

j>i

b

j

n

j

n

i

(R

ji

+C

ji

)

radiative equilibrium

temperature corrections

Z

1

0

(�

� �

J

)d� = 0

?

6

?J

J

J

J

J

J

J

J

J]

��

��

��

?

_

M;v(r)

synthetic spectrum

1

39 / 47

Page 40: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Model Atmospheres

I there are multiple ways to compute model atmospheres!I I’ll describe the one I use . . .I Consult the literature for alternatives!

40 / 47

Page 41: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Model Atmospheres

I minimum independent variables/parameters:I effective temperature TeffI gravity g(r) = GM/r2

I mass M or radius R or luminosity L = 4πR2σT 4eff

I abundances of all elementsI additional parameters may exist (B-fields, irradiation etc)

41 / 47

Page 42: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Model Atmosphere Flow Chart

FieldRadiation

TemperatureCorrection

END

SYNTHETIC SPECTRUM

OUTPUT

Pressure

INPUT

Stratification

lineopacity

continuumopacity

molecular bandopacity

NO

Converged?YES

ITE

RA

TIO

N

42 / 47

Page 43: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Model Atmospheres

I necessary prelims:I discretize the radial coordinateI chose an independent variable representing r

I r , but that’s not convenientI column density (hydrostatic trivial!)I τstd

(very good for radiation transport)I I’ll use τstd!

43 / 47

Page 44: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Model Atmospheres

I step 0:I select a grid of τstd pointsI guess a temperature structure T (τstd)I integrate hydrostatic equation

dPgas

dτstd=

g(r)ρ

χstd

(ignoring Prad for simplicity)I plane-parallel geometry (r → z):

I let z increase inwardsI z = 0 is outermost pointI set g = const.

44 / 47

Page 45: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Model Atmospheres

I need initial value for Pgas(τstd = 0)!I need ρ(T ,Pgas)→ equation of state, e.g.,

ρ =µ

RPgas

T

I R = k/mH

I µ: mean molecular weight

45 / 47

Page 46: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Model Atmospheres

I step 1:I compute total radiative flux

Frad(τstd) =

∫ ∞

0Fλ(λ, τstd) dλ

for each layer!I → need to know Fλ(λ) . . .I → need to solve radiative transfer problem ∀λI → must know all σji (T ,Pgas, λ)I and must know all nji (τstd)

46 / 47

Page 47: Stellar/Planetary Atmospheres - Part 0hobbes.hs.uni-hamburg.de/Atmospheres/PDFs/part00.pdf · Stellar/Planetary Atmospheres Part0 PeterHauschildt yeti@hs.uni-hamburg.de Hamburger

Model Atmospheres

I step 2:I in general we will find that

Frad(τstd) 6= Ftotal

I → need to correct T (τstd)

I repeat until converged . . .

47 / 47