55
The dark universe P. Binétruy AstroParticule et Cosmologie, Paris nd Sino-French Workshop, Beijing, 28 August

T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Embed Size (px)

Citation preview

Page 1: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

The dark universe

P. Binétruy

AstroParticule et Cosmologie, Paris

Second Sino-French Workshop, Beijing, 28 August 2006

Page 2: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

The twentieth century legacy

Page 3: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Two very successful theories :

• General relativity

A single equation, Einstein’s equation, successfully predicts tiny deviations from classical physics and describes the universe at large as well as its evolution.

R - (R/2) g = 8GN T

geometry matterQuickTime™ et un

décompresseur Cinepaksont requis pour visionner cette image.

Page 4: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Describes nature at the level of the molecule, the atom, the nucleus,the nucleons, the quarks and the electrons .

• Quantum theory

Page 5: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Difficult to reconcile general relativity with the quantum theory: bestillustration is the vacuum problem ( cosmological constant pb)

Classically, the energy of the fundamental state (vacuum) is not measurable. Only differences of energy are (e.g. Casimir effect).

Einstein equations: R - R g/2 = 8G T

geometry energy

Hence geometry may provide a way to measure absolute energies i.e. vacuum energy:

Page 6: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

R - R g/2 = 8G T + 8G < T >

vacuum energy

similar to the cosmological term introduced by Einstein :

R - R g/2 = 8G T + g

Such a term tends to accelerate the expansion of the universe :

H2 = 8 G ( + ) /3 - k/a2 / (8 G )

curvature term

Present observations (k=0, < ) yield ~ H02 / 8 G

~ (10-3 eV)4

Page 7: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Computing the vacuum energy associated with the SM

vac ~ MW4 ~ (1011 eV)4 to be compared with ~ (10-3 eV)4

The electroweak scale MW ( lW = 10-18 m)

or the Planck scale mP = √ hc/8GN = 2.4 1018 GeV ( lP = 10-34 m)

obviously do not provide the size of the Universe.

Horizon scale : H0 -1 =1026 m

Critical energy density c = 3H02 /8 GN c

4

c = 10-3 eV

Page 8: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

From the experimental and observational point of view,

• exploration of the infinitely small

electron, neutrino; up and downquarks make the proton/neutron

Why do we need a muon?

Page 9: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

• exploration of the infinitely large

First only detecting visible light, then all electromagnetic spectrum

Page 10: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

But also particles…

Cosmic rays

Neutrinos

And other types of waves … gravitational waves

Page 11: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Also indirect ways allow to identify new components of the Universe

First example: rotation curves of galaxies dark matter

e.g. spiral galaxies

astro-ph/9506004

Page 12: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Also indirect ways allow to detect new components of the Universe

First example: rotation curves of galaxies dark matter

luminous matter

e.g. spiral galaxies

astro-ph/9506004

Page 13: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Also indirect ways allow to detect new components of the Universe

First example: rotation curves of galaxies dark matter

luminous matter

exponential halo

e.g. spiral galaxies

astro-ph/9506004

Page 14: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Also indirect ways allow to detect new components of the Universe

First example: rotation curves of galaxies dark matter

luminous matter

exponential halo

total contribution

e.g. spiral galaxies

astro-ph/9506004

Page 15: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

also detected through gravitational lensing

Page 16: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Second example: measuring cosmic distances with supernovae explosions dark energy

Page 17: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

• Supernovae of type Ia

magnitude versus redshift

mB = 5 log(H0dL) + M - 5 log H0 + 25

luminosity distance dL = lH0 z ( 1 + ------- z + …)1-q0

2

q0 deceleration parameter q0 = M /2 - for a -CDM model

M M / c / c

Page 18: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006
Page 19: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Unknown component of equation of state p = w , w < 0

(cosmological constant w= -1)

Need for dark matter from the study of the universe at cosmological distance scales

Page 20: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Why are we so excited about this field?

Theoretical ideas

Experiments and observations

Page 21: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Theoretical ideas

Theories beyond the Standard Model provide many new fields :

Dark matter New fermions or vector fields

Dark energy New scalar fields

We have a good candidate for the unification of gravity with quantum theory : string theory.

Modifies drastically our view of spacetime : hopes to solvethe vacuum energy problem . But no clear solution in view!

Page 22: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Models for dark matter

Dark matter Modification of gravity

MOND TeVeSbaryonic non-baryonic

Clumped Hydrogen

dustMACHO

Primordial Black holes

Exotic particles

Extradimensions

thermal nonthermal

Light WIMPS SuperWIMPS axion Wimpzillas

Page 23: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Experiments and observations

• present

Page 24: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Acoustic series in P(k) becomes a single peak in (r)

Pure CDM model has no peak.

mh2 = 0.12

mh2 = 0.13

mh2 = 0.14

CDM with baryons is a good fit: 2 = 16.1 with 17 dof.Pure CDM rejected at 2 = 11.7

Baryon Acoustic OscillationsAcoustic oscillations are seen in the CMB . Look for the the same waves in the galaxy correlations.

Page 25: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

M

= 0.88, v=0.12, H

0 = 46

SNe ignored.cannot accommodate with baryon acoustic peak.

CDM

Baryon oscillations are really discriminating for dark energy

Blanchard, Douspis, Rowan-Robinson, Sarkar 2005

Blanchard et al 2003

Page 26: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

w=-1

Tot=1

BAO: Baryon Acoustic Oscillations(Eisenstein et al 2005, SDSS)

68.3, 95.5 et 99.7% CL

Confidence Contours

See R. Pain’s talk

Page 27: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

DE

(z)

Page 28: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

• future

Page 29: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Dark matter

See G. Gerbier’s talk

Page 30: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Indirect detection

Through annihilation of wimps accumulated in the center of massive objects : Earth, Sun, galactic center.

HESS, GLAST, AMS, ANTARES/AMANDA/KM3NET, ….

Page 31: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Energy (keV)500 505 515510 520 525

Inte

nsity

(10

-4 p

hoto

n cm

-2 s

-1 s

r-1)

0,0

0.5

2.5

1.5

3.0

-0.5

1.0

2.0

3.5

Position:FWHM:

511.06 ± 0.18 keV2.95 ± 0.5 keV

Are we heading for surprises?G

alac

tic la

titud

e (d

egre

es)

20

10

0

-20

-10

FWHM: 9° (-3° / +7°)

200

Difficult to understand if :

• Decay of massive particles

• Positrons injected by compact jet sources

• + decay of radioactive nuclei released by novae• + decay of 56Co released by thermonuclear (type Ia) supernovae

More adequate :• + decay of 56Co released by gravitational supernovae/hypernovae

• Annihilation of a new form of dark matter, scalar and light (Boehm, Hooper, Silk, Cassé & Paul, PRL 92, 101301)

The intensity of the 511 keV line emission (10-3 photons s-1) implies the annihilation

of ~1043 positrons per second in the Galactic bulge.

INTEGRAL/SPI spectrum of the Galactic center region

Page 32: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Dark energy

Future programs both in space (SNAP/JDEM/DUNE)and on the ground (SDSS, LSST, SKA/FAST,…)

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.QuickTime™ et un

décompresseur TIFF (LZW)sont requis pour visionner cette image.

Page 33: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Expected Planck performance on dark energy equation of state

Huterer & Turner 2001

Seo & Eisenstein 2003w = w0 + w1 z

Page 34: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Other standard candles

Gamma ray bursts

coalescence of supermassive black holes

Determine the luminosity through a relation between the collimation corrected energy E and the peak energy

cf. SVOM/ECLAIRs

Page 35: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

QuickTime™ et undécompresseur Codec YUV420

sont requis pour visionner cette image.

Page 36: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Inspiral phase

Key parameter : chirp mass M = (m1 m2)3/5

(m1 + m2)1/5(z) (1+z)

Page 37: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Inspiral phase

Key parameter : chirp mass M = (m1 m2)3/5

(m1 + m2)1/5

Amplitude of the gravitational wave:

h(t) = F (angles) cos (t) M(z)5/3 f(t)2/3

dL

Luminosity distance

frequency f(t) = d/2dt

(z) (1+z)

Page 38: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Inspiral phase

Key parameter : chirp mass M = (m1 m2)3/5

(m1 + m2)1/5

Amplitude of the gravitational wave:

h(t) = F (angles) cos (t) M(z)5/3 f(t)2/3

dL

Luminosity distance poorly known in the case of LISA

~ 10 arcmin 1 HzSNR fGW

(z) (1+z)

Page 39: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

z = 1 , m1 = 105 M, m2 = 6.105 M

(arcminutes)

dL/dL

5%

Holz & Hughes

Page 40: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Using the electromagnetic counterpart

Allows both a measure of the direction and of the redshift

Limited by weak gravitational lensing?

Holz and HughesdL/dL

0.5%

Page 41: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

My own theoretical prejudices :

• dark energy : back reaction models

• dark matter: WIMP connected with the electroweak symmetry breaking issue

Page 42: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Connecting the naturalness of the electroweak scale with the existence of WIMPs

STEP 1 : naturalness

mh2 = t

2 - g2 - h

23mt

2

22v2

6MW2 + 3MZ

2

8 2v2

3mh2

8 2v2

Naturalness condition : |mh2 | < mh

2

v = 250 GeV

Introduce new physics at t or raise mh to 400 GeV range

Page 43: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

STEP 2 : stable particles in the MEW mass range

E

New local symmetry

New discrete symmetry

Standard Modelfermions

New fields

Lightest odd-parityparticle (LOP) is stable

Page 44: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Example 1: low energy SUSY

E

R symmetry

R parity

Standard Modelfermions

Supersymmetricpartners

Stable LSP

Page 45: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Example 2: extra compact dimension (orbifold)

E

5-dimensionalLorentz invariance

KK parity

Standard Modelfermions

KK modes

Stable lightestKK mode (B(1))

A(m) + B(n) C(p) + D(q)

m+n=p+q

(-)n

Page 46: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Example 3: Inert Doublet Model

E

?

H2 -H2

Standard Modelfermions

Inert scalars

Stable LightestInert Particle

Introduce a second Higgs doublet H2

which is not coupled to fermions (symmetry H2 -H2)

Barbieri, Hall, Rychkov, hep-ph/0603188

Page 47: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

STEP 3 : compute relic density

LOP h02 ~

109 GeV-1 xf

g*1/2 MP < ann v >

25

Number of deg. of freedom at time of decoupling

LOP mass ~ MEW < ann v > ~ EW/MEW 2 LOP h02 ~ 1

to be compared with DM h02 = 0.112 0.009

Page 48: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

mSUGRA

Co-annihilation 0

Near-resonant s-channel anni-hilation through heavy Higgs states A and H (b b, + -)

Focus point (WW,ZZ)

tan=5

tan=35

tan=50-

~

Y. Mambrini,, E. Nezri

Page 49: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

STEP 4 : search for the LOP at LHC

As the LSP, missing energy signal

Page 50: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

STEP 5: search LOP through direct detection

e.g. minimal sugra model

Page 51: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Dark energy : back reaction models

The cosmological constant is small because the universe is old

cf. Dirac : large numbers should be considered as resultingfrom the evolution of the Universe. Applied to fundamental constants (but yields time variation difficult to reconcile with constaints)

The cosmological constant is (almost) cancelled by back-reaction effects on the expanding space.

Page 52: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Conclusion

A lively field where many fruitful collaborations maybe envisaged both on the theory and observational fronts

Page 53: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

AstroParticule et Cosmologie

70 physicists, incl. 15 theorists60 engineers, technicians and supporting staff

Page 54: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

High energy astrophysics

Cosmology

and gravitation

Neutrinos

Theory

Data analysis

R&D

Page 55: T he dark universe P. Binétruy AstroParticule et Cosmologie, Paris Second Sino-French Workshop, Beijing, 28 August 2006

Expérimental program @ APC 2002 2004 2006 2008 2010 2012

R&D Bolomètres , BRAIN CMBPOL ?

Planck

Supernovae CFHTLS

INTEGRAL

HESS

Superfaisceaux neutrinos

LISA

Borexino

Km3 Net

HESS-2

SNAP/JDEM/DUNE ?

Double Chooz

Mégatonne ?

SIMBOL X

X-shooter

SAMPAN

Antares

Auger Auger North

LISAPathfinder

SVOM / ECLAIRs