14
Title Stochastic optimal transportation problem and related topics (Progress in Variational Problems : Variational Problems Interacting with Probability Theories) Author(s) Mikami, Toshio Citation 数理解析研究所講究録 (2013), 1837: 74-86 Issue Date 2013-06 URL http://hdl.handle.net/2433/194918 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

  • Upload
    others

  • View
    31

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

TitleStochastic optimal transportation problem and related topics(Progress in Variational Problems : Variational ProblemsInteracting with Probability Theories)

Author(s) Mikami, Toshio

Citation 数理解析研究所講究録 (2013), 1837: 74-86

Issue Date 2013-06

URL http://hdl.handle.net/2433/194918

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

Page 2: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

Stochastic optimal transportation problem and related topics

広島大学・工学研究院 三上敏夫 (Toshio Mikami)

Laboratory of Mathematics, Institute of Engineering

Hiroshima University

First of all we briefly introduce two classes of Stochastic optimal transportationproblems and the duality theorems. As applications, we consider marginal problemsfor Markov processes which is called Markov marginal problems. We also introducethe Knothe-Rosenblatt process as a stochastic optimal control analogue of the Knothe-Rosenblatt rearrangement and show that it can be approximated by a minimizer ofa class of Stochastic optimal transportation problems with a small parameter. Fi-nally we also introduce an application of the optimal transportation problem to thecharacterization of a maximally dependent random variable.

1 Stochastic optimal transportation problems.

Let $W(t)=W(t,\omega)$ be a $d$-dimensional standard Brownian motion on a completefiltered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_{t}\}_{t\geq 0}, P)$ :

(i) $W(0)=0,$

(ii) $W(t)-W(s)$ is independent of $\mathcal{F}_{s},$ $0\leq s\leq t,$

(iii) The probability law of $W(t)-W(s)$ is $N(0, (t-s)Id),$ $0\leq s\leq t.$

(iv) $W(\cdot)\in C([0, \infty):R^{d})$ a.s..Let $u(t)=u(t,\omega)$ be $d$-dimensional, $B([O, 1])\cross \mathcal{F}$-meaeurable, and $\mathcal{F}_{t}$-measurable for$t\in[O, 1]$ and $L(t, x;u)\in C([O, 1]\cross R^{d}\cross R^{d}:[0, \infty))$ be convex in $u.$

We introduce two classes of Stochastic optimal transportation problems (see [18, 19]).(Problem I) For any $\{P_{0}, P_{1}\}\subset \mathcal{M}_{1}(R^{d})(=$the space of all Borel probability measureson $R^{d}$ with a weak topology),

$V(P_{0}, P_{1}) := \inf\{E[\int_{0}^{1}L(t, X^{u}(t);u(t))dt]|$

$dX^{u}(t) :=u(t)dt+dW(t), PX(t)^{-1}=P_{t}, t=0,1\}$ . (1.1)

数理解析研究所講究録第 1837巻 2013年 74-86 74

Page 3: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

(Problem II) For $P:=\{P_{t}\}_{0\leq t\leq 1}\subset \mathcal{M}_{1}(R^{d})$ ,

$V$ (P) $:=$ $\inf\{E[\int_{0}^{1}L(t, X^{u}(t);u(t))dt]|$

$dX^{u}(t) :=u(t)dt+dW(t), PX^{u}(t)^{-1}=P_{t}, 0\leq t\leq 1\}$ . (1.2)

Remark 1.1 (i) If we delete $+dW(t)$ in (1.1), then $V(P_{0}, P_{1})$ becomes the Monge-Kantorovich problem $(see [3, 7, 8, 10, 13, 16, 17, 22, 23, 26, 27J)$ :

$\inf\{E[I(X(0), X(1))]|PX(t)^{-1}=P_{t}, t=0,1\}$ , (1.3)

where

$I(x, y) := \inf\{\int_{0}^{1}L(t, X(t);\frac{dX(t)}{dt})dt]|X(0)=x, X(1)=y\}.$

(ii) For a fixed $P_{0}\in \mathcal{M}_{1}(R^{d})$ , the convex dual $V_{P_{0}}^{*}$ of $P\mapsto V(P_{0}, P)$ is a finite timehorizon stochastic optimal control problem (see $[9J)$ :

$V_{P_{0}}^{*}(f) := \sup_{P\in \mathcal{M}_{1}(R^{d})}\{\int_{R^{d}}f(x)P(dx)-V(P_{0}, P)\}$

$= \sup\{E[f(X^{u}(1)-\int_{0}^{1}L(t, X^{u}(t);u(t))dt]|$

$dX^{u}(t) :=u(t)dt+dW(t), PX^{u}(0)^{-1}=P_{0}\}$ . (1.4)

1.1 Duality Theorems in stochastic optimal transportation

For the sake of simplicity, we set $L= \frac{|u|^{2}}{2}$ . More general results can be found in thereferences given below.

