47
PWM DC-AC Inverters NCTU 2005 Power Electronics Course Notes 1 page 1 Switch-Mode DC/AC Inverters 200567鄒應嶼 教授 國立交通大學 電機與控制工程研究所 Filename: \電力電子 (研究所)\PE-08.PWM DC-AC Inverters.ppt 國立交通大學電力電子晶片設計與DSP控制實驗室 Power Electronics IC Design & DSP Control Lab., NCTU, Taiwan http://powerlab.cn.nctu.edu.tw/ POWERLAB NCTU 電力電子晶片設計與DSP控制實驗室 Power Electronics IC Design & DSP Control Lab. 台灣新竹交通大學 電機與控制工程研究所 page 2 Switch-Mode DC/AC Inverters Introduction Basic Concepts of Switch-Mode Inverter Square Wave Inverter Sinusoidal PWM Inverter PWM Switching Schemes Single-Phase Inverters Three-Phase Inverters Effect of Blanking Time Advanced PWM Switching Schemes Rectifier Mode of Operation

Switch-Mode DC/AC Inverters - libvolume3.xyzlibvolume3.xyz/electrical/btech/semester6/advancedpowerelectronic… · motor 60 Hz AC filter capacitor switch-mode converter Switch-mode

  • Upload
    others

  • View
    21

  • Download
    1

Embed Size (px)

Citation preview

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 1

    page 1

    Switch-Mode DC/AC Inverters

    2005年6月7日

    鄒 應 嶼 教 授

    國立交通大學 電機與控制工程研究所

    Filename: \電力電子 (研究所)\PE-08.PWM DC-AC Inverters.ppt

    國立交通大學電力電子晶片設計與DSP控制實驗室Power Electronics IC Design & DSP Control Lab., NCTU, Taiwan

    http://powerlab.cn.nctu.edu.tw/

    POWERLABNCTU

    電力電子晶片設計與DSP控制實驗室Power Electronics IC Design & DSP Control Lab.

    台灣新竹交通大學 • 電機與控制工程研究所

    page 2

    Switch-Mode DC/AC Inverters

    IntroductionBasic Concepts of Switch-Mode InverterSquare Wave InverterSinusoidal PWM InverterPWM Switching SchemesSingle-Phase InvertersThree-Phase InvertersEffect of Blanking TimeAdvanced PWM Switching SchemesRectifier Mode of Operation

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 2

    page 3

    Introduction

    What is an Inverter ?

    AC/DC: RectifierDC/DC: ChopperDC/AC: InverterAC/AC: Cycloconverter

    ~=

    Inverter

    AC OUTPUTDC INPUT

    page 4

    Applications of DC/AC Inverters

    PWM Inverters for AC Motor DrivesPWM Inverters for AC Power SourceUPS & AVRInduction HeatingPower Supply for Fluorescent Lamp

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 3

    page 5

    Inverter in AC Motor Drive

    +

    vdAC

    motor60 Hz

    AC

    diode-rectifier

    filter capacitor

    switch-mode inverter

    Unidirectional Power Flow

    +

    vdAC

    motor60 Hz

    AC

    filter capacitor

    switch-mode converter

    Switch-mode converter for motoring and regenerative braking in AC motor drive.

    switch-mode converter

    Bidirectional Power Flow

    page 6

    Circuit Architecture of Advanced AC Motor Drives

    uεud

    • PWM Control• Inverter Control• DTC Vector Control• Sensorless Control• Servo Control• Auto-Tuning

    • Power Factor Control

    • Regenerative Braking Control

    • DC-Link Voltage Regulation

    • DC-Link Capacitor Minimization

    Cd

    to sw itches

    Inputconverter

    Outputconverter

    ud

    to sw itches

    u’1u’2u’3

    N S

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 4

    page 7

    Classifications of Inverters

    Voltage Source Inverter (VCI)

    Current Source Inverter (VCI)Square Wave CSI

    PWM CSI

    PWM InverterCurrent-Controlled PWM Inverter

    Variable Voltage Inverter

    Processed Energy Source and Load (Voltage Source, Current Source)Topology (Single-Phase, Three-Phase, etc.)PWM Strategy (Square, PWM, Sine PWM, Regular PWM, Space Vector PWM, etc.)Switching Devices (SCR, Power Transistor, Power MOSFET, IGBT, etc.)Switching Schemes (PWM, Resonant, Quasi-Resonant, Soft PWM, etc)Control Schemes (Hysteresis, PID, Dead-beat, Variable Structure, Fuzzy, etc.)Controller Implementation (Analog, Microprocessor, DSP, etc.)

    page 8

    Three-Phase Inverter Drives

    b1

    b2

    b3

    b4

    b5

    b6

    Voltage (Line to Neutral)

    Current (Line)

    3-PhasePowerSupply

    N

    S

    S

    N

    b1

    b2

    b3

    b4

    b5

    b6N

    S

    S

    N

    3-PhasePowerSupply

    Voltage (Line to Neutral)

    Current (Line)

    VSI: Voltage Source Inverter

    CSI: Current Source Inverter

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 5

    page 9

    Three-Phase Inverter for AC Power Source

    3-phaseload

    3-PhaseMotor

    3-PhasePowerSupply

    page 10

    Voltage Source Current-Controlled PWM Inverter

    Current

    Controller

    ias*

    i as

    b1

    b2

    b3

    b4

    b5

    b6

    3-PhasePowerSupply

    --

    -

    ibs*

    ics*

    i bsi cs

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 6

    page 11

    Applications of Inverters in UPS

    整 流 器負 載

    市電

    充電器

    升壓器 換流器濾波器

    蓄電池

    控制功能:

    • 開機程序控制• 蓄電池充電控制• 直流鏈電壓調節• 功率因數補償

    • 輸出交流電壓調節• 自我保護機制• 電源監測• 緊急事件處理

    控 制 器

    功率級

    輸 出

    濾波器

    輸 出

    轉換開關

    page 12

    Basic Concepts of Switch-Mode Inverter

    +

    vd

    1-phase switch-mode

    inverter + filter

    ioid

    +

    −vo

    iovo

    4 1 2 3

    1 inverter

    3 inverter

    2 rectifier

    4 rectifier

    io

    vo0

    Switch-Phase Switch-Mode Inverter

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 7

    page 13

    One-Leg Switch-Mode Inverter

    DA+TA+

    TA- DA-

    io

    +

    −vAN

    N

    o

    +

    −2dV

    +

    −2dV

    +

    vd A

    ( $ ) . ( )V V VAo d d14

    21 273

    2= =

    π

    ( $ ) ($ )V VhAo hAo= 1

    1.41.21.00.80.60.40.2

    00 1 3 5 7 9 11 13 15

    x

    xx x x x x x

    ( $ ) / ( )V VAo d1 2

    (h: harmonics of f1)

    t

    Vd2

    −Vd2

    v Ao

    11f

    0

    Spectrum of Square-Wave PWM

    page 14

    Analysis of a Step Approximated Inverter for UPS

    π ω t

    V

    2πu21

    ππ u

    D−

    =

    )(tv

    一個由責任比(D)控制的方波如下圖所示:

    1. 計算此方波的諧波。2. 計算此責任比控制方波之基本波(fundamental)與諧波的均方根值。3. 計算此責任比控制方波的均方根值 Vrms = ?4. 當此方波之均方根值與峰值為V的正弦波相同時,責任比D = ?5. 此方波的總諧波失真(THD)為何?

