26
1/26 TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza Secundaria) ------------------------------------------------------------------------------- TEMA 65 COMPUESTOS AROMÁTICOS. EL BENCENO: ESTRUCTURA, OBTEN- CIÓN Y PROPIEDADES. OTROS COMPUESTOS AROMÁTICOS DE INTERÉS INDUSTRIAL. Esquema 1. Introducción a los compuestos aromáticos. 2. El Benceno. 2.1. Propiedades físicas y químicas. 2.2. Estructura de la fórmula del benceno. (Fórmula de Kekulé). 2.3. Estructura del benceno por la teoría del enlace de valencia. 2.4. Estructura del benceno por la teoría de orbitales moleculares. 2.5. Estructura resonante del benceno. 2.6. Estabilidad de la molécula del benceno. 2.7. Métodos de obtención. 2.8. Aromaticidad. 3. Hidrocarburos aromáticos. 3.1. Nomenclatura de compuestos polisustituidos. 3.2. Nomenclatura de compuestos heterocíclicos. 3.3. Propiedades generales de los hidrocarburos aromáticos. 4. Métodos generales de obtención de compuestos aromáticos. 4.1. Destilación seca de la Hulla. Alquitrán de Hulla. 4.2. Métodos de síntesis. 4.3. Otros métodos. 5. Reacciones de los hidrocarburos aromáticos. 5.1. Reacciones de adición aromática. 5.1.1. Hidrogenación catalítica. 5.1.2. Cloración. 5.2. Reacciones de sustitución. 5.2.1. Nitración. 5.2.2. Halogenación. 5.2.3. Sulfonación. 5.2.4. Reacción de Friedel-Crafts. 5.2.4.1. Alquilación 5.2.4.2. Acilación. 6. Compuestos aromáticos de interés industrial. 6.1. Hidrocarburos aromáticos. 6.2. Hidrocarburos con anillos bencénicos condensados. 6.3. Derivados halogenados de hidrocarburos aromáticos. 6.4. Nitrocompuestos aromáticos. Nitrobenceno. Trilita. 6.5. Fenoles. Fenol. Fenoles polivalentes. 6.6. Ácidos aromáticos monobásicos. Ácido benzoico. 6.7. Ácidos aromáticos polibásicos. Ácido ftálico. 6.8. Aminas aromáticas. Anilina.

TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

  • Upload
    vuquynh

  • View
    244

  • Download
    2

Embed Size (px)

Citation preview

Page 1: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

1/26

TEMAS DE FÍSICA Y QUÍMICA(Oposiciones de Enseñanza Secundaria)

-------------------------------------------------------------------------------TEMA 65

COMPUESTOS AROMÁTICOS. EL BENCENO: ESTRUCTURA, OBTEN-CIÓN Y PROPIEDADES. OTROS COMPUESTOS AROMÁTICOS DE INTERÉSINDUSTRIAL.

Esquema

1. Introducción a los compuestos aromáticos.2. El Benceno.

2.1. Propiedades físicas y químicas.2.2. Estructura de la fórmula del benceno. (Fórmula de Kekulé).2.3. Estructura del benceno por la teoría del enlace de valencia.2.4. Estructura del benceno por la teoría de orbitales moleculares.2.5. Estructura resonante del benceno.2.6. Estabilidad de la molécula del benceno.2.7. Métodos de obtención.2.8. Aromaticidad.

3. Hidrocarburos aromáticos.3.1. Nomenclatura de compuestos polisustituidos.3.2. Nomenclatura de compuestos heterocíclicos.3.3. Propiedades generales de los hidrocarburos aromáticos.

4. Métodos generales de obtención de compuestos aromáticos.4.1. Destilación seca de la Hulla. Alquitrán de Hulla.4.2. Métodos de síntesis.4.3. Otros métodos.

5. Reacciones de los hidrocarburos aromáticos.5.1. Reacciones de adición aromática.

5.1.1. Hidrogenación catalítica.5.1.2. Cloración.

5.2. Reacciones de sustitución.5.2.1. Nitración.5.2.2. Halogenación.5.2.3. Sulfonación.5.2.4. Reacción de Friedel-Crafts.

5.2.4.1. Alquilación5.2.4.2. Acilación.

6. Compuestos aromáticos de interés industrial.6.1. Hidrocarburos aromáticos.6.2. Hidrocarburos con anillos bencénicos condensados.6.3. Derivados halogenados de hidrocarburos aromáticos.6.4. Nitrocompuestos aromáticos. Nitrobenceno. Trilita.6.5. Fenoles. Fenol. Fenoles polivalentes.6.6. Ácidos aromáticos monobásicos. Ácido benzoico.6.7. Ácidos aromáticos polibásicos. Ácido ftálico.6.8. Aminas aromáticas. Anilina.

Page 2: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

2/26

6.9. Otros compuestos de interés.6.9.1. Nitrofenoles. Ácido Pícrico.6.9.2. Ácidos aminosulfónicos. Sulfamidas.6.9.3. Ácidos-fenoles. Ácido Gálico.

Page 3: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

3/26

TEMA 65

COMPUESTOS AROMÁTICOS. EL BENCENO: ESTRUCTURA, OBTEN-CIÓN Y PROPIEDADES. OTROS COMPUESTOS AROMÁTICOS DE INTERÉSINDUSTRIAL.

1. INTRODUCCIÓN A LOS COMPUESTOS AROMÁTICOS

En los primeros tiempos del desarrollo de la Química Orgánica se hizo una clasi-ficación arbitraria de los compuestos orgánicos en alifáticos y aromáticos. Los Hidro-carburos Aromáticos fueron llamados así, en un principio, porque sus miembros tienen,en general, olores intensos y casi siempre agradables. Se comprobó que todos tienen unaproporción de carbono superior a la de los hidrocarburos alifáticos y se demostró quecuando dichos compuestos se trataban por ciertos métodos se originaba benceno o underivado suyo. Actualmente, el término aromaticidad está desligado del olor y basadoen fundamentos electrónicos y estructurales, pero el benceno sigue siendo el hidrocarbu-ro aromático más sencillo, algo así como la molécula progenitora de la serie. Algunoscompuestos con propiedades aromáticas tienen estructuras aparentemente muy distintasde las del benceno sin embargo presentan una similitud fundamental en sus configura-ciones electrónicas.

Aunque existen sistemas aromáticos no bencénicos, la mayor parte de ellos seconstruyen sobre la estructura del benceno de dos formas:

1) Mediante sustitución de átomos de hidrógeno del núcleo bencénico por otros sus-tituyentes.

2) Mediante la unión de uno o más anillos adicionales, con sustituyentes o sin ellos,a una o más posiciones del anillo bencénico original.

Es importante, por lo tanto, estudiar la estructura del benceno así como sus pro-piedades físicas y su reactividad química.

2. EL BENCENO

2.1. Propiedades física y químicas.

El benceno fue aislado por primera vez por Faraday en 1825. Es un líquido inco-loro, de olor característico, de temperatura de fusión 5'5°C y de temperatura de ebulli-ción 80°C. Es inflamable y arde produciendo mucho humo, propiedad característica dela mayoría de los compuestos aromáticos (en la que se diferencian de los alifáticos), quese debe a su elevado contenido en carbono. Es un buen disolvente de las grasas y seutiliza en limpieza en seco, como combustible y en fabricación de drogas y colorantes.

El benceno es un compuesto muy estable, que es atacado con mucha lentitud poragentes fuertemente oxidantes. Se puede también reducir catalíticamente a ciclohexano,pero no se han aislado en este proceso los compuestos parcialmente hidrogenados.