We state the duality theorems for Problems I and II.

Theorem 1.1 (Duality Theorem) (Mikami and Thieullen $[21J)$ For any $P_{0}$ and$P_{1}\in \mathcal{M}_{1}(R^{d})$ ,

$V(P_{0}, P_{1}) = \sup\{\int_{R^{d}}\varphi(1, x)P_{1}(dx)-\int_{R^{d}}\varphi(0, x)P_{0}(dx)\})$ (1.5)

where the supremum is taken over all bounded continuous viscosity solutions $\varphi$ , tothe following Hamilton-Jacobi-Bellman ($HJB$ for short) $PDE$ (see $e.g.[6J)$ , for which$\varphi(1, \cdot)\in C_{b}^{\infty}(R^{d})$ :

75

Page 4: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

$\frac{\partial\varphi(t,x)}{\partial t}+\frac{1}{2}\triangle\varphi(t, x)+\frac{1}{2}|D_{x}\varphi(t, x)|^{2}=0,$ $(t, x)\in[O, 1)\cross R^{d}.$ (1.6)

Theorem 1.2 (Duality Theorem) (Mikami $[18J)$ . For any $P:=\{P_{t}\}_{0\leq t\leq 1}\subset \mathcal{M}_{1}(R^{d})$ ,

$V$ (P) $=$ $\sup\{\int_{[0,1]xR^{d}}f(t, x)dtP_{t}(dx)-\int_{R^{d}}\phi(0, x;f)P_{0}(dx)|$

$f\in C_{b}^{\infty}([0,1]\cross R^{d})\}$ , (1.7)

where the supremum is taken over all bounded continuous viscosity solutions $\phi$ to the

following $HJBPDE:\phi(1, x;f)=0,$

$\frac{\partial\phi(t,x;f)}{\partial t}+\frac{1}{2}\triangle\varphi(t, x)+\frac{1}{2}|D_{x}\varphi(t, x)|^{2}+f(t, x)=0,$ $(t, x)\in[0,1)\cross R^{d}$ . (1.8)

1.2 Marginal problems

We state two classes of marginal problems for which we gave positive answers in(Mikami [18]).(I) Marginal problem with fixed two end points distributions (see [12, 25]).For $\{P_{0}, P_{1}\}\subset \mathcal{M}_{1}(R^{d})$ , construct a semimartingale $\{X(t)\}_{0\leq t\leq 1}$ for which there existsa measurable function $b:[0,1]\cross R^{d}\mapsto R^{d}$ and

$dX(t) = b(t, X(t))dt+dW(t)$ ,

$PX(t)^{-1} = P_{t}, t=0,1.$

(II) Marginal problem with fixed marginal distributions for all times.For $\{P_{t}\}_{0\leq t\leq 1}\subset \mathcal{M}_{1}(R^{d})$ , construct a semimartingale $\{X(t)\}_{0\leq t\leq 1}$ for which thereexists a measurable function $b:[0,1]\cross R^{d}\mapsto R^{d}$ and

$dX(t) = b(t, X(t))dt+dW(t)$ ,

$PX(t)^{-1} = P_{t}, t\in[O, 1],$

Remark 1.2 Marginal problem (II) is inspired by Nelson’s marginal problem in stochas-tic mechanics: for $\{P_{t}\}_{0\leq t\leq 1}\subset \mathcal{M}_{1}(R^{d})$ and $b\in A(\{P_{t}\}_{0\leq t\leq 1})$ , construct a semi-martingale $\{X(t)\}_{0\leq t\leq 1}$ for which the following holds:

76

Page 5: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

$dX(t)$ $=$ $b(t, X(t))dt+dW(t)$ ,

$PX(t)^{-1}$ $=$ $P_{t},$ $t\in[0,1],$

1.3 Idea of the proof of marginal problems.

We introduce two variational problems to give applications of the duality theorems tothe marginal problems for Markov processes.

Definition 1.1 For $b$ : $[0,1]\cross R^{d}\mapsto R^{d}$ and $\{P_{t}\}_{0\leq t\leq 1}\subset \mathcal{M}_{1}(R^{d})$ , we write $b\in$

$A(\{P_{t}\}_{0\leq t\leq 1})$ if the Fokker-Planck equation holds: for any $f\in C_{b}^{1,2}([0,1]\cross R^{d})$ and$t\in[0,1],$

$\int_{R^{d}}f(t, x)P_{t}(dx)-\int_{R^{d}}f(0, x)P_{0}(dx)$

$= \int_{0}^{t}ds\int_{R^{d}}(\frac{\partial f(s,x)}{\partial s}+\frac{1}{2}\triangle f(s, x)+<b(s, x), D_{x}f(s, x)>)P_{s}(dx)$ .

(Problem i) For $\{P_{0}, P_{1}\}\subset \mathcal{M}_{1}(R^{d})$ ,

$v(P_{0}, P_{1})$ $:= \inf\{\int_{0}^{1}dt\int_{R^{d}}L(t, x;b(t, x))Q_{t}(dx)|b\in A(\{Q_{t}\}_{0\leq t\leq 1}),$ $Q_{t}=P_{t},$ $t=0,1\}.$

(1.9)(Problem ii) For $P:=\{P_{t}\}_{0\leq t\leq 1}\subset \mathcal{M}_{1}(R^{d})$ ,

$v(P) :=\inf\{\int_{0}^{1}dt\int_{R^{d}}L(t, x;b(t, x))P_{t}(dx)|b\in A(P)\}$ . (1.10)

Remark 1.3$V(P_{0}, P_{1})\geq v(P_{0}, P_{1})$ ,

$V(\{P_{t}\}_{0\leq t\leq 1})\geq v(\{P_{t}\}_{0\leq t\leq 1})$ .

The idea of the proof to marginal problems in section 1.2 is to prove $V=v$ and$V=v$ via Duality Theorems.

On the problem (I), for a fixed $P_{0}\in \mathcal{M}_{1}(R^{d})$ , consider the convex dual of $P\mapsto$

$v(P_{0}, P)$ :

77

Page 6: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

$v_{P_{0}}^{*}(f) ;= \sup_{P\in \mathcal{M}_{1}(R^{d})}\{\int_{R^{d}}f(x)P(dx)-v(P_{0}, P)\}$

$= \inf\{\int_{R^{d}}f(x)Q_{1}(dx)-\int_{0}^{1}dt\int_{R^{d}}L(t, x;b(t, x))Q_{t}(dx)|$

$b\in A(\{Q_{t}\}_{0\leq t\leq 1}), Q_{0}=P_{0}\}$ . (1.11)

Prove $P\mapsto V(P_{0}, P)$ and $v(P_{0}, P)$ are not identically equal to infinity and lower semi-continuous and convex, which implies the following (see e.g. [5]):

$V(P_{0}, P_{1}) = \sup_{f\in C_{b}(R^{d})}\{\int_{R^{d}}f(x)P_{1}(dx)-V_{P_{0}}^{*}(f)\}$ , (1.12)

$v(P_{0}, P_{1}) = \sup_{f\in C_{b}(R^{d})}\{\int_{R^{d}}f(x)P_{1}(dx)-v_{P_{0}}^{*}(f)\}$ . (1.13)

For $f\in C_{b}^{\infty}(R^{d})$ , prove

$V_{P_{0}}^{*}(f)=v_{P_{0}}^{*}(f)= \int_{R^{d}}\varphi(0, x)P_{0}(dx)$ , (1.14)

where $\varphi$ is a minimal bounded continuous viscosity solution to the following HJB PDE:$\varphi(1, x)=f(x)$ ,

$\frac{\partial\varphi(t,x)}{\partial t}+\frac{1}{2}\triangle\varphi(t, x)+H(t,x;D_{x}\varphi(t, x))=0,$ $(t, x)\in[O, 1)\cross R^{d}$ . (1.15)

Here for $(t, x, z)\in[0,1]\cross R^{d}\cross R^{d},$

$H(t, x;z) := \sup\{<z, u>-L(t, x;u)|u\in R^{d}\}.$

On the problem (II), a similar but more complicated idea can be applied by con-sidering V and $v$ as functionals of $dtP_{t}(dx)$ on $\mathcal{M}_{1}([0,1]\cross R^{d})$ (see [18] for details).

2 Knothe-Rosenblatt processes

The Knothe-Rosenblatt rearrangement plays a crucial role in many fields, e.g., theBrunn-Minkowski inequality and statistics (see [1, 2, 14, 15, 24] and the referencestherein). We first describe the Knothe-Rosenblatt rearrangement.

Let $d\geq 2.$ $\varphi$ : $R^{d}\mapsto R^{d}$ is called a triangular mapping/transformation if

78

Page 7: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

$\varphi(x)=(\varphi_{1}(x_{1}), \varphi_{2}(x_{1}, x_{2}), \cdots, \varphi_{d}(x_{1}, \cdots, x_{d})) , x=(x_{i})_{i=1}^{d}.$

A triangular mapping $\varphi$ is called nondecreasing if $x_{i}\mapsto\varphi_{i}(x_{1}, \cdots, x_{i})$ is nondecreasingfor all $i=1,$ $\cdots,$

$d.$

Definition 2.1 For $P_{0}$ and $P_{1}\in \mathcal{M}_{1}(R^{d})$ , the Knothe-Rosenblatt rearrangement whichmaps $P_{0}$ to $P_{1}$ is a nondecreasing triangular mapping $\varphi$ such that

$P_{0}\varphi^{-1}=P_{1}.$

For $P_{t}\in \mathcal{M}_{1}(R^{d})$ ,

$P_{t,i}(A)$ $:=P_{t}(A\cross R^{d-i})$ , for Borel $A\subset R^{i}.$

For the sake of simplicity, we only introduce a typical Knothe-Rosenblatt process (see[20] for more general definition).

Definition 2.2 Let $d>1$ For $P_{0},$ $P_{1}\in \mathcal{M}_{1}(R^{d}),$ $\{X(t)=(X_{i}(t))_{1\leq i\leq d}\}_{0\leq t\leq 1}$ is calledthe Knothe-Rosenblatt process (for Brownian motion) if there exists $b(t, x)=$

$(b_{i}(t, x_{1}, \cdots, x_{i}))_{i=1}^{d}$ such that

$dX(t)=b(t, X(t))dt+dW(t)$ ,

and $\{X_{i}(t)=(X_{j}(t))_{1\leq J\leq i}\}_{0\leq t\leq 1}$ is the unique minimizer of

$V_{i}(P_{0},{}_{i}P_{1,i}|X_{i-1})$

$:=$ $\{\begin{array}{l}\inf\{E[\int_{0}^{1}\frac{1}{2}|u_{1}(t)|^{2}dt]|dY_{1}^{u_{1}}(t)=u_{1}(t)dt+dW(t) ,PY_{1}^{u_{1}}(0)^{-1}=P_{0},{}_{1}PY_{1}^{u_{1}}(1)^{-1}=P_{1,1}\}=:V_{1}(P_{0},{}_{1}P_{1,1}) (i=1) ,\inf\{E[\int_{0}^{1}\frac{1}{2}|u_{i}(t)|^{2}dt]|dY_{i}^{u_{i}}(t)=u_{i}(t)dt+dW(t) ,PY_{i}^{u_{i}}(0)^{-1}=P_{0},{}_{i}PY_{i}^{u_{i}}(1)^{-1}=P_{1,i},P(Y_{i-1})^{-1}=P(X_{i-1})^{-1}\} (1<i\leq d) .\end{array}$

Remark 2.1 $X_{1}$ is the $h$-path process for Brownian motion, provided $V_{1}(P_{0},{}_{1}P_{1,1})$ is

finite. In this sense, the Knothe-Rosenblatt process can be considered as a genemlization

of the $h$-path process $(see [12, 21, 25J and the$ references therein) .

79

Page 8: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

2.1 Convergence result

We state a typical case of the result [20] which is a stochastic control analogue of [4].

For $i=2,$ $\cdots,$$d$ and $\epsilon>0,$

$V_{i}^{\epsilon}(P_{0},{}_{i}P_{1,t})$

$:= \inf\{E[\sum_{j=1}^{i}\epsilon^{j-1}\int_{0}^{1}\frac{1}{2}|u_{j}(t)|^{2}dt]|$

$dY_{i}^{u_{i}}(t)=u_{i}(t)dt+dW(t), PY_{i}^{u}(0)^{-1}=P_{0_{t}},, PY_{i}^{u_{i}}(1)^{-1}=P_{1,i}, \}.(2.1)$

We show that a minimizer of $V_{2}^{\epsilon}(P_{0}, P_{1})$ converges to the Knothe-Rosenblatt processas $\epsilonarrow 0.$

Theorem 2.1 Suppose that $d=2$ . Then for any $P_{0},$ $P_{1}\in \mathcal{M}_{1}(R^{d})$ for which theKnothe-Rosenblatt process $\{X(t)\}_{0\leq t\leq 1}$ exists, a minimizer $\{X^{\epsilon}(t)\}_{0\leq t\leq 1}$ of $V_{2}^{\epsilon}(P_{0}, P_{1})$

exists and weakly converges to $\{X(t)\}_{0\leq t\leq 1}$ as $\epsilonarrow 0.$

$\lim_{\epsilonarrow 0}E[\int_{0}^{1}|b_{1}^{\epsilon}(t, X^{\epsilon}(t))|^{2}dt] = V_{1}(P_{0},{}_{1}P_{1,1})$ , (2.2)

$\lim_{\epsilonarrow 0}E[\int_{0}^{1}|b_{2}^{\epsilon}(t, X^{\epsilon}(t))|^{2}dt] = V_{2}(P_{0}, P_{1}|X_{1})$ . (2.3)

We consider the case where $d>2.$

For all $i=1,$ $\cdots,$$d$ , consider the following HJB PDEs: $(HJB)_{i}$

$\frac{\partial v_{i}(t,x_{i})}{\partial t}+\frac{1}{2}\triangle v_{i}(t, x_{i})+<\nabla_{i-1}v_{i}(t, x_{i}), b_{i-1}(t, x_{i-1})>$

$+ \frac{1}{2}|\frac{\partial v_{i}(t,x_{i})}{\partial x_{i}}|^{2}=0, (t, x_{i})\in(0,1)\cross R^{i}$ , (2.4)

where $b_{X_{0}}$ $:=0.$

Theorem 2.2 Suppose that the Knothe-Rosenblatt process $\{X(t)\}_{0\leq t\leq 1}$ exists for $P_{0},$

$P_{1}\in \mathcal{M}_{1}(R^{d})$ and that there exists a solution $v_{i}(t, x_{d_{i}})\in C_{b}^{1,2}([0,1]\cross R^{d_{1}})$ to $HJB$

$PDE(2.4)$ such that

$b_{t}= \frac{\partial v_{1}(t,x_{t})}{\partial x_{i}}, i=1, \cdots, d.$

80

Page 9: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

Then one can construct $P_{1}^{\epsilon}\in \mathcal{M}_{1}(R^{d})$ such that a minimizer $\{X^{\epsilon}(t)\}_{0\leq t\leq 1}$ of $V_{d}^{\epsilon}(P_{0}, P_{1}^{\epsilon})$

exists and converges to $\{X(t)\}_{0\leq t\leq 1}$ in the sense of relative entropy as $\epsilonarrow 0$ :

$H(P( X^{\epsilon})^{-1}|P(X)^{-1}) := \frac{1}{2}E[\int_{0}^{1}|b^{\epsilon}(t,X^{\epsilon}(t))-b(t, X^{\epsilon}(t))|^{2}dt]arrow 0$ (2.5)

$(\epsilonarrow 0)$ . For $i=1,$ $\cdots,$$d$ , we also have

$\lim_{\epsilonarrow 0}E[\int_{0}^{1}|b_{i}^{\epsilon}(t, X^{\epsilon}(t))|^{2}dt] = E[\int_{0}^{1}|b_{i}(t, X(t))|^{2}dt]=V_{i}(P_{0},{}_{i}P_{1,i}|X_{i-1})$. (2.6)

3 Maximally dependent random variable.

Random variables $X_{1},$$\cdots,$ $X_{n}$ with a common distribution functions $F$ is called maxi-

mally dependent if

$P( \max(X_{1}, \cdots, X_{n})>t)\geq P(\max(Y_{1}, \cdots, Y_{n})>t)$ , (3.1)

for all $t>0$ , for any $Y_{1},$$\cdots,$

$Y_{n}$ with a common distribution function $F.$

For a nonnegative random variable $X,$

$S_{X}(t):=P(X>t) , t>0$ , (3.2)

is called a survival function of $X.$

Let $n\geq 2,$ $m_{i}\geq 1(i=1, \cdots, n)$ , and $Y_{ij}(i=1, \cdots, n, j=1, \cdots, m_{i})$ be real randomvariables. In this section, we present the maxima and minima of the overall survivalfunctions

$S_{\min\{\max\{Y_{1j}|1\leq J\leq m_{i}\}|1\leq i\leq n\}}(t) , S_{\max\{\min\{Y_{ij}|1\leq j\leq m_{i}\}|1\leq i\leq n\}}(t)$

in the case where the probability distributions $P(Y_{ij})^{-1}$ are fixed. This can be provedby the optimal transportation problem on $R$ (see [11]).

For an $R^{n}$-valued random variable $Z=(Z_{1}, \cdots, Z_{n})$ and $k=2,$ $\cdots,$ $n$ , set

$\phi_{Z,1} = \Psi_{Z,1}:=Z_{1},$

$\phi_{Z,2} = \Psi_{Z,2}:=F_{Z_{2}}^{-1}(1-F_{Z_{1}}(Z_{1}))$ ,

$\phi_{Z,k} := F_{Z_{k}}^{-1}(1-F_{\min(\phi_{Z,1},\cdots,\phi_{Z,k-1})}(\min(\phi_{Z,1}, \cdots, \phi_{Z,k-1})))$ ,

$\Psi_{Z,k} := F_{Z_{k}}^{-1}(1-F_{\max(\Psi_{Z,1},\cdots,\Psi_{Z,k-1})}(\max(\Psi_{Z,1}, \cdots, \Psi_{Z,k-1})))$ .

81

Page 10: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

Then, we have

Theorem 3.1 (see $[11J)$ Suppose that $F_{Z_{1}}(\cdot),$ $\cdots,$$F_{Z_{n}}(\cdot)$ are continuous. Then,

$P(\phi_{Z,\iota})^{-1}=P(\Psi_{Z_{t}},)^{-1}=P(Z_{t})^{-1}, \Psi_{Z,i}=-\phi_{-Z,i}, i=1, \cdots, n)$, (3.3)

$F_{\min(\phi z.1}, \cdots,\phi z_{n})(x) = \min(\sum_{i=1}^{n}F_{Z}.(x), 1)$ , (3.4)

$F_{\max(\Psi z_{n})} \Psi z,1,\cdots,,(x) = \max(\sum_{i=1}^{n}F_{Z}.\cdot(x)-n+1,0)$ . (3.5)

In particular,

$F_{\min(\phi z,1}, \cdots,\phi z_{n})(\min(\phi_{Z,1}, \cdots, \phi_{Z,n}))$ $=$ $\sum_{1=1}^{n}F_{Z}.(\min(\phi_{Z,1}, \cdots, \phi_{Z,n})),$ $a.s.$ , (3.6)

$F_{\max(\Psi z,1,\cdots,z_{n})} \Psi,(\max(\Psi_{Z,1}, \cdots, \Psi_{Z,n}))$ $=$ $\sum_{i=1}^{n}F_{Z}.(\max(\Psi_{Z,1}, \cdots, \Psi_{Z,n}))-n+1,$ $a.s..$

(3.7)

We first consider the case in which $m_{i}=1(i\geq 2)$ , and set $m:=m_{1},$ $Y_{j}$ $:=Y_{1j}$ , and$X_{i}:=Y_{\mathfrak{i}1}(i\geq 2)$ for the sake of simplicity.

Theorem 3.2 Suppose that $F_{Y_{1}}(\cdot),$ $\cdots,$$F_{Y_{m}}(\cdot)$ are continuous. Then,

$S_{\max(\min(Y_{1},\cdots,Y_{m}),X_{2},\cdots,X_{n})}(x)$

$\geq \max(1-\sum_{i=1}^{m}F_{Y}.\cdot(x), 1-F_{X_{2}}(x), \cdots, 1-F_{X_{n}}(x)) , x\in R$. (3.8)

Here, the equality holds if

$Y_{i} = \phi_{Y,i} (i=2, \cdots, m)$ ,

$X_{i} = F_{X}^{-1}( \sum_{k=1}^{m}F_{Y_{k}}(\min(Y_{1}, \cdots, Y_{m}))) (i=2, \cdots, n)$ . (3.9)

Suppose, in addition, that $F_{X_{2}}(\cdot),$$\cdots,$

$F_{X_{n}}(\cdot)$ are continuous. Then,

82

Page 11: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

$S_{\max(\min(Y_{1},\cdots,Y_{m}),X_{2},\cdots,X_{n})}(x) \leq\min(n-\max_{i=1}^{m}F_{Y_{i}}(x)-\sum_{i=2}^{n}F_{X_{i}}(x),$$1)$ , $x\in R$ . (3.10)

Here, the equality holds if

$Y_{i} = F_{Y_{1}}^{-1}(F_{Y_{1}}(Y_{1})) (i=2, \cdots, m)$ ,

$X_{i} = \Psi_{X,i} (i=2, \cdots, n)$ , (3.11)

where $X_{1}$ $:= \min(Y_{1}, \cdots, Y_{m})$ .

We can now state the following two corollaries that follow from Theorem 3.2 andfrom the following:

$\min(\max(Y_{1}, \cdots, Y_{m}), X_{2}, \cdots, X_{n})$

$= - \max(\min(-Y_{1}, \cdots, -Y_{m}), -X_{2}, \cdots, -X_{n})$ .

Corollary 3.1 Suppose that $F_{Y_{1}}$ $(.$ $)$ , $\cdots,$ $F_{Y_{m}}(\cdot)$ are continuous. Then,

$S_{\min(\max(Y_{1},\cdots,Y_{m}),X_{2},\cdots,X_{n})}(x)$

$\leq \min(m-\sum_{i=1}^{m}F_{Y_{i}}(x), 1-F_{X_{2}}(x), \cdots, 1-F_{X_{n}}(x)) , x\in R$. (3.12)

Here, the equality holds if

$Y_{i} = \Psi_{Y,i} (i=2, \cdots, m)$ ,

$X_{i} = F_{X_{i}}^{-1}( \sum_{k=1}^{m}F_{Y_{k}}(\max(Y_{1}, \cdots, Y_{m}))-m+1) , i=2, \cdots, n$ . (3.13)

Suppose, in addition, that $F_{X_{2}}(\cdot)_{)}\cdots,$ $F_{X_{n}}(\cdot)$ are continuous. Then,

$S_{\min(\max(Y_{1},\cdots,Y_{m}),X_{2},\cdots,X_{n})}(x) \geq\max(1-\min_{i=1}^{m}F_{Y_{i}}(x)-\sum_{i=2}^{n}F_{X_{i}}(x)_{)}0)$ , $x\in R$ . (3.14)

Here, the equality holds if

$Y_{i} = F_{Y_{i}}^{-1}(F_{Y_{1}}(Y_{1})) (i=2, \cdots, m)$ ,

$X_{i} = \phi_{X,i} (i=2, \cdots, n)$ , (3.15)

where $X_{1}$ $:= \max(Y_{1}, \cdots, Y_{m})$ .

83

Page 12: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

Corollary 3.2 Suppose that there exist $m>1$ and $i_{0}\geq 1$ such that $m_{i}=m(i=$

$1,$ $\cdots,$ $i_{0})$ and $m_{t}=1(i=i_{0}+1, \cdots, n)$ and that for each $i=1,$ $\cdots,$ $n,$ $\{Y_{ij}\}_{j=1}^{m_{1}}$ areidentically distributed with a continuous distribution function. Then,

$S_{\max\{\min\{Y_{jj}|1\leq j\leq m.\}|1\leq i\leq n\}}(x) \geq\max(\max\{1-m_{i}F_{Y_{11}}(x)|1\leq i\leq n\},$ $0),$ $x\in R,$ $(3.16)$

where the equality holds if

$Y_{ij} = \phi_{Y_{i},j} (j=2, \cdots, m_{i})$ ,

$Y_{i1}$ $=$ $\{\begin{array}{l}F_{Y_{:1}}^{-1}(F_{Y_{11}}(Y_{11})) i=1, \cdots, i_{0},F_{Y_{11}}^{-1}(mF_{Y_{11}}(\min(Y_{11}, \cdots, Y_{1m}))) i=i_{0}+1, \cdots, n,\end{array}$ (3.17)

where $Y_{i}$ $:=(Y_{i1}, \cdots, Y_{1m_{i}})$ .

$S_{\min\{\max\{Y_{1j}|1\leq j\leq m.\}|1\leq i\leq n\}}(x) \leq\min(\min\{m_{i}-m_{i}F_{Y_{11}}(x)|1\leq i\leq n\}, 1),$ $x\in R,$ $(3.18)$

where the equality holds if

$Y_{ij} = \Psi_{Y_{i},j} (j=2, \cdots, m_{i})$ ,

$Y_{i1}$ $=$ $\{\begin{array}{l}F_{Y_{11}}^{-1}(F_{Y_{11}}(Y_{11})) i=1, \cdots, i_{0},F_{Y_{11}}^{-1}(mF_{Y_{11}}(\max(Y_{11}, \cdots, Y_{1m}))-m+1) i=i_{0}+1, \cdots, n.\end{array}$ (3.19)

References

[1] Bogachev, V. I., Kolesnikov, A. V., Medvedev, K. V.: On triangular transforma-tions of measures. (Russian). Dokl. Akad. Nauk, 396, no. 6, 727-732 (2004).

[2] Bogachev, V. I., Kolesnikov, A. V., Medvedev, K. V.: Triangular transformationsof measures. (Russian) Mat. Sb., 196, no. 3, 3-30 (2005); translation in Sb. Math.196, no. 3-4, 309-335 (2005).

[3] Brenier, Y.: Polar factorization and monotone rearrangement of vector-valuedfunctions. Comm. Pure Appl. Math., 44, no. 4, 375-417 (1991).

[4] Carlier, G., Galichon, F., Santambrogio, F.: From Knothe’s transport to Brenier’smap and a continuation method for optimal transport. SIAM J. Math. Anal., 41,

no. 6, 2554-2576 (2010).

84

Page 13: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

[5] Deuschel, J.D., Stroock, D.W.: Large deviations. (Pure and Applied Mathematics137) Boston: Academic Press, Inc. 1989.

[6] Evans, L.C.: Partial differential equations. AMS, 1998.

[7] Evans, L.C.: Partial differential equations and Monge-Kantorovich mass transfer.Current developments in mathematics, 1997 (Cambridge, MA), pp. 65-126, Int.Press, 1999.

[8] Evans, L.C., Gangbo W.: Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc., 137, No. 653 (1999).

[9] Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solu-tions. Berlin Heidelberg New York Tokyo: Springer-Verlag 1993.

[10] Gangbo, W., McCann, R.J. : The geometry of optimal transportation. ActaMath., 177, 113-161 (1996).

[11] Higuchi, I., Mikami,T.: Maxima and minima of overall survival functions withfixed marginal distributions and transmission of technology. Communications inStatistics-Theory and Methods-, 41, Issue 1, 46-61 (2012).

[12] Jamison, B.: The Markov process of Schr6dinger. Z. Wahrsch. Verw. Gebiete 32,323-331 (1975).

[13] Kellerer, H. G.: Duality theorems for marginal problems. Z. Wahrsch. Verw. Ge-biete 67, no. 4, 399-432 (1984).

[14] Knothe, H.: Contributions to the theory of convex bodies. Michigan MathematicalJ. 4, 39-52 (1957).

[15] L\’evy, P.: Th\’eorie de l’Addition des Variables Al\’eatoires. pp. 71-73, 121-123, Paris:Gauthier-Villars 1937.

[16] Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of$h$-path processes. Probab. Theory Related Fields 129, 245-260 (2004).

[17] Mikami, T.: A Simple Proof of Duality Theorem for Monge-Kantorovich Problem.Kodai Math. J. 29, 1-4 (2006).

85

Page 14: Stochastic optimal transportation problem and related ...Stochastic optimal transportation problemand related topics 広島大学・工学研究院 (Toshio三上敏夫Mikami) Laboratory

[18] Mikami, T.: Marginal problem for semimartingales via duality. Intemational Con-ference for the 25th Anniversary of Viscosity Solutions, Gakuto Intemational Se-ries. Mathematical Sciences and Applications, Vol. 30, 133-152 (2008).

[19] Mikami, T.: Optimal transportation problem as stochastic mechanics. To appearin Selected Papers on Probability and Statistics. (AMS Translations Series 2, Vol.227) Providence: Amer. Math. Soc. 2009.

[20] Mikami, T.: A characterization of the Knothe-Rosenblatt processes by a conver-gence result. SIAM J. CONT. OPTIM. 50, 1903-1920 (2012)

[21] Mikami, T., Thieullen, M.: Duality Theorem for Stochastic Optimal Control Prob-lem. Stoc. Proc. Appl. 116, 1815-1835 (2006).

[22] Mikami, T., Thieullen, M.: Optimal Transportation Problem by Stochastic Opti-mal Control. SIAM J. CONT. OPTIM. 47, 1127-1139 (2008).

[23] Rachev, S.T., R\"uschendorf, L.: Mass transportation problems, Vol. I: Theory, Vol.II: Application. Berlin Heidelberg New York Tokyo: Springer-Verlag 1998.

[24] Rosenblatt, M.: Remarks on a multivariate transformation. Annals of Mathemat-ical Statistics 23, 470-472 (1952).

[25] R\"uschendorf, L., Thomsen, W.: Note on the Schr\"odinger equation and I-projections. Statist. Probab. Lett. 17, 369-375 (1993).

[26] Villani, C.: Topics in optimal transportation. (Graduate Studies in Mathematics58) Providence: Amer. Math. Soc. 2003.

[27] Villani, C.: Optima$l^{r}Ransport$ : Old and New. Berlin Heidelberg New York Tokyo:Springer-Verlag 2009.

86