    10 ≤≤ D

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 8

    page 15

    Harmonics of Odd-Quad Symmetric Square Waveform

    ) cos sin(

    3cos 2cos cos 3sin 2sin sin) (

    10

    321

    3210

    ∑∞

    =

    ++=

    +++

    ++++=

    nnn tnBtnAA

    tBtBtBtAtAtAAtf

    ωω

    ωωωωωωω

    L

    L

    L+++= tAtAtAtv ωωω 5sin3sinsin)( 531

    1. 由於此方波具有奇函數對稱 f(ωt) = -f(-ωt) 且半波對稱 f(ωt) = -f(ωt + π) 的特性,因此稱之為奇四分對稱(odd quad symmetric),其傅立葉係數(Fourier Series)僅含有正弦函數的奇次項。

    ∫=π

    ωωπ

    2

    0 cos)(1 tdtntfAn

    [ ]

    2sin

    142

    cos14

    coscos

    )( sin)( sin1

    5.025.0

    5.05.0

    5.0

    5.0

    5.02

    5.0

    πππ

    ωωπ

    ωωωωπ

    ππ

    π

    π π

    π

    nDVn

    unV

    n

    tntnnV

    tdtnVtdtnVA

    uu

    uu

    u

    u

    u

    un

    ==

    +−=

    ⎥⎦⎤

    ⎢⎣⎡ −+=

    −+

    − −

    +∫ ∫

    page 16

    Harmonics of Duty-Ratio Controlled Square Wave

    1.0

    31

    71

    91

    111

    131

    1VV n

    0 n1 3 5 7 9 11 13

    51

    ⎩⎨⎧=

    n/nVn

    Vn of values oddfor of valueseven for 0

    1

    ) cos991+7sin

    715sin

    513sin

    31(sin

    2sin4 L++++= tttttnDVVn ωωωωω

    ππ

    2sin14 π

    πnDV

    nVn =

    2. 基本波的均方根值:

    tDVtV ωππ

    sin2

    sin4)(1 =

    2sin

    24

    πDVV rms =

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 9

    page 17

    RMS Value of Harmonics

    第n次諧波的均方根值:

    tnnDVn

    tVn ωπ

    πsin

    2sin14)( =

    2sin

    214 π

    πnDV

    nVnrms =

    諧波的均方根值:

    21

    227

    25

    23 rmsrmshrms VVVVVV −=+++= L

    2cos8)

    2(sin8 22

    22

    uDVDDVVhrms ππ

    π−=−= π

    π uD −=

    page 18

    RMS Value of the Square Waveform

    ππ

    ωπ

    ωπ

    ππ

    uVDV

    tdVtdvVD

    rms

    −==

    ⎥⎦⎤

    ⎢⎣⎡== ∫∫

    2/1

    0

    22

    0

    2 )(1)(21

    DVVrms =

    3. 由於週期波之平移,不會改變其均方根值,因此:

    [ ]2/1

    ,..5,3,1

    22/12

    52

    32

    1 2sin14

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛=+++= ∑

    ∞ ππ

    nDVn

    VVVVrms L

    2VDVVrms ==

    4. 當此方波之均方根值與峰值為V的正弦波相同時:

    %50 =∴ D

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 10

    page 19

    THD of a Square Waveform

    rms

    rmsrms

    rms VVV

    VVVV

    THD1

    21

    2

    1

    27

    25

    23 −=

    +++=

    L

    5. 此方波之總諧波失真:

    2sin

    214

    )2

    (sin8

    2sin

    24

    )2

    sin2

    4()( 22

    22

    1

    27

    25

    23

    ππ

    ππ

    ππ

    ππ

    D

    DD

    DV

    DVDV

    VVVV

    THDrms

    −=

    −=

    +++=

    L

    當責任比 D=1 時:

    %3.48

    214

    81

    2sin

    24

    )2

    (sin8 22

    2=

    −=

    −=

    π

    ππ

    π

    ππ

    DV

    DDTHD

    page 20

    Sinusoidal PWM

    b1b2b3b4

    PWMModulator

    L

    R

    C

    v irc

    v c

    v o

    ic

    ioiLrL+

    −−−

    +

    +b1

    Vdcb2

    b3

    b4

    AB

    vcontrol

    vcarrier

    0 t

    vcontrol

    vcarrier vcontrolvcarrier

    +_

    b1 b4

    b2 b3

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 11

    page 21

    Pulse-Width Modulator

    +

    -Amp comparator

    repetitive waveform

    switch control signal

    vcontrolvo (desired)

    vo (actual)

    ton toffTs

    on on

    off off

    switch control signal

    stV̂vst = sawtooth voltage vcontrol (amplified error)

    vcontrol > vst

    vcontrol < vst

    (switch frequency fs = 1/Ts)

    sts Vv

    Tt

    D ˆcontrolon ==

    page 22

    Natural Sinusoidal PWM

    ⎭⎬⎫

    ⎩⎨⎧ <

    +− off : ,on :tricontro

    AA

    l

    TTvv

    ⎭⎬⎫

    ⎩⎨⎧ <

    −+ off : ,on :tricontrol

    AA TTvv

    Vd2

    −Vd2

    1 lfundamenta , )( AoAo vv =uAo

    controlV triV

    ( )1f s

    0 t

    t0

    t = 0

    tri

    controlˆ

    ˆ

    VVma =

    1ffm sf =

    Amplitude Modulation Ratio

    Frequency Modulation Ratio

    dAoA VvTvv 21 on, istricontrol => +

    dAoA VvTvv 21 on, istricontrol −=< −

    DA+TA+

    TA- DA-

    io

    +

    −vAN

    N

    o

    +

    −2

    dV

    +

    −2

    dV

    +

    Vd

    dAoAN Vvv 21

    += hAohAN VV )ˆ()ˆ( =

    A

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 12

    page 23

    Spectrum of Sinusoidal PWM

    x

    xx

    x

    x x x x x x x xx x x xxxx

    ( $ )/

    VV

    Ao h

    d 2

    15 ,8.0 == fa mm

    ( )m f + 2m f

    ( )2 1m f +2m f 3m f

    ( )3 2m f +Harmonics h of f1

    00.20.40.60.81.01.2

    Vd2

    −Vd2

    1 lfundamenta , )( AoAo vv =uAo

    controlV triV

    ( )1f s

    0 t

    t0

    page 24

    Sinusoidal PWM

    controlvtriv

    0

    Vd2

    ( )− Vd2

    vAo

    controlvtriV̂

    0 t

    triv

    t

    tricontroltri

    control ˆ2ˆ

    VvVV

    vV dAo ≤=

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 13

    page 25

    Linear Control of the Sinusoidal PWM Output

    tricontrol1controlcontrolˆˆsinˆ VVtVv ≤= ω

    0.1for 2

    sin2

    sinˆˆ

    )( 11tri

    control1 ≤== adadAo m

    VtmVtV

    Vv ωω

    0.1 2

    )ˆ( 1 ≤= adaAo mVmV

    which shows that in a sinusoidal PWM, the amplitude of the fundamental-frequency component of the output voltage varies linearly with ma (provided ma ≤ 1.0). Therefore, the range of ma from 0 to 1 is referred to as the linear range.

    page 26

    Harmonics of the Sinusoidal Modulated PWM Waveforms

    1)( fkjmf fh ±=

    kmjh f ±= )(

    x

    xx

    x

    x x x x x x xx x x x xxxx

    ( $ )/

    VV

    Ao h

    d 2

    15 ,8.0 == fa mm

    ( )m f + 2m f

    ( )2 1mf +2m f 3m f

    ( )3 2m f +

    Harmonics h of f1

    00.20.40.60.81.01.2

    The frequencies at which voltage harmonics occur can be indicated as:

    The harmonic order h corresponds to the kth sideband of j times the frequency modulation ratio mf:

    where the fundamental frequency correspond to h = 1.

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 14

    page 27

    Generalized Harmonics of vAo for a Large mf

    0.2 0.4 0.6 0.8 1.0

    fundamental1

    mah

    0.2 0.4 0.6 0.8 1.0

    mf

    mf ± 2

    mf ± 4

    1.242

    0.016

    1.15 1.006 0.818 0.601

    0.061 0.131 0.220 0.318

    0.018

    2mf ± 3

    2mf ± 5

    0.190 0.326 0.370 0.314 0.181

    0.024 0.071 0.139 0.212

    0.044

    2mf ± 1

    0.016

    3mf ± 2

    3mf ± 4

    0.335 0.123 0.083 0.171 0.113

    0.139 0.203 0.176 0.062

    0.157

    3mf

    0.104

    3mf ± 6 0.0440.016

    0.044

    0.012 0.047

    4mf ± 3

    4mf ± 5

    0.163 0.157 0.008 0.105 0.068

    0.070 0.132 0.115 0.009

    0.119

    4mf ± 1

    0.084

    4mf ± 7 0.0500.017

    0.012

    0.034

    Generalized Harmonics of vAo for a Large mf.

    Note: is tabulated as a function of ma.])2/1/()ˆ([)2/1/()ˆ( dhANdhAo VVVV =

    page 28

    Example 8.1: Harmonic Analysis

    In the following circuit, Vd = 300 V, ma = 0.8, mf = 39, and the fundamental frequency is 47 Hz. Calculate the rms values of the fundamental-frequency voltage and some of the dominant harmonics in vAo using Table 8-1.

    Example 8.1: Harmonics Analysis of a One-Leg Switching-Mode Inverter

    DA+TA+

    TA- DA-

    io

    +

    −vAN

    N

    o

    +

    −2dV

    +

    −2dV

    +

    Vd A

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 15

    page 29

    Solution of Example 8.1

    2/)ˆ(

    07.1062/)ˆ(

    221

    )(d

    hAo

    d

    hAodhAo V

    VVVV

    V ==

    Fundamental: (VAo)1 = 106.07 × 0.8 = 84.86 V at 47 Hz(VAo)37 = 106.07 × 0.22 = 23.33 V at 1739 Hz(VAo)39 = 106.07 × 0.818 = 86.76 V at 1833 Hz(VAo)41 = 106.07 × 0.22 = 23.33 V at 1927 Hz(VAo)77 = 106.07 × 0.314 = 33.31 V at 3619 Hz(VAo)79 = 106.07 × 0.314 = 33.31 V at 3713 Hzetc.

    Solution:The rms voltage at any value of h is given as

    From Table 8-1 the rms voltages are as follows:

    page 30

    Selection of Frequency Modulation Ratio

    Small mf (mf 21)

    1. Synchronous PWM

    2. mf should be an odd integer

    1. Subharmonics due to asynchronous PWM becomes small as mf is increased.

    2. In applications of inverter motor drives, asynchronous PWM should be avoid when operating in low frequency range.

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 16

    page 31

    Harmonics Due to Overmodulation

    1harmonics h

    3 5 7 9 11 13 150

    )2

    /()ˆ( dhAoVV

    0.5

    1.0

    17 19 21 23 25 27

    x

    x

    x x xx x

    xx x x x x x

    ma = 2.5mf = 15

    (mf)

    Harmonics due to overmodulation; drawn for ma = 2.5 and mf = 15.

    page 32

    Voltage Control by Varying ma

    0

    )2

    /()ˆ( 1 dAoVV

    1.0

    (= 1.278)

    ma0 1.0 3.24

    linearover-

    modulationSquare-wave

    π4

    (for mf = 15)

    24)ˆ(

    2 1d

    Aod VVV

    π

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 17

    page 33

    Square-Wave Switching Scheme

    t0

    1

    x

    h (harmonics of f1)3 5 7 9 11 13 150

    00.20.40.60.81.01.21.4

    xx x x x x x

    V d2

    2dV−

    11f

    v Ao

    ( $ ) . ( )V V VAo d d14

    21 273

    2= =

    π

    ( $ ) ($ )V VhAo hAo= 1

    ( $ ) / ( )V VAo d1 2

    page 34

    Single-Phase Half-Bridge Inverter

    D+T+

    T− D−

    io

    +

    −vo

    N

    o

    +

    −2dV

    +

    −2dV

    +

    vd

    Half-bridge inverter.

    VT = Vd IT = io, peak

    The input capacitor C+ and C- act as dc blocking capacitor, there will no dc component flows through io.The peak voltage and current ratings of the switches are:

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 18

    page 35

    Single-Phase Full-Bridge Inverter

    io

    +

    −vo

    o

    +

    −2dV

    +

    −2dV

    +

    vd

    Single-phase full-bridge inverter.

    DA+TA+

    TA- DA-

    TB+ DB+

    TB- DB-

    A

    B

    VT = Vd IT = io, peak

    With the same dc voltage, the maximum output voltage of the full-bridge inverter is twice that of the half-bridge inverter. The peak voltage and current ratings of the switches are:

    vo = vAo -vBo

    page 36

    PWM with Bipolar Voltage Switching

    0

    0

    ( )1f s

    controv triv

    vo1

    V d

    −Vd

    vo

    t

    t

    io

    +−vo

    o

    +

    −2dV

    +

    −2dV

    +

    vd

    DA+TA+

    TA- DA-

    TB+ DB+

    TB- DB-

    A

    B

    )()( tvtv AoBo −=

    )(2)()()( tvtvtvtv AoBoAoo =−=

    )0.1( ˆ 1 ≤= adao mVmV

    )0.1(4ˆ 1 >

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 19

    page 37

    Example 8.2: Harmonics of Bipolar PWM

    In the full-bridge converter circuit of Fig. 8-11, Vd = 300 V, ma = 0.8, mf = 39, and the fundamental frequency is 47 Hz. Calculate the rms values of the fundamental-frequency voltage and some of the dominant harmonics in the output voltage can be obtained by using Table 8-1, as illustrated by the following example.

    2/)ˆ(13.212

    2/)ˆ(

    22/)ˆ(

    22

    21)(

    d

    hAo

    d

    hAod

    d

    hAodhAo V

    VVVV

    VVVV ==⋅⋅=

    Fundamental: Vo1 = 212.13 × 0.8 = 169.7 V at 47 Hz(Vo)37 = 212.13 × 0.22 = 46.67 V at 1739 Hz(Vo)39 = 212.13 × 0.818 = 173.52 V at 1833 Hz(Vo)41 = 212.13 × 0.22 = 46.67 V at 1927 Hz(Vo)77 = 212.13 × 0.314 = 66.60 V at 3619 Hz(Vo)79 = 212.13 × 0.314 = 66.60 V at 3713 Hzetc.

    Example 8.2: Harmonics of Full-Bridge Bipolar PWM Inverter

    Solution:

    page 38

    DC-Side Current id

    filter

    +

    −eo

    +

    vd

    *di

    Lf1

    Cf1

    idfilter

    Lf2

    Cf2+

    vo

    ioload

    Lload

    switch-mode inverter

    fs → ∞Lf1, Cf1 → 0

    fs → ∞Lf2, Cf2 → 0

    fs

    Inverter with “fictitious” filters at the input dc side and the output ac side.

    tVvv ooo 11 sin2 ω==

    )sin(2 1 φω −= tIi oo

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 20

    page 39

    Analysis of DC-Side Current id

    )sin(2sin2)()()( 11* φωω −== tItVtitvtiV oooodd

    )2cos(2

    )2cos(cos)(

    12

    21*

    φω

    φωφ

    −−=

    +=−−=

    tII

    iItV

    IVV

    IVti

    dd

    ddd

    oo

    d

    ood

    φcosd

    ood V

    IVI =

    d

    ood V

    IVI2

    12 =

    On the dc side, the LC filter will filter the high-frequency components in id, and idwould only consist of the low-frequency and dc components.

    *

    Therefore,

    where

    page 40

    Waveforms of DC-Side Current id

    0

    0

    ω1t

    ω1t

    vo (filtered)

    idioid2

    Vd

    -Vd

    Id

    φ

    The DC-side current in a single-phase inverter with PWM bipolar voltage switching.

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 21

    page 41

    Voltage Ripples at DC Link

    The voltage ripples at the dc link are caused by two reasons:Rectification of the line voltageSecond harmonic current component occurs (of the fundamental frequency at the inverter output) at the dc link due to the sinusoidal output.

    page 42

    Unipolar PWM

    io

    +−vo

    o

    +

    −2dV

    +

    −2dV

    +

    vd

    DA+TA+

    TA- DA-

    TB+ DB+

    TB- DB-

    A

    B

    vcontrol > vtri : TA+ on and vAN = Vdvcontrol < vtri : TA- on and vAN = 0

    (-vcontrol) > vtri : TB+ on and vBN = Vd(-vcontrol) < vtri : TB- on and vBN = 0

    leg A switches:

    leg B switches:

    vtri vcontrol

    t0

    (-vcontrol)TA+on

    TB+on

    -vcontrol > vtrivcontrol > vtri

    Vd

    Vd

    t

    t

    0

    0

    vAN

    vBN

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 22

    page 43

    PWM with Unipolar Voltage Switching (Single Phase)

    x

    d

    hAo

    VV )ˆ(

    00.20.40.60.81.0

    vtri vcontrol

    t0

    (-vcontrol)TA+on

    TB+on

    -vcontrol > vtri vcontrol > vtri

    xx x

    x

    Vd

    Vd

    t

    t

    0

    0

    vAN

    vBN

    Vd

    -Vd

    0

    vo(= vAN - vBN)

    vo1

    t

    1x x x x x x

    (2mf - 1) (2mf + 1)2mfmf 3mf 4mf

    h

    (harmonics of f1)

    page 44

    PWM with Unipolar Voltage Switching

    TA+, TB- on : vAN = Vd, vBN= 0; vo= Vd

    TA-, TB+ on : vAN = 0, vBN= Vd ; vo= -Vd

    TA+, TB+ on : vAN = Vd, vBN= Vd ; vo= 0

    TA-, TB- on : vAN = 0, vBN= 0 ; vo= 0

    Vd

    -Vd

    0

    vo(= vAN - vBN)

    vo1

    t

    3-level switching

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 23

    page 45

    Unipolar vs. Bipolar PWM

    Compared with the bipolar PWM, the unipolar PWM has the following advantages:

    “effectively” doubling the switching frequency Reduced voltage jumps in the output voltage

    Lower current ripples and harmonic distortion!

    page 46

    Harmonics of the Unipolar PWM

    )0.1(ˆ 1 ≤= adao mVmV

    )0.1(4ˆ 1 >

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 24

    page 47

    Example 8.3: Analysis of Unipolar PWM

    In Example 8-2, suppose that a PWM with unipolar voltage-switching scheme is used, with mf = 38. Calculate the rms values of the fundamental-frequency voltage and some of the dominant harmonics in the output voltage.

    2/)(13.212)(

    d

    hAoho V

    VV =

    h = j(2mf) ± k

    Fundamental: Vo1 = 0.8 × 212.13 = 169.7 V at fundamental or 47 Hz(Vo)75 = 0.314 × 212.13 = 66.60 V at h = 2mf − 1 = 75 or 3525 Hz(Vo)77 = 0.314 × 212.13 V at h = 2mf + 1 = 77 or 3619 Hzetc.

    Example 8.3: Analysis of the Full-Bridge Unipolar PWM Inverter

    Solution:

    page 48

    DC-Side Current id

    0 t

    id io

    (-io)

    The DC-side current in a single-phase inverter with PWM unipolar voltage switching.

    Vd

    -Vd

    0

    vovo1

    t

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 25

    page 49

    Square Wave Operation

    do VV π4ˆ

    1 =

    t0

    1

    x

    h (harmonics of f1)3 5 7 9 11 13 150

    0

    0.20.4

    0.60.81.01.21.4

    xx x x x x x

    V d2

    2dV−

    11f

    vAo

    ( $ ) . ( )V V VAo d d14

    21 273

    2= =

    π

    ( $ ) ($ )V VhAo hAo= 1

    ( $ ) / ( )V VAo d1 2

    page 50

    Single-Phase, Full-Bridge InverterControl by Voltage Cancellation

    io

    +−vo

    +

    vd

    DA+TA+

    TA- DA-

    TB+ DB+

    TB- DB-

    A

    B

    N

    id

    00

    0.2

    0.4

    0.6

    0.8

    1.0

    60 120 1807th

    5th 3rd

    total harmonic distortion

    fundamental

    α

    vAN

    vBN

    vo

    0

    0

    0

    α

    Vd

    Vd

    Vd

    (180- α )°

    (180- α )°

    α

    β -Vd

    180°

    180°

    °−=°−= )2

    90(2

    )180( ααβ

    (a) power circuit

    (b) waveform(c) normalized fundamental and harmonic voltage output and total harmonic distortion as a function of α.

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 26

    page 51

    Pulsewidth Control

    ∫∫ −− ==β

    β

    π

    πθθ

    πθθ

    πdhVdhvV doho )cos(

    2)cos(2)ˆ(2/

    2/

    )sin(4)ˆ( βπ

    hVh

    V dho =∴

    vo

    0

    Vd

    (180- α )°

    (180- α )°

    α

    β-Vd

    °−=°−= )2

    90(2

    )180( ααβ

    where β = 90o - 0.5α and h is an odd integer.

    page 52

    Application in Step Wave UPS

    io

    +

    −vo

    o

    +

    −2dV

    +

    −2dV

    +

    vd

    DA+TA+

    TA- DA-

    TB+ DB+

    TB- DB-

    A

    B

    vo = vAo -vBo

    π ω t

    V

    2πu21

    ππ u

    D−

    =

    )(tv

    10 ≤≤ D

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 27

    page 53

    Ripple in Single-Phase Inverter Output

    +

    −eo(t)

    +

    Vd

    induction-motor load

    L

    switch-mode inverter

    (a) circuit

    +

    vo

    io+ −

    ~tEe oo 1sin2 ω=

    vL = vL1 + vripple

    +

    L

    io1 + −

    ~ tEe oo 1sin2 ω=

    vL1

    +

    −~vo1

    L+ −

    +

    −vripple

    vrippleiripple

    (b) fundamental-frequency components

    (c) ripple frequency components

    vL = vL1 + vripple

    iL = iL1 + iripple

    Th ripple in a periodic waveform refers to the difference between the instantaneous values of the waveform and its fundamental-frequency component.

    page 54

    Current Ripple Analysis

    Vo1 = Eo + VL1 = Eo +jω1LIo1

    vripple(t) = vo - vo1

    kvL

    tit

    += ∫0 rippleripple )(1)( ζ

    Vo1

    j(ω1L)Io1 = VL1 Eo

    Io1

    (d) fundamental-frequency phasor diagram

    Th output current ripple can be expressed as

    where k is a constant and ζ is a variable of integration.

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 28

    page 55

    Ripple in the Inverter Output

    vo

    vripple = vo - vo1

    iripple

    0

    vo1

    t

    t

    t t

    t

    t

    0

    0

    0

    0

    0

    vo

    vripple = vo - vo1

    iripple

    vo1

    (a) square-wave switching (b) PWM bipolar voltage switching

    page 56

    Push-Pull Inverters

    )0.1(ˆ 1 ≤= adao mnVmV

    )0.1(4ˆ 1 >

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 29

    page 57

    Comments on Push-Pull Inverters

    In control of the push-pull inverter, it should avoid the dc saturation in the primary side of the transformer.Very good magnetic coupling between the two primary windings is required to reduce the energy associated with the leakage inductance.

    D2T2T1D1

    +

    Vd

    id

    n : 1

    +

    −vo

    Require very good coupling!

    page 58

    Comments on Push-Pull Inverters

    D2T2T1D1

    +

    Vd

    id

    n : 1

    +

    −vo

    Number of turns will be high for sinusoidal output!

    In a PWM push-pull inverter for producing sinusoidal output (unlike those used in switch-mode dc power supplies), the transformer must be designed for the fundamental output frequency. This requires a high number of turns.A higher number of of turns will result in a high transformer leakage inductance, which is proportional to the square of the number of turns.

    i

    Nv+

    _

    L N Al

    dBdH

    N Alm m

    = =2 2µ

    lm

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 30

    page 59

    Switch Utilization in Single-Phase Inverters

    TT

    oo

    IqVIV

    max,1 ratio nutilizatio Switch =

    22

    422 max,max,1max,

    max, ==== qnV

    Vn

    IIVV do

    oTdT π

    16.021 ratio nutilizatio switch Maximum ≅=∴π

    n = turn ratio

    where q is the number of switches in an inverter, VT and IT as the peak voltage and current ratings of a switch, Vo1 is the rms value of the output fundament voltage, Io,max is the rms value of the output current. (The output current is assumed as sinusoidal)

    The utilization factor of all the switches in an inverter is defined as:

    Single-Phase Inverter: Square-wave mode at maximum rated output

    Push-Pull Inverter

    page 60

    Switch Utilization in Single-Phase Inverters

    222

    422 max,max,1max,max, ==== qV

    VIIVV dooTdT π

    16.021 ratio nutilizatio switch Maximum ≅=∴π

    42

    422 max,max,1max,max, ==== qVVIIVV dooTdT π

    16.021 ratio nutilizatio switch Maximum ≅=∴π

    Half-Bridge Inverter

    Full-Bridge Inverter

    16.021 ratio nutilizatio switch Maximum ≅=π

    Conclusion: all the single-phase inverter has the same switch utilization ratio

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 31

    page 61

    Comments on Switch Utilization Ratio

    aa mm 81

    421 ratio nutilizatio switch Maximum ≅= ππ

    )0.1 PWM,( ≤am

    Switch ratings are chosen conservatively to provide safety margins.In determining the switch current rating in a PWM inverter, one would have to take into account the variations in the input dc voltage available.The output ripple current would influence the switch current rating.

    In practice, the switch utilization ratio would be much smaller than 0.16, due to

    Single-Phase Inverter: PWM mode

    Conclusion: The theoretical maximum switch utilization ratio in a PWM switching is only 0.125 at ma = 1, as compared with 0.16 in a square-wave inverter.

    page 62

    Example 8.4: Calculation of Switch Utilization Ratio

    In a single-phase full-bridge PWM inverter, Vd varies in a range of 295-325V. The output voltage is required to be constant at 200 V (rms), and the switch utilization ratio (under these idealized conditions, not accounting for any overcurrent capabilities).

    V325max, == dT VV

    14.141022 =×== oT II

    4switches of no. ==q

    VA200010200max,1 =×=oo IV

    11.014.143254

    2000 ratio nutilizatio Switch max,1 ≅××

    ==TT

    oo

    IqVIV

    Example 8.4: Calculation of Switch Utilization Ratio

    Solution:

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 32

    page 63

    Three-Phase Inverter

    DA+TA+

    TA- DA-

    id

    A

    o

    +

    −2dV

    +

    −2dV

    +

    vd

    DB+TB+

    TB- DB-

    B

    DC+TC+

    TC- DC-

    C

    N

    page 64

    Three-Phase PWM InverterDefinition of Voltages and Currents

    o : neutral of the invertern : neutral of the loadVdc : voltage of the dc-linkS1 ... S6 : switches of the invertervao, vbo, vco : pole voltage of the invertervan, vbn, vcn : phase voltage of the loadias, vbs, vcs : phase current of the loadvab, vbc, vca : line-to-line voltage

    180o180o

    0.5Vd

    S1S2 0.5Vd

    S1

    S3S4

    S3S4

    vac

    vba

    vca

    0ωt

    ωt

    ωtS6S5

    S6S5

    (a)

    (b)

    (c)vab

    ωtVd

    vbc

    ωt

    (d)

    (e)

    vcaωt

    (f)

    van

    ωt

    Vd23

    ias

    120o120o

    Vd

    Six-Step Voltage and Current Waveforms

    (g)

    ias

    ibsics

    S1

    S2

    S3

    S4

    S5

    S6

    o n

    vasvbs

    vcs

    Vdc

    A

    C

    B

    vao = van + vnovbo = vbn + vnovco = vcn + vno

    vno =(1/3) (vao + vbo + vco)van = vao - vnovbn = vbo - vnovcn = vco - vnovao = 0.5Vdc[ds1 (k)- ds2 (k)]

    d k d ks s1 2 1( ) ( )+ ≤

    where ds1 (k), ds2 (k) are the on-duty ratio of S1 and S2during the k-th switching interval.

    vno

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 33

    page 65

    Considerations in 3-Phase PWM Inverters

    For low values of mf (mf 1.0), regardless of the value of mf, the conditions pertinent to a small mf should be observed.

    page 66

    PWM in Three-Phase Voltage Source Inverters

    vtri vcontrol, A vcontrol, B vcontrol, C

    t0

    Vdt0

    vAN

    Vd

    vBN

    0 t 00.20.40.60.81.0

    1

    x

    (2mf+1)

    d

    ho

    VV )ˆ(

    15 ,8.0 == fa mm

    mf 2mf 3mf

    x x xx

    x x x x xx x x x x h

    Harmonics of f1

    (mf+2) (3mf+2)

    Vdt0

    fundamental vLL1

    Cancel out!

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 34

    page 67

    Linear Modulation (ma

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 35

    page 69

    Overmodulation

    0

    square-wave

    d

    LL

    VV )rms(1

    1

    linear

    overmodulationsquare-wave

    78.06 =π

    612.0223

    =

    3.24ma

    (for mf = 15)

    Three-phase inverter; VLL1(rms)/Vd as a function of ma.

    page 70

    Square-Wave Operation

    00.20.40.60.81.0

    d

    LL

    VV

    h

    ˆ

    TA+0

    vAN

    ω 1tVd TA

    180°

    180°vBN

    TB-TB+

    0 ω 1tvCN

    0 ω 1tTC+ TC-

    TC+

    vAB

    Vd0 ω 1t

    1LLv

    1.2

    harmonics of f1

    1 3 5 7 9 11 13

    DA +

    TA+

    TA- DA-

    id

    A

    +

    Vd

    DB +

    TB+

    TB- DB-

    B

    DC +TC+

    TC- DC-

    C

    N

    A B C

    x

    xx x x

    Square-wave inverter (three phase).

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 36

    page 71

    Harmonics of the Square-Wave Inverter

    dLLh VhV 78.0=

    ddd

    LL VVV

    V 78.06

    24

    23

    )rms(1 ≅== ππ

    h = 6n ± 1 (n = 1,2,3, ...)

    The fundamental-frequency line-to-line rms voltage in the output of the one-leg inverter operating in a square-wave mode:

    00.20.40.60.81.0

    d

    LL

    VV

    h

    ˆ

    1.2

    harmonics of f11 3 5 7 9 11 13

    x

    x x x x

    The line-to-line voltage waveform does not depend on the load and contains harmonics (6n +/- 1; n = 1, 2, …), whose amplitudes decrease inversely proportional to their harmonic order.

    page 72

    Switch Utilization in Three-Phase Inverters

    Assume a pure sinusoidal output current with an rms value of Io,max (both in the PWM and square-wave modes) at maximum loading.

    Each switch has the following peak ratings:

    In the square-wave mode, this ratio is 1/2π ≅ 0.16 compared to a maximum of 0.125 for a PWM linear region with ma = 1.0.

    axoTdT IIVV m,max, 2==

    max,max,max,

    max,phase3 11

    621

    263

    6)VA(

    ratio nutilizatio Switchd

    LL

    od

    oLL

    TT VV

    IVIV

    IV=== −

    )0.1(81

    223

    621(PWM)ratio nutilizatio switch Maximum ≤== aaa mmm

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 37

    page 73

    Ripple in the Inverter Output

    +

    VdThree-phase

    three-leg inverter

    L

    (load neutral)

    ~

    id

    A

    iA

    B

    C

    iB

    iC

    R = 0

    eA(t)+

    −n

    3-phaseac motor load IA1

    VAN1

    φ EA j(ω1L)IA1

    Three-phase inverter: (a) circuit diagram; (b) phasor diagram (fundamental frequency).

    (a) (b)

    Back emf

    ),,( CBAkvvv nNkNkn =−=

    ),,( CBAkedtdiLv knkkn =+=

    Under balanced operating conditions, it is possible to express the inverter phase output voltage vAN in terms of the inverter output voltage.

    Each phase voltage can be written as

    N

    page 74

    Phase-to-Neutral Voltage

    0=++ CBA iii

    0)( =++ CBA iiidtd

    0=++ CBA eee

    0=++ CnBnAn vvv

    )(31

    CNBNANnN vvvv ++=

    )(31

    32

    CNBNAnAn vvvv +−=

    111 AAAn Lj IEV ω+=

    In a three-phase, three-wire load

    and

    Phase-to-neutral voltage for phase is

    +

    VdThree-phase

    three-leg inverter

    L

    ~

    id

    A

    iA

    B

    C

    iB

    iC

    R = 0

    eA(t)+

    −n

    N

    nNv

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 38

    page 75

    Phase-to-Neutral Variables of a Three-Phase Inverter

    vAn1vAn

    iripple, A

    peak

    dV32

    dV31

    t0

    0 t

    vAn

    dV32

    dV31

    0vAn1

    iripple, A

    0 t

    peak

    Phase-to-neutral variables of a three-phase inverter.

    (a) square wave (b) PWM

    )(31

    32

    CNBNAnAn vvvv +−=

    page 76

    DC-Side Current id

    )()()()()()(111

    * titvtitvtitviV CnCBBnAAndd ++=

    )quantity dca (cos3)]1201cos()1201cos(

    ]120cos()120cos()cos([cos2 1111*

    dd

    oo

    d

    ood

    IV

    IVtt

    ttttV

    IVi

    ==

    −°+°++

    −°−°−+−=

    φ

    φωω

    φωωφωω

    id

    Id = id*0 t

    Input DC current in a three-phase inverter.

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 39

    page 77

    Conduction of Switches in 3-Phase Inverters

    vAn

    0 t

    vAn1

    vAn

    iAiA1 (fundamental)

    0 t

    DA+ TA+ DA- TA-

    Square-wave inverter: phase A waveforms.

    Square-Wave Operation:

    page 78

    Conduction of Switches in 3-Phase InvertersvAN

    iA

    0 t

    φ = 30°vBN

    iB

    0 t

    vCN

    iC0 t

    (TA- , TB- , DC-) conducting (TA+ , TB + , DC +) conducting

    PWM inverter waveforms: load power factor angle = 30° (lag).

    PWM Operation:

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 40

    page 79

    Short-Circuit in a 3-Phase PWM Inverter

    iA+

    vd

    id = 0

    iB

    iCLoad

    iA+

    vd

    id = 0

    iB

    iCLoad

    page 80

    Effect of Blanking Time t∆

    TA+

    TA-

    +

    Vd

    N

    A

    DA+

    DA-

    t

    t

    t

    t

    t

    t

    t

    0

    0

    0

    0

    0

    0

    0

    vtri vcontrol

    )ideal(cont +ATv

    )ideal(cont −ATv

    +ATvcont

    −ATvcont ∆t

    ∆t

    vAN

    loss

    ideal actual

    actualideal

    gainTs(iA > 0)

    (iA < 0)

    (a)

    (b)

    (c)

    (e)

    (d)

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 41

    page 81

    Voltage Drop ∆id Induced by the Blanking Time

    actualideal )()( ANAN vvv −=ε

    ⎪⎪⎩

    ⎪⎪⎨

    +=∆

    0

    0

    Ads

    Ads

    ANiV

    Tt

    iVTt

    V

    ⎪⎪⎩

    ⎪⎪⎨

    −=∆

    0

    0

    Ads

    Ads

    BNiV

    Tt

    iVTt

    V

    ⎪⎪⎩

    ⎪⎪⎨

    +=∆−∆=∆

    02

    02

    Ads

    Ads

    BNAN

    oiV

    Tt

    iVTtVV

    V

    t0vAN ideal actual

    Ts

    (iA > 0)

    t0vBN

    ideal actual

    Ts

    t0

    page 82

    Effect of t∆ on Vo

    TA+

    TA-

    +

    VdA

    DA+

    DA-

    (a)

    TB+

    TB-

    B

    DB+

    DB-

    N

    iA

    io+ −vo

    iB

    0

    Vo

    vcontrol

    ∆Vo

    ∆Vo

    io < 0

    io > 0

    No blanking time(independent of io)

    (b)

    Effect of t∆ on Vo, where ∆Vo is defined as a voltage drop if positive.

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 42

    page 83

    Effect of t∆ on the Sinusoidal Output

    0

    0

    t

    t

    io

    Vo(t)

    ideal

    actual

    page 84

    Programmed Harmonic Elimination Switching

    -1.0

    0

    1.0

    2/dAo

    VV

    Notch1 Notch2 Notch3 Fundamental

    α2α1 α3 (π - α3) (π - α1)(π - α2)

    (π + α1)

    2ππ

    23π

    ω1t

    Notch4 Notch5 Notch60 20 40 60 80 1000

    10

    20

    30

    40

    50

    60

    α3

    α2

    α1 22.06°

    16.24°

    Fundamental as a percentage of maximum fundamental voltage

    Not

    ch a

    ngles

    in d

    egre

    es

    Programmed harmonic elimination of fifth and seventh harmonics.

    273.142/)ˆ( 1 ==

    πdAo

    VV 188.1

    2/)ˆ( max,1 =

    d

    Ao

    VV

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 43

    page 85

    Hysteresis Current Controlled PWM Inverter

    TA+

    TA-

    +

    Vd A

    DA+

    DA-

    N

    iA

    0 t

    TA-: on TA+: on

    vAN

    actual current iA

    reference current iA*nt

    iA*

    iA

    iε ABC

    comparatortolerance band

    Switch-mode

    inverterΣ

    Tolerance band current control.

    page 86

    Fixed-Frequency Current Controlled PWM Inverter

    Σ ΣABC

    Switch-mode

    inverter

    comparator

    PI controller

    0 t

    iA*

    iA+−

    iε vcontrol

    Feed forward

    +

    +

    Fixed-frequency current control.

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 44

    page 87

    Rectifier Mode of Operation

    eA+

    − n

    +

    Vd A

    N

    iA

    ~

    VAn

    j(ω1L)IA

    (IA)q(IA)pIA

    EAδ

    δEA

    j(ω1L)IAVAn(IA)q

    (IA)p

    IA

    VAn

    j(ω1L)IA

    EAIA

    (a)

    (b)

    (c)

    (d)

    Operation modes: (a) circuit; (b) inverter mode; (c) rectifier mode; (d) constant IA.

    page 88

    Summary of PWM Inverters

    Switch-mode, voltage source dc-to-ac inverters are described that accept dc voltage source as input and produce either single-phase or three-phase sinusoidal output voltages at a low frequency relative to the switching frequency.

    These dc-to-ac inverters can make a smooth transition into the rectification mode, where the flow of power reverses to be from the ac side to the dc side. This occurs, for example, during braking of an induction motor supplied through such an inverter.

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 45

    page 89

    Summary of PWM Inverters

    The sinusoidal PWM switching scheme allows control of the magnitude and the frequency of the output voltage. Therefore, the input to the PWM inverters is an uncontrolled, essentially constant dc voltage source. This switching scheme results in harmonic voltages in the range of the switching frequency and higher, which can be easily filtered out.

    page 90

    Summary of PWM Inverters

    The square-wave switching scheme controls only the frequency of the inverter output. Therefore, the output magnitude must be controlled by controlling the magnitude of the input dc voltage source.

    The square-wave output voltage contains low-order harmonics. A variation of the square-wave switching scheme, called the voltage cancellation technique, can be used to control both the frequency and the magnitude of the single-phase (but not three-phase) inverter output..

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 46

    page 91

    Summary of PWM Inverters

    Due to the harmonics in the inverter output voltage, the ripple in the output current (current ripples) does not depend on the level of power transfer at the fundamental frequency; instead the ripple depends inversely on the load inductance, which is more effective at higher frequencies.

    In practice. If a switch turns off in an inverter leg, the turn-on of the others switch must be delayed by a blanking time, which introduces low-order harmonics in the inverter output.

    page 92

    Summary of PWM Inverters

    There are many other switching schemes (PWM strategies) in addition to the sinusoidal PWM. For example, the programmed harmonic elimination switching technique can be easily implemented with the help of VLSI circuits to eliminate specific harmonics from the inverter output.

    The current-regulated (current-mode) modulation allows the inverter output currents to be controlled directly by comparing the measured actual current with the reference current and using the error to control the inverter switched.

  • PWM DC-AC Inverters

    NCTU 2005 Power Electronics Course Notes 47

    page 93

    Control of Inverter Output Voltage

    triˆ1

    Vma

    Vd

    k(ma) Vd invertervcontrolvo1 = k(ma)Vd

    (rms, line-line)

    for ma ≤ 1.0 k(ma) = 0.707 ma 1-phase= 0.621 ma 3-phase

    k = 0.9 1-phase= 0.78 3-phase

    vo2 = kVd(rms, line-to-line)

    (a) (b)

    Summary of inverter output voltage: (a) PWM operation (ma ≤ 1); (b) square-wave operation.

    The relationship between the control input and the full-bridge inverter output magnitude can be summarized as shown in Fig. (a), assuming a sinusoidal PWM in the linear range of ma ≤ 1.0. For a square-wave switching, the inverter does not control the magnitude of the inverter output, and the relationship between the dc input voltage and the output magnitude is summarized in Fig. (b).

    page 94

    References

    [1] J. Holtz, “Pulsewidth modulation – a survey,” IEEE Trans. on Ind. Electron., vol. 39, no. 5, pp. 410-420, Dec. 1992. [2] J. Holtz, "Pulsewidth modulation for electronic power conversion," Proc. of IEEE, vol. 82, no. 8, pp. 1194-1214,

    Aug. 1994. [3] J. W. A. Wilson and J. A. Yeamans, “Intrinsic harmonics of idealized inverter PWM systems,” IEEE IAS Annual

    Meeting Conf. Rec., pp. 967-973, 1976.[4] G. S. Buja, “Optimum output waveform in PWM inverters,” IEEE Trans. Ind. Appl., vol. 16, pp. 830-836, 1980. [5] S. R. Bowes and A. Midoun, "Microprocessor implementation of new optimal PWM switching strategies,"

    IEE proceedings, vol. 13J, Pt.B., no5, Sep. 1988. [6] I. J. Pitel, S. N. Talukdar, and P. Wood, “Characterization of programmed-waveform pulse width modulation,” IEEE

    Trans. Indus. Appli., vol. 16, no. 5, pp. 707-715, 1980.[7] T. Ohnishi and H. Okitsu, “A novel PWM technique for 3-phase inverter/converter,” IPEC Conf. Rec., Tokyo, pp.

    384-395, 1983.[8] M. Boost and P. D. Ziogas, “State-of-the-art PWM techniques: a critical evaluation,” IEEE PESC Conf. Rec., pp.

    425-433, 1986.[9] I. Rosa, “The harmonic spectrum of DC link currents in inverters,” Proceedings of the Fourth International PCI

    Conference on Power Conversion, Intertec Communications, Oxnard, CA, pp. 38-52.[10] EPRI Report, “AC/DC power converter for batteries and fuel cells,” Project 841-1, Final Report, EPRI, Palo Alto,

    CA, Sept. 1981.[11] T. G. Habetler, "A space vector-based rectifier regulator for AC/DC/AC converters," IEEE Trans. on Power

    Electron., vol. 8, no. 1, pp. 30-36, Jan. 1993. [12] S. Vadivel, G. Bhuvaneswari, and G. Sridhara Rao, A unified approach to the real-time implementation of

    microprocessor-based PWM waveforms," IEEE Trans. on Power Electron., vol. 6, no. 4, pp. 565-575, Oct. 1991.