Page 4: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

4/26

2.2. Estructura de la fórmula del benceno. (Fórmula de Kekulé).

A pesar de ser el benceno un compuesto bastante conocido, hasta el año 1931 nose propuso una estructura satisfactoria para él y tuvieron que pasar otros 10 ó 15 añospara que fuera de uso generalizado por parte de los químicos orgánicos. La dificultad noresidía en la complejidad de la molécula, sino en las limitaciones de la teoría estructuralde entonces.

El benceno tiene la fórmula molecular C6H6. Por su composición elemental y sufórmula molecular, se sabía que el benceno tiene 6 átomos de carbono y 6 de hidrógeno.En 1865 August Kekulé, propuso que los átomos de carbono del benceno se estructuranen anillo.

C

CC

C

CC

H

H

C

CC

C

CC

H

H

C

C C

CC

H

CH2

H

H

H

DH

HH

H

H

H

HFórmuladeKekulé

FórmuladeDewar

(a) (b) (c)

(d) H3C C C C C CH3 (e) H2CHC C C

HC CH2

Por supuesto que hay otras fórmulas que se ajustan a la fórmula C6H6, por ejem-plo la (d) y la (e). De todas ellas, la estructura de Kekulé se aceptó como la más aproxi-madamente satisfactoria.

El benceno sólo da un producto de monosustitución con halógeno, C6H5X. Cuan-do se reemplaza un átomo de hidrógeno por bromo, solamente se obtiene un bromoben-ceno C6H5Br. Análogamente, nunca se ha logrado obtener más de un clorobencenoC6H5Cl o nitrobenceno C6H5NO2, etc., hecho que impone una severa limitación a laestructura del benceno: todos sus hidrógenos deben ser equivalentes, puesto que el re-emplazo de cualquiera de ellos da el mismo producto. Así la estructura (e) debe ser des-cartada puesto que daría dos derivados monobromados isómeros ya que no todos loshidrógenos de (e) son equivalentes. Un razonamiento similar nos permite deducir que(b) y (c) tampoco sirven. Sin embargo, siguen constituyendo posibilidades las (a) y (d)entre otras.

El benceno da tres productos disustituidos isómeros, del tipo C6H4X2, o del tipoC6H4XY - pues sólo existen tres dibromobencenos isómeros C6H4Br2, tres cloronitro-bencenos C6H4ClNO2, etc. Este hecho limita aún más las posibilidades estructurales;por ejemplo, ahora debe rechazarse la estructura (d).

C

CC

C

CC

H

Br

H

BrH

H

C

CC

C

CC

H

Br

Br

HH

H

C

CC

C

CC

Br

Br

H

HH

H

1,2,-Dibromobenceno

1,3,-Dibromobenceno

1,4,-Dibromobenceno

Sin embargo, un examen más detenido de la estructura (a) demuestra que seríanposibles dos isómeros 1,2-dibromados (f) y (g), que difieren en las posiciones de los

Page 5: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

5/26

bromos en relación con los dobles enlaces:

C

CC

C

CC

H

Br

H

BrH

H

(f)

C

CC

C

CC

H

Br

H

HBr

H

(g)

No obstante, Kekulé imaginó la molécula bencénica como algo dinámico. La des-cribió en función de dos estructuras (h), (i) entre las que alternaba la molécula de ben-ceno, y como consecuencia de ello, ambos 1,2-dibromobencenos (f) y (g) estarían enequilibrio rápido, por lo que serían inseparables.

C

CC

C

CC

H

H

H

HH

H

(h)

C

CC

C

CC

H

H

H

HH

H

(i)

Más tarde, cuando quedó definida la idea de la tautomería, se supuso que la alter-nación de Kekulé, era esencialmente una tautomería.

Kekulé anticipó intuitivamente nuestro concepto moderno de electrones deslocali-zados unos 75 años y dibujó las estructuras (h) e (i) a modo de representación tosca dealgo que ninguna de las estructuras representa satisfactoriamente por sí sola. La estruc-tura de Kekulé ha llegado a significar una molécula hipotética con enlaces dobles ysimples alternados.

2.3. Estructura del benceno por la teoría de enlaces de valencia.

El punto de partida del método del enlace de valencia radica en el hecho, experi-mentalmente comprobado, de que los átomos de carbono de la molécula de bencenoforman un ciclo hexagonal plano con ángulos de enlace de 120º estando los seis átomosde hidrógeno en el mismo plano del anillo con ángulos de enlace C−C−H también de120°.

Los datos experimentales se corresponden con una hibridación sp2 para los áto-mos de carbono. El solapamiento de dos orbitales híbridos de cada carbono con otrosorbitales híbridos de los carbonos adyacentes daría lugar al anillo hexagonal formadopor seis carbonos. El enlace con los seis átomos de hidrógeno tendría lugar mediantesolapamiento del otro orbital híbrido de cada carbono y el orbital 1s de cada hidrógeno.Los orbitales p que han permanecido sin hibridar (uno de cada carbono) son paralelosentre sí y perpendiculares al plano del anillo. Es posible imaginar tres enlaces π por so-lapamiento lateral de los correspondientes orbitales p, tal como se observa en la fig.1,conduciendo esa representación a las fórmulas de Kekulé. El hecho de que las longitu-des de enlace C−C sean todas iguales a 1'40 Å que es intermedia entre la del enlacesimple (1'54 Å) y la del enlace doble (1'33 Å) obliga a pensar que los orbitales p se de-ban solapar de igual manera a ambos lados. En la teoría del enlace de valencia este re-

Page 6: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

6/26

sultado se explica admitiendo para el benceno una estructura de resonancia entre las dosformas de Kekulé representadas en la fig.1.

El hecho de que el benceno no posea dobles enlaces aislados, sino un sistemadeslocalizado de electrones π , significa que debe ser más estable que lo que le corres-pondería en el primero de los casos. La magnitud de esta estabilidad viene dada por elvalor de la energía de resonancia, calculada a partir de los calores de hidrogenación. Alhidrogenar un doble enlace común se desprenden 28'6 kcal/mol. Si en el benceno exis-tieran tres dobles enlaces comunes deberían desprenderse durante su hidrogenación aciclohexano un total de 85'8 kcal/mol. Experimentalmente se encuentra que sólo se des-prenden 49'8 kcal/mol, lo que da un valor para la energía de resonancia de 36 kcal/mol.

2.4. Estructura del benceno por la teoría de los orbitales moleculares.

El punto de partida es también la estructura de hexágono regular plano del bence-no, lo que confirma la hibridación trigonal de los átomos de carbono. Debido a esto, enel benceno existirán seis enlaces σ C−C y otros seis enlaces σ C−H, así como seis elec-trones en orbitales 2p sin hibridar, paralelos entre sí y perpendiculares al plano del ani-llo. Cada orbital 2p se solapa con sus dos vecinos de la misma forma, por lo que se hade suponer que los seis forman un orbital molecular que abarca a seis átomos de carbo-no, debido a lo cual, los electrones correspondientes están completamente deslocaliza-dos. Ya que están implicados seis orbitales 2pz son posibles seis orbitales moleculares,tres enlazantes y otros tres antienlazantes. En el estado fundamental, los seis electronesocuparán los tres orbitales enlazantes. En los estados excitados, uno o más de los elec-trones π ocuparán alguno de los orbitales antienlazantes, de mayor contenido energéti-co. En la figura 2, se ha hecho una representación espacial de la estructura del bencenosegún esta teoría.

2.5. Estructura resonante del benceno.

Aunque la estructura del benceno propuesta por Kekulé no es satisfactoria, se usóen forma generalizada hasta 1945. La estructura que se acepta actualmente no es el re-sultado de nuevos descubrimientos relativos al benceno, sino que es la consecuencia deuna ampliación o modificación de la teoría estructural, la que corresponde al conceptode resonancia.

Las estructuras I y II de Kekulé satisfacen las condiciones para la resonancia, co-mo podemos apreciar de inmediato: son estructuras que solamente difieren en la dispo-

Page 7: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

7/26

sición de los electrones. El benceno es un híbrido de I y II y como I y II son exacta-mente equivalentes y de la misma estabilidad, contribuyen por igual al híbrido. Como Iy II son exactamente equivalentes, la estabilización debida a la resonancia debería serimportante.

C

CC

C

CC

H

H

H

HH

H

C

CC

C

CC

H

H

H

HH

H

I III II

ó

El benceno presenta algunos aspectos desconcertantes, que corroboran su especialestructura resonante; estos son:

- El benceno da reacciones de sustitución y no de adición.- Los calores de hidrogenación y de combustión son menores de lo esperado.- Todos los enlaces Carbono-Carbono del benceno, son iguales y de una longitud

intermedia entre las uniones simples y dobles.

Estos aspectos desconcertantes de las propiedades del benceno se aclaran solos.Las seis longitudes de enlace son iguales, porque los seis enlaces son idénticos, de he-cho, uno y medio enlace cada uno, y su longitud de 1'39 Å es intermedia entre las lon-gitudes de una unión simple y una doble.

Al reconocer que todos los enlaces C-C son equivalentes desaparece la dificultadpara justificar el número de productos disustituidos: es claro que solamente debe habertres, de acuerdo con las pruebas experimentales:

Br Br BrBr

BrBr

1,2-Dibromobenceno

1,3-Dibromobenceno

1,4-Dibromobenceno

Finalmente, la estabilidad excepcional del benceno no es nada excepcional; es laque se espera de un híbrido de estructuras equivalentes. La energía de 36 kcal/mol queel benceno no contiene, comparado con el ciclohexantrieno, es la energía de resonancia,que es la responsable del conjunto de nuevas propiedades que llamamos aromáticas.

Las reacciones de adición convierten un alqueno en un compuesto saturado, másestable; así, la hidrogenación del ciclohexeno va acompañada por la devolución de 28'6kcal/mol, lo que significa que el producto -ciclohexano- se encuentra 28'6 kcal/mol másbajo en la escala energética que los reaccionantes. Sin embargo, la adición convertiría albenceno en un producto menos estable, por destrucción del sistema anular bencénicoestabilizado por resonancia. Así, la primera etapa de la hidrogenación del benceno re-quiere de 5'6 kcal/mol para convertirlo en ciclohexadieno, menos estable. Por consi-guiente, resulta mucho más fácil para el benceno seguir un curso de reacciones entera-mente diferente, en el cual se mantiene el sistema anular: la sustitución.

Page 8: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

8/26

2.6. Estabilidad de la molécula del benceno.

Además de las pruebas cualitativas expuestas antes, indicadoras de la mayor esta-bilidad del anillo bencénico respecto a lo que podría esperarse del ciclohexantrieno,existen datos cuantitativos que muestran cuánto más estable es.

Los calores de hidrogenación y de combustión del benceno son menores de lo es-perado. Recordemos que el calor de hidrogenación es la cantidad de calor desprendidaal hidrogenar un mol de un compuesto no saturado. En la mayoría de los casos es de 28a 30 Kcal/mol por cada doble enlace que contenga. No es sorprendente, por lo tanto, queel ciclohexeno tenga un calor de hidrogenación de 28'6 kcal/mol y que el ciclohexadie-no lo tenga aproximadamente de 55'4 kcal/mol. Podríamos suponer razonablemente queel ciclohexantrieno tuviera un calor de hidrogenación tres veces mayor que el ciclohe-xeno, o sea de 85'8 kcal/mol. En realidad, el calor para el benceno (49'8 kcal) es 36 kcalmenor que el valor supuesto.

El diagrama de energía permite visualizar mejor lo expuesto. En él la altura de unalínea horizontal representa el contenido en energía potencial de una molécula. Las líneasdiscontinuas representan valores esperados, basados en tramos iguales de 28'6 kcal. Enlos tres casos, el producto final es el ciclohexano.

FIG.3

El hecho de que el benceno libere 36 Kcal menos que lo calculado, sólo puedesignificar que contiene 36 kcal menos que lo predicho; en otras palabras, el bencenotiene una estabilidad 36 kcal mayor que la prevista para el ciclohexantrieno. También elcalor de combustión del benceno es menor que el estimado, aproximadamente en lamisma cantidad.

2.7. Métodos de obtención.

El benceno se encuentra en el alquitrán de hulla, del que se separa por destilaciónfraccionada. Se encuentra también en algunos tipos de petróleos (como los de Borneo yCalifornia) que lo contiene en cierta proporción.

Entre los métodos de obtención cabe indicar la deshidrogenación del ciclohexano,que se lleva a cabo a una temperatura elevada (500°C) en presencia de ciertos cataliza-dores específicos como óxido de cromo, selenio, carbón-paladio, etc. Esta reacción es lainversa de la hidrogenación de hidrocarburos aromáticos para obtener derivados delciclohexano. Tiene interés teórico su formación a partir del acetileno:

3C2H2 → C6H6

Page 9: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

9/26

2.8. Aromaticidad.

Originalmente, el término aromaticidad hacía referencia a todos los compuestosque tenían las propiedades del benceno y, en consecuencia, se aplicaba sólo a las com-binaciones que contenían núcleos o un sistema de núcleos bencénicos condensados.

Robinson sugirió la teoría del sextete aromático, según la cual hay seis electronesmás de los necesarios para unir los seis átomos de carbono en el benceno. Estos electro-nes, procedentes cada uno de un átomo de carbono, forman un grupo de electrones des-localizados que son los responsables de las propiedades aromáticas. Esta deslocaliza-ción electrónica peculiar no puede darse en hidrocarburos alifáticos pero sí en hidrocar-buros heterocíclicos como los siguientes, que por eso presentan también propiedadesaromáticas:

N NH

O

Benceno Piridina Pirrol Pirrol

Hückel amplió la anterior teoría realizando los cálculos de orbitales molecularesde sistemas monocíclicos CnHn que contenían n electrones π , donde cada átomo de car-bono aportaba uno de esos electrones, y obtuvo como conclusión que la estabilidadaromática estaba ligada a la presencia de (4n+2) electrones π en un sistema cerrado,siendo n un número entero. La teoría de Robinson de que para que exista aromaticidaddebe existir un sextete de electrones n deslocalizados no es sino un caso particular de laregla de Hückel. A esta regla, excesivamente amplia, hay que añadir la limitación deque el sistema cerrado o anillo sea plano. Si no es así, el solapamiento entre los orbitalesp es escaso o incluso nulo.

A modo de resumen podemos concluir diciendo que la aromaticidad está deter-minada por las siguientes propiedades:

- Estabilidad especialmente elevada o, lo que es lo mismo, energía especialmentebaja.

- Propiedades químicas inesperadas, como son reacciones de sustitución en vez dereacciones de adición, consecuencia de la gran estabilidad.

- Presencia de 4n+2 electrones π deslocalizados en una estructura cíclica plana.

Esta definición de aromaticidad incluye muchos compuestos orgánicos que tienenpoco parecido químico con el benceno.

3. HIDROCARBUROS AROMÁTICOS

3.1. Nomenclatura de compuestos polisustituidos.

Los hidrógenos de una molécula de benceno pueden reemplazarse por grupos al-quilo. Así, la sustitución de un solo hidrógeno por un único grupo metilo da el com-puesto de sustitución más simple posible, que se llama metilbenceno (no necesita espe-cificar la posición del sustituyente pues la seis posibles son idénticas), llamado habi-tualmente tolueno.

Page 10: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

10/26

CH3

Metil-bencenoTOLUENO

Para nombrar los hidrocarburos derivados del benceno por alquilación, se nombrael radical antepuesto a la palabra benceno. Cuando son dos o más radicales sustituyentesdebe indicarse su posición relativa. Según el sistema de la IUPAC se numeran los car-bonos del benceno asignando la posición I de manera que les correspondan los númerosmás bajos posibles. Se nombran los radicales, indicando sus posiciones, anteponiéndo-los a la palabra benceno. Se utiliza también un sistema antiguo muy común que usa losprefijos orto-, meta-, para- (en abreviatura o-, m-, p-) junto con el nombre común delcompuesto:

CH3 CH3 CH3

CH3

CH3

CH31,2-Dimetilbencenoo-dimetilbencenoo-XILENO

1,3-Dimetilbencenom-dimetilbencenom-XILENO

1,4-Dimetilbencenop-dimetilbencenop-XILENO

3.2. Nomenclatura de hidrocarburos heterocíclicos.

Los compuestos heterocíclicos son compuestos de cadena cerrada en cuyo anillo,o en alguno de ellos, hay uno o más elementos distintos al carbono. No obstante, no seconsideran compuestos heterocíclicos sustancias de cadena cerrada como el óxido deetileno, de fórmula:

O

CH2H2C

o los anhídridos de ácidos dibásicos, como el anhídrido succínico:

H2C

H2C CO

CO

O

que se estudian al lado de los compuesto de los que derivan.

Las combinaciones heterocíclicas más importantes con anillos de 5 átomos, sien-do uno de ellos distinto al carbono, son:

HC CH

CHO

HC

HC CH

CHS

HC

HC CH

CH

HN

HC

FURANO TIOFENO PIRROL

que pueden representarse por seis fórmulas en resonancia.

Otros hidrocarburos aromáticos tienen anillos bencénicos condensados, como:

Page 11: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

11/26

1

2

3

45

6

7

8 1

2

3

4105

6

7

8 9

NAFTALENO ANTRACENO FENANTRENO PERILENO PIRENO

3.3. Propiedades generales de los hidrocarburos aromáticos.

Los hidrocarburos aromáticos son sólidos o líquidos a temperatura ambiente. Pre-sentan un aumento regular del punto de ebullición con el peso molecular mientras quelos puntos de fusión varían menos regularmente. Los compuestos con simetría molecu-lar poseen puntos de fusión elevados. Son menos densos que el agua, insolubles en ellay solubles en disolventes no polares.

Los hidrocarburos aromáticos volátiles, como el mismo benceno, son fuertementeinflamables. Todos arden con una llama humeante característica debido al alto porcen-taje de carbono. En general, son muy tóxicos. Los que son líquidos, son buenos disol-ventes de las grasas, y de las sustancias orgánicas no polares.

4. MÉTODOS GENERALES DE OBTENCIÓN DE COMPUESTOS ARO-MÁTICOS

En su mayor parte, se obtienen del alquitrán de hulla y de los petróleos, que cons-tituyen las fuentes naturales más importantes de hidrocarburos aromáticos.

4.1. Destilación seca de la Hulla. Alquitrán de Hulla.

La destilación seca o destructiva del carbón de hulla, realizada inicialmente con elfin exclusivo de obtener cok, se lleva actualmente en cámaras cerradas y estrechas conobjeto de recuperar todos los productos volátiles formados en la destilación. La opera-ción se verifica a unos 1100°C y por cada tonelada de carbón de hulla se forman, apro-ximadamente 30 m3 de gas de cokerías, 1-3 Kg de amoníaco, 10-15 litros de aceitesligeros directamente separados, 30-60 Kg de alquitrán de hulla y 500-700 Kg de cok.Los productos volátiles se lavan con agua para separar el amoníaco y algo de alquitrán ycon aceites pesados que separan parte de los aceites ligeros. El alquitrán se condensa enuna masa negra (debido al carbono libre) y de olor desagradable, pero de cuyos compo-nentes se obtienen perfumes, colorantes, medicamentos, etc. de gran valor. El cok, quequeda como residuo se utiliza como combustible, en la metalurgia de muchos metales,para fabricar electrodos, así como para la obtención de gas pobre y gas de agua, carburocálcico y derivados, carborundo, grafito, etc.

El gas de cokerías (H2, CH4, CO, N2, CO2, e hidrocarburos) se emplea como com-bustible y como gas de alumbrado, y por la presencia de cianógeno C2N2, para la obten-ción de cianuros, sulfocianuros y ferrocianuros.

Page 12: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

12/26

El alquitrán de hulla se deshidrata y se destila, recogiéndose cinco fracciones:aceites ligeros, entre 80º-170°C; aceites medios, entre 170º-230°C; aceites pesados,entre 230º-270°C; aceites de antraceno, entre 270º-400ºC y pez, el residuo que quedasin destilar.

- Los aceites ligeros (0'5-3% del alquitrán) están constituidos por benceno, toluenoy xilenos, con algo de fenol y cresoles.

- Los aceites medios (5-15%) se denominan aceites carbólicos o aceites de naftale-no y están constituidos por fenol, cresoles y naftaleno.

- Los aceites pesados (8-12%) además de fenol y cresoles, contiene una mezclacompleja de sustancias denominada aceite de creosota que se emplea en la con-servación de maderas.

- El aceite de antraceno (16-20%) contiene antraceno, fenantreno y carbazol.- La pez que queda sin destilar (50-70%) es un producto pastoso en caliente y duro

en frío que se emplea para pavimentación, impermeabilización, protección demetales, aislamiento, electrodos, etc.

4.2. Métodos de síntesis.

Existen pocos métodos para sintetizar el anillo aromático, por lo cual, la mayoríade los compuestos aromáticos se obtienen a partir de los obtenidos de las fuentes natu-rales. Entre los métodos de síntesis del anillo bencénico están: la polimerización delacetileno y la deshidrogenación de derivados del ciclohexano:

400oC3 HC CH

+ 3 SH2250oC

+ 3 S

4.3. Otros métodos.

De particular interés es la reacción de Friedel-Crafts:

+Cl CH3

CH3

+ HCl

y la reacción de Fittig, análoga a la síntesis de Wurtz:

+

CH3

+ 2NaBrBr CH3 + 2 Na

Br

Los hidrocarburos aromáticos pueden obtenerse también tratando las sales de losácidos aromáticos con cal sodada, por la acción del vapor de agua (en presencia de áci-dos) sobre los derivados sulfónicos y destilando los fenoles con polvo de zinc:

C6H5−COONa + NaOH → C6H6 + Na2CO3

C5H5−SO3H + H2O → C6H6 + H2SO4

C6H5−OH + Zn → C6H6 + ZnO

Page 13: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

13/26

5. REACCIONES DE LOS HIDROCARBUROS AROMÁTICOS.

Se producen dos tipos fundamentales de reacciones: 1) aquellas que conducen atransformaciones del propio anillo aromático y 2) aquellas que introducen modificacio-nes de los sustituyentes del anillo. Al primer grupo corresponden las reacciones de adi-ción y al segundo, las reacciones de sustitución y de oxidación de la cadena lateral.

5.1. Reacciones de adición aromática.

Los compuestos aromáticos, a pesar de ser altamente insaturados poseen una altaestabilidad debido al efecto de resonancia en su molécula, por lo que es poco frecuenteque den reacciones de adición a los dobles enlaces. No obstante, en condiciones espe-ciales pueden producirse estas reacciones que, una vez iniciadas, no pueden detenerseantes de que hayan transcurrido totalmente. Algunas de estas reacciones de adición son:

5.1.1. Hidrogenación catalítica.

En condiciones de alta presión y temperatura elevada y en presencia de un catali-zador como el níquel, se consigue pasar de benceno a ciclohexano, no siendo posibleobtener los compuestos intermedios:

H2/Cat

LENTA

H2/Cat H2/Cat

MUY RAPIDARAPIDA

Benceno 1,3-ciclohexadieno ciclohexeno ciclohexano

5.1.2. Cloración.

En presencia de la luz o a temperatura elevada, es posible la adición de seis áto-mos de cloro al benceno, obteniéndose diversos isómeros geométricos del 1,2,3,4,5,6-hexaclorociclohexano.

LuzCl2

Cl

ClCl

ClCl

Cl

5.2. Reacciones de sustitución.

5.2.1. Nitración.

La nitración es una importante reacción de sustitución en la serie aromática debi-do a que la reducción subsiguiente del grupo nitro a función amina puede llevarse a ca-bo fácilmente y de este grupo amino, de gran versatilidad, pueden derivarse otros gru-pos funcionales. Así por ejemplo, para obtener el m-cloroaminobenceno:

NH2

Cl

no se podría obtener partiendo del aminobenceno ni del clorobenceno, para ello se utili-za el siguiente mecanismo:

Page 14: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

14/26

Cl2

AlCl3

NO2 NO2

Cl

Sn

HCl

NH2

Cl

Casi todos los compuestos aromáticos son susceptibles de nitración aunque lascondiciones requeridas dependen de la reactividad del sustrato. En general esta nitraciónse lleva a cabo mediante una mezcla de ácido nítrico y ácido sulfúrico concentrados.Esta mezcla de ácidos produce el catión nitroílo (o nitrilo) NO2

+; de acuerdo con la si-guiente reacción:

HNO3 + 2H2SO4 ←→ H3O+ + 2 HSO4− + NO2

+

La función del ácido sulfúrico es doble. Por una parte diluye el agua formada en lareacción global y por otra reacciona con el HNO3 para producir una concentración razo-nable de NO2

+. El mecanismo de la nitración es el siguiente:

NO2

+ NO2+

H

H

NO2

H

H

NO2

H

H

NO2

H

H + H-SO4

NO2

+ H2SO4

5.2.2. Halogenación.

En presencia de catalizadores que sean ácidos de Lewis tales como AlX3, SnX2 oFeX3, el benceno (y muchos otros compuestos aromáticos) reacciona con cloro y bromopara dar cloro- o bromobenceno y haluro de hidrógeno. Teniendo en cuenta que tanto elcloro o el bromo como el benceno son moléculas no polares, la misión del catalizadorconsiste en provocar una polaridad en el halógeno:

δ+ δ−Br−Br + FeBr3 → [Br….Br….FeBr3] → Br+ + FeBr4

el catión Bromo, Br+, es atacado entonces por los electrones del sistema aromático:

Br

+ Br+

H

H

Br

H

H

Br

H

H

Br

H

H + FeBr4

Br

+ HBr + FeBr3

Cuando se adicionan estos halógenos a sistemas aromáticos con cadenas alifáticastienen lugar dos reacciones que compiten entre sí:

Page 15: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

15/26

CH3

CH3

CH2

CH3

Cl2FeCl3

Cl2Luz

Tolueno

Cl

Cl

+

o-clorotolueno p-clorotolueno

Cl

cloruro de bencilo

5.2.3. Sulfonación.

La reacción de sulfonación se produce cuando los hidrocarburos aromáticos secalientan con ácido sulfúrico fumante u óleum. El óleum es ácido sulfúrico concentradocon cantidades adicionales de trióxido de azufre; esta mezcla puede considerarse comoel resultado de la reacción del ácido sulfúrico sobre sí mismo:

2H2SO4 ←→ H3O+ + HSO4− + SO3

El ataque de los electrones del sistema aromático ocurre sobre el átomo de azufredel SO3 pudiéndose escribir el siguiente mecanismo de reacción simplificado:

+ SO

O O

SO3

HSO3H

A diferencia de la nitración y la halogenación, que son procesos irreversibles, lasulfonación (al igual que las reacciones de Friedel y Crafts, que veremos a continua-ción) es un proceso reversible.

5.2.4. Reacción de Friedel-Crafts.

Esta reacción consiste en la introducción de un grupo alquilo o acilo en un anillobencénico, en presencia de un catalizador.

Los compuestos aromáticos suelen ser hidrocarburos, cloruros y bromuros de ari-lo, fenoles mono y polihidroxilos o sus éteres. Los agentes alquilantes pueden ser halu-ros de alquilo, alcoholes alifáticos, alquenos, éteres y ésteres alquílicos de ácidos orgá-nicos e inorgánicos. Los más convenientes de todos ellos son los haluros de alquilo,alcoholes y alquenos. Los agentes acilantes suelen ser cloruros o anhídridos de ácido,aunque pueden utilizarse también ácidos o ésteres.

Como catalizadores se utilizan ácidos de Lewis, como haluros metálicos o ácidosprotónicos como el fluorhídrico, sulfúrico u ortofosfórico. La actividad del catalizadoren cada caso, depende de la reactividad (estructura) del agente de alquilación o acilacióny del compuesto aromático. Uno de los catalizadores más utilizado es el AlCl3.

5.2.4.1. Alquilación.

La reacción entre el agente alquilante y el catalizador es:

δ+ δ− Haluro de alquilo R−X + AlX3 → [R….X….AlX3] → [R−AlX4]

Page 16: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

16/26

Olefina: R−CH=CH2 + H+ ←→ [R−+CH−CH3]Alcohol: R−CH2OH + H+ ←→ [R−CH2−+OH2] ←→ [R−+CH2] + H2O

El ion carbonio R+ que se genera es atacado por los electrones del sistema aromá-tico:

+

RH

R

R+

H

+ HX + AlX3AlX4

5.2.4.2. Acilación.

Ahora, los compuestos que van a reaccionar con los anillos aromáticos poseencarbonilo que contiene electrones no compartidos, es decir es una base de Lewis. Poreste motivo, cada grupo carbonilo está formando complejo con un AlCl3, debiendo em-plearse para la catálisis un ligero exceso de AlCl3.

La reacción entre el agente acilante y el catalizador la describimos así:

H3C C Cl

O δ

δ

AlCl31 equival.

H3C CCl

O

AlCl3δ

δH3C C

O

AlCl3

Cl

AlCl3 esceso decatalizador

H3C C

O

AlCl3δ

δ H3C C

O

AlCl3

AlCl3Clδ

δAlCl4

La especie que resulta es electrófila y el mecanismo de reacción con el núcleobencénica puede formularse de la siguiente manera:

+

H

C

HC

O

AlCl3

CH 3

CH 3

OAlCl3

H

C CH3

OAlCl3

H

C

H

CH 3

OAlCl3

H

H

HC

H

CH3

OAlCl3

+ AlCl4 C CH3

OAlCl3

En este punto, el grupo carbonilo del producto está aún formando complejo con elAlCl3, por lo que es necesario un proceso de hidrólisis para liberar la cetona:

Page 17: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

17/26

C CH3

OAlCl3

+ 3 H2O

C CH3

O

+ Al(OH)3 + ·HCl

Al(OH)3 + 3HCl Al+3 + 3Cl- + 3H2O

Si el agente acilante hubiera sido un anhídrido el mecanismo hubiera sido análo-go, siendo siempre el paso inicial, la formación de un reactivo electrófilo. Ejemplo:

+H2C

H2C CO

C

O

O

1. AlCl32. H2O

C CH2

O

CH2 COOHβ α

Ácido β-benzoilpropanoico

6. COMPUESTOS AROMÁTICOS DE INTERÉS INDUSTRIAL

6.1. Hidrocarburos aromáticos.

Los hidrocarburos aromáticos y sus derivados tienen una importancia industrial deprimer orden pues son el origen de muchos productos básicos de frecuente utilizaciónen el mundo actual, como insecticidas, pesticidas, detergentes, pinturas, colorantes, di-solventes, barnices, lacas, perfumes, explosivos, medicamentos, etc. Entre los más im-portantes hay que citar los siguientes:

Tolueno. (Toluol) C6H5−CH3 llamado metilbenceno. Es un líquido incoloro y susvapores son tóxicos. Se obtiene del alquitrán de hulla y por deshidrogenación del hepta-no normal a 550°C y presión atmosférica, empleando una mezcla de Cr2O3 y Al2O3 co-mo catalizador. Se emplea como disolvente y como materia prima de la fabricación dela trilita o trinitrotolueno.

Xilenos. (Xiloles) C6H4(CH3)2 llamados dimetilbencenos. Como derivados disus-tituidos del benceno hay tres xilenos: orto-, meta- y para-xilenos. Se encuentran en elalquitrán de hulla en pequeña cantidad y se separan muy difícilmente uno de otros.

Etilbenceno. C6Hs−CH2−CH3. Es un isómero de los xilenos, pero éstos por oxida-ción dan ácidos ftálicos y el etilbenceno se oxida, como el tolueno a ácido benzo ico.

Mesitilenos. C6H3(CH3)3 o trimetilbencenos. Son posibles tres derivados trisusti-tuidos del benceno de iguales constituyentes: contiguo (1,2,3), asimétrico (1,2,4) y si-métrico (1,3,5) y así se conocen tres mesitilenos. El simétrico se encuentra en el alqui-trán de hulla y puede obtenerse por condensación de tres moléculas de acetona medianteácido sulfúrico concentrado, con eliminación de agua.

Cimeno. CH3−C6H4−CH(CH3)2 o p-metil-isopropil-benceno, contiene el esqueletocarbonado de muchos terpenos y se encuentra en el aceite esencial de eucaliptos, tomi-llo, comino, etc.

Page 18: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

18/26

6.2. Hidrocarburos con anillos bencénicos condensados.

Naftaleno o naftalina, existe en el alquitrán de hulla en la proporción de un 5 a10%. Cristaliza en láminas brillantes que funden a la temperatura de 80'3°C, es insolu-ble en agua, muy volátil y tiene un olor característico. Se emplea como germicida e in-secticida y en la preparación de gran número de derivados. Forma dos derivados mono-sustituídos, en posición 1 ó (4,5,8) llamada también posición α, y en posición 2 ó (3,6,7)llamada posición β . Los derivados monosustituídos se llaman α-derivados y β-deriva-dos. Los derivados disustituidos pueden ser 10 si los dos sustituyentes son iguales y 14cuando los dos sustituyentes son desiguales.

1

2

3

45

6

7

8

Por hidrogenación catalítica se forma tetralina, o tetrahidronaftaleno, con loscuatro hidrógenos adicionados a un mismo núcleo bencénico y la decalina o decahidro-naftaleno (sin ningún doble enlace), que se emplea como disolvente, combustible y de-tergente.

Antraceno. Existe en el alquitrán de hulla sobre un 0'5%. Cristaliza en láminas in-coloras que presentan fluorescencia azul. Funde a la temperatura de 217°C. Forma tresderivados monosustituídos: en posición 1,4,5 ú 8 llamados α-derivados; en posición2,3,6 ó 7 llamados β-derivados y en posición 9 ó 10 llamados γ-derivados o meso-derivados.

1

2

3

4105

6

7

8 9

El derivado más importante del antraceno es la antraquinana que es la base de va-rios colorantes, como la alizarina.

Fenantreno. Se encuentra en el alquitrán de hulla en proporción de 1-2%; funde a101°C. Su anillo forma parte de numerosos compuestos de importancia fisiológica talcomo las hormonas sexuales, los ácidos biliares, los esteroles y ciertas sustancias cance-rígenas.

6.3. Derivados halogenados de los hidrocarburos aromáticos.

Por halogenación directa se obtienen los derivados clorados y bromados en pre-sencia de los correspondientes haluros de aluminio o férricos como catalizadores, ytambién, aunque menos activos, los haluros de antimonio, si bien la introducción decloro se realiza frecuentemente por medio de ácido clorosulfónico ClSO3H, cloruro desulfurilo SO2Cl2 y los cloruros de azufre, S2Cl2 y SCl2. Pueden también obtenerse portransformación de la amina aromática en el derivado halogenado a través de la sal dediazonio correspondiente:

C6H5NH2 → C6H5N2Cl C6H5N2Cl + BrCu → C6H5Br + N2 + ClCu

Page 19: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

19/26

El clorobenceno se obtiene por cloración del benceno en presencia de hierro o ha-ciendo pasar una mezcla de vapor de benceno, cloruro de hidrógeno y oxígeno (aire)sobre un catalizador de cobre a temperatura elevada. Se emplea para la obtención delfenol, de anilina y del DDT.

El p-diclorobenceno, sólido, se empleó mucho como insecticida, aunque poste-riormente se empleó el DDT o diclorodifeniltricloroetano:

CH

C ClCl

Cl

ClCl

obtenido por condensación del cloral CCl3−CHO, con el clorobenceno, en exceso, enpresencia de cloruro de aluminio o de ácido sulfúrico fumante (óleum).

El hexaclorobenceno o hexaclorociclohexano C6H6Cl6, se obtiene en varias for-mas estereoisómeras por acción del cloro sobre el benceno a la luz solar. Una de ellas,conocida como gammahexano o lindano es un poderoso insecticida.

6.4. Nitrocompuestos aromáticos. Nitrobenceno. Trilita.

La acción del ácido nítrico sobre los compuestos orgánicos da lugar a la forma-ción de nitroderivados, R−NO2, en los que el grupo NO2 está unido a un carbono delcompuesto alifático o aromático mediante el átomo de nitrógeno, esto es:

R NO

O

El benceno y sus derivados reaccionan más fácilmente con el ácido nítrico paraformar nitrocompuestos aromáticos. A veces es suficiente el empleo de ácido nítricosolo, pero en general se añade ácido sulfúrico concentrado o fumante para absorber elagua formada en la reacción.

El nitrobenceno se obtiene en grandes cantidades por nitración del benceno conuna mezcla de ácido nítrico y sulfúrico concentrados. Es un líquido amarillento, muypoco soluble en agua, denso y de aspecto aceitoso y con un fuerte olor a almendrasamargas que explica su empleo en perfumes baratos. Funde a 5'7ºC y hierve a 210'9°C.

El m-dinitrobenceno se obtiene por nitración del benceno con ácido nítrico en áci-do sulfúrico fumante a temperatura elevada.

Por nitración del tolueno se obtiene una mezcla de orto- y para- nitrotoluenos quepor nitración ulterior (nitración enérgica) forma el trinitrotolueno simétrico o trilita,TNT, que constituye un potente explosivo. Funde a 80'5°C y a 240°C se descomponecon explosión.

Un derivado del trinitrotolueno, con un radical butilo terciario en el carbono 3 esel almizcle artificial, empleado como perfume.

Page 20: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

20/26

6.5. Fenoles. Fenol. Fenoles polivalentes.

La entrada del grupo OH en el núcleo bencénico da lugar a los fenoles, monova-lentes o polivalentes, según sean uno o varios los grupos oxhidrilos contenidos en lamolécula. Parecen análogos a los alcoholes terciarios o a los alcoholes no saturados,pero se diferencian de aquellos por su marcado carácter ácido, disolviéndose en las di-soluciones diluidas de álcalis para formar fenolatos:

C6Hs−OH + NaOH → C6H5−ONa + H2O

La presencia del grupo OH en el núcleo bencénico hace que éste sea mucho másreactivo. Así, el fenol se nitra más fácilmente que el benceno, y mientras éste se combi-na con el bromo con dificultad, el feno1 reacciona rápidamente a la temperatura ordina-ria formando tribromofenol simétrico.

El Fenol, C6Hs−OH se denomina también hidroxibenceno, ácido carbólico o ácidofénico. Se encuentra en el alquitrán de hulla y en el de madera. Se obtiene sintética-mente por fusión alcalina a unos 350°C del bencenosulfonato sódico o potásico y trata-miento con ácido del fenolato obtenido:

C6H5−SO3Na + 2NaOH → C6H5−ONa + Na2SO3 + H2O

o por la hidrólisis del clorobenceno con disolución de carbonato sódico a presión eleva-da. El fenol se emplea para la preparación de muchos compuestos aromáticos, para laobtención de resinas de fenolaldehído, tal como la bakelita, y como desinfectante, ant i-séptico y germicida.

Fenoles polivalentes. Los tres dihidroxibencenos isómeros son:

OH

OH

OH

OH

OH

OHPIROCATEQUINA RESORCINA HIDROQUINONA

La piracatequina u o-dihidroxibenceno, se obtiene en la fusión alcalina de muchasresinas y en la del ácido o-fenolsulfónico y en la hidrólisis del o-clorofenol, y se formaen la destilación seca de la catequina un extracto de la madera de Acacia catechu. Conel cloruro férrico da un color verde esmeralda. Se emplea en la fabricación del guayacoly de la adrenalina.

La resorcina o m-dihidroxibenceno, se prepara por fusión alcalina del ácido m-bencenosulfónico. A temperaturas superiores a 250°C se obtiene incluso a partir de losácidos o- y p-bencenodisulfónicos debido a un reagrupamiento molecular. Con el cloru-ro férrico da color violeta oscuro. Se emplea como antiséptico y para la obtención defluoresceína y muchos colorantes.

Un homólogo de la resorcina es la orcina 1-metil-3,5-dihidroxibenceno, que seencuentra en los líquenes. Expuesta al aire en medio amoniacal se oxida y constituye elcolorante del tornasol.

Page 21: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

21/26

La hidroquinona o p-dihidroxibenceno, se obtiene por reducción de la quinonacon ácido sulfuroso. Constituye un reductor débil empleándose por ello como reveladoren fotografía.

De los tres trihidroxibencenos, son importantes el isómero vecinal en posiciones1,2,3, denominado pirogalol y el simétrico, en posiciones 1,3,5, llamado floroglucina.

El pirogalol o ácido pirogálico se obtiene calentando el ácido gálico.OH

OH

OH

OHOHHOOC

OH

+ CO2

ACIDO GÁLICO PIROGALOL

Es un polvo cristalino, muy soluble en agua y muy reductor, que fija con avidez eloxígeno, empleándose por ello para absorber el oxígeno en mezclas de gases y comorevelador.

6.6. Acidos aromáticos monobásicos. Acido benzoico.

Contienen el grupo carboxilo unido directamente al núcleo bencénico o a la cade-na lateral. El más importante es el ácido benzoico de fórmula C6H5−COOH, que se ob-tiene por oxidación del tolueno, del alcohol bencílico y del benzaldehído. Cualquiercadena lateral se transforma por oxidación en un grupo carboxilo.

El ácido benzoico se encuentra libre o en forma de ésteres en el bálsamo del Perú,en el benjuí y en otras resinas. Funde a temperatura de 122°C y hierve a 249°C, peropuede sublimarse, lo que se lleva a cabo en su purificación. Cristaliza en hojuelas bri-llantes y es poco soluble en agua. Su constante de disociación como ácido a 25°C es6'3.10−5. Su propiedades químicas dependen, por una parte, del grupo carboxilo (formasales, ésteres, anhídridos, cloruro de acilo, etc.) y por otra del núcleo bencénico (formaderivados nitrados y sulfonados). Se emplea en medicina como antiséptico y en la con-servación de alimentos.

6.7. Ácidos aromáticos polibásicos. Ácido ftálico.

Existen tres ácidos bencenodicarboxílicos que se conocen como ácidos ftálicos, sibien se reserva particularmente este nombre al derivado orto. El derivado meta se llamaácido isoftálico y el derivado para- se llama ácido tereftálico. Pueden obtenerse poroxidación de los xilenos o de los productos intermedios correspondientes con ácido ní-trico o permanganato potásico.

C

O

C

COOH

COOH

O

O

H2O Ácidoftálico

El más importante es el derivado orto o ácido ftálico que se obtiene por oxidacióncatalítica del naftaleno en fase gaseosa, a unos 400°C empleando como catalizador elpentóxido de vanadio o de molibdeno:

Page 22: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

22/26

El ácido ftálico existe principalmente como anhídrido. Si el ácido ftálico se ca-lienta rápidamente funde a 231°C pero calentando lentamente funde incluso a menos de180°C por transformarse parcialmente a anhídrido; éste funde a 131'2°C. El anhídridoftálico y los ácidos ftálicos se emplean extensamente en la preparación de ciertas resinasy fibras sintéticas y en la obtención de numerosas sustancias.

6.8. Aminas aromáticas.

Las aminas más importantes son las aromáticas y de ellas la de mayor significa-ción es la anilina, C6H5-NH2, que es el aminobenceno o la fenilamina. Se obtuvo prime-ro por destilación del índigo o añil, de cuya palabra deriva su nombre. Se obtiene porreducción del nitrobenceno tratándolo con hierro y ácido clorhídrico o por reduccióncatalítica en fase gaseosa empleando el cobre como catalizador. En el primer caso, bastaemplear una pequeñísima cantidad de ácido clorhídrico pues el cloruro ferroso actúa detransportador en la acción reductora directa del hierro y el agua. También se obtieneactualmente la anilina haciendo reaccionar amoníaco y clorobenceno a presión y tempe-ratura elevadas.

La anilina es un líquido incoloro que se oscurece al exponerlo al aire, hierve a184'4°C y congela a -6'0°C, poco soluble en agua y de olor débil característico. La ani-lina es venenosa produciendo vértigo y cianosis. Como base, forma sales con los ácidoscomo el clorhidrato de anilina o cloruro de fenilamonio o de anilinio, C6H5-NH3

+Cl−

muy soluble en agua. Su disolución acuosa da color azul con el dicromato potásico.

Lo mismo que el grupo -OH en el fenol, el grupo -NH2 determina una gran reacti-vidad de los hidrógenos de las posiciones orto y para. Así con el bromo, incluso conagua de bromo, la anilina forma 2,4,6-tribromoanilina. Tratada la anilina con ioduro demetilo (o una mezcla de CH3OH+HCl a presión) se forma la metilanilina y la dimetila-nilina, productos intermedios valiosos en la obtención de colorantes. La dimetilanilinaC6H5N(CH3)2 es un líquido incoloro de olor repugnante que se emplea en la fabricaciónde muchos colorantes.

6.9. Otros compuestos de interés.

Estudiaremos a continuación unas cuantas sustancias aromáticas de función mixta,seleccionadas entre los millares de ellas conocidas debido a su especial importanciateórica o por sus aplicaciones industriales.

6.9.1. Nitrofenoles. Acido Pícrico.

Por la acción del ácido nítrico diluido a la temperatura ordinaria sobre el fenol, seobtiene una mezcla de orto- y para-nitrofenoles, que pueden separarse por arrastre encorriente de vapor pues sólo destila el derivado orto. Tiene carácter ácido más fuerteque el fenol, especialmente los derivados orto y para, que descomponen una disolucióncaliente de carbonato sódico.

El ácido pícrico, o trinitrofenol simétrico, se forma en la nitración enérgica delfenol. Industrialmente se obtiene disolviendo el fenol en ácido sulfúrico concentrado yagregando el ácido p-fenolsulfónico formado, en ácido nítrico fumante; además de lanitración directa tiene lugar la sustitución del grupo sulfónico por otro grupo nitro.

Page 23: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

23/26

La presencia de los tres grupos nitro incrementa notablemente el carácter ácidodel grupo fenólico. La constante de disociación del ácido pícrico es 1'6.10−1 a 18°C, loque indica que este compuesto es realmente un ácido fuerte. El ácido pícrico es un sóli-do cristalino de color amarillo pálido, poco soluble en agua, dando disoluciones de coloramarillo intenso, debido al anión. Los picratos son sales cristalizadas, de carácter explo-sivo. El ácido pícrico se emplea como antiséptico, en el tratamiento de quemaduras y susal amónica como explosivo. Por reducción parcial del ácido pícrico (un grupo NO2

contiguo al grupo OH se reduce a NH2) se forma el ácido picrámico que entra en laconstitución de muchos colorantes.

6.9.2. Ácidos aminosulfónicos. Sulfamidas.

De los tres ácidos aminobencenosulfónicos, el más importante es el derivado parao ácido sulfanílico, que se obtiene calentando a 200ºC la anilina con ácido sulfúricoconcentrado; se forma en primer lugar sulfato ácido de anilinio que se convierte des-pués de un cierto tiempo en ácido sulfanílico. Es un sólido insoluble en los disolventesorgánicos y muy poco soluble en agua fría, de la que cristaliza con dos moléculas deagua. Se obtiene también calentando el ácido p-clorobencenosulfónico con amoníaco enpresencia de cobre.

La sulfanilamida, es la p-aminobencenosulfonamida, se obtiene a partir de la ani-lina mediante la serie siguiente de transformaciones:

NH2

(CH3CO)2O

NH CO CH3 NH

ClSO3H

CO CH3

SO2 Cl

NH3

NH3

NH CO CH3

SO2 NH2

HCl

HgO

NH2

SO2 NH2

Anilina Acetanilina p-sulfoclorurode acetanilida

Acetil-sulfanilamida Sulfanilamida

La sulfanilamida y sus derivados constituyen los medicamentos conocidos comosulfamidas, muy utilizados para combatir las enfermedades originadas por infeccionesde cocos (neumococos, estreptococos, gonococos, etc).

6.9.3. Ácidos-fenoles. Ácido gálico.

El más importante es el ácido salicílico, o ácido o-hidroxibenzoico, que se en-cuentra muy extendido en el reino vegetal como ácido libre o en forma de éster, el sali-cilato de metilo. Su nombre deriva del sauce (salix) que contiene un glucósido, la salici-na, que se hidroliza en glucosa y saligenina. Si ésta se calienta con hidróxido potásico sedesprende hidrógeno y se forma salicilato potásico que al acidificar precipita el ácidosalicílico. Se obtiene industrialmente por la síntesis de Kolbe-Schmitt:

Page 24: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

24/26

O

+CO2

O COONa OHNa

Presión

H COONa

OH

COOH130oC

Presión Ácido

y también se puede obtener a partir del ácido antranílico, mediante la reacción de dia-zotación.

El ácido salicílico es un polvo cristalino poco soluble en agua, que funde a 159°Cy da color violeta con el FeCl3. Su constante de ionización, a 25°C es de l'06.10−3, sien-do un ácido medianamente fuerte. Esta acidez relativamente elevada frente a la del áci-do benzoico puede explicarse aceptando la estructura quelato para el ácido salicílico.

O

CO

O H

H

Este tipo de enlace absorbe parte de la atracción del protón por el ion carboxilatolo que aumenta la tendencia de la sustancia a ceder protones que pueden así unirse enmayor extensión a las moléculas del disolvente. Por su carácter antiséptico se emplea enla conservación de alimentos y en medicina para combatir el reumatismo articular. Suderivado acetilado o ácido acetilsalicílico, conocido por todo el mundo como aspirina©

es un medicamento valioso como antiséptico, antineurálgico, analgésico y antipirético.Es poco soluble en agua y funde a 137°C. Su éster fenílico es el salol, empleado en me-dicina como antiséptico enérgico, pues se descompone en el intestino en ácido salicílicoy fenol. Sus fórmulas son:

O

COOH

CO CH3 OH

COO C6H5Ácido acetilsalicílico

AspirinaSalicilato de fenilo

Salol

El ácido gálico, o ácido 3,4,5-trihidroxibenzoico, de fórmula:

COOH

OH

OH

HO

se encuentra libre o como glucósido en numerosas plantas y se obtiene por hidrólisis delos taninos. Al calentarlo a 220°C se desprende CO2 y se forma pirogalol. Se emplea enfotografía y en tiritas.

Page 25: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

25/26

BIBLIOGRAFÍA RECOMENDADA

Joseph A.BABOR y José IBARZ AZNÁREZ. Química General Moderna. Edito-rial Marín. 1968. BARCELONA.

Louis F.FIESER y Mary FIESER. Química Orgánica. Editorial Grijalbo. 1960.MÉJICO.

Kenneth W.WHITTEN y Kenneth D.GAILEY. Química General. Nueva EditorialInteramericana, S.A. 1986. MEJICO.

K.Peter C.VOLLHARDT. Química Orgánica. Editorial Omega. 1990. BARCE-LONA.

Robert T.MORRISON y Robert N.BOYD. Química Orgánica. Fondo EducativoInteramericano. 1983. MÉJICO.

Page 26: TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza ... · proporción de carbono superior a la de los hidrocarburos alifáticos y se demostró que cuando dichos compuestos se

26/26

Tratamiento Didáctico----------------------------------------------------------------------------------------------------------OBJETIVOS

Introducción al estudio de los compuestos aromáticos, basándose en la estructura delbenceno, su obtención y propiedades.

A partir del anillo bencénico, estudiar las principales sustancias de interés industrial,que deriven de él y las características comunes de aromaticidad.

Desarrollar la nomenclatura oficial según las normas de la IUPAC, en todas las va-riedades de grupos funcionales.UBICACION

Este tema se ubicará en el 2° curso de Bachillerato, en el núcleo temático de "Aplica-ciones de la Química Orgánica" y tendrá que desarrollarse sólo a nivel de introducción.TEMPORALIZACION

De dedicará a la exposición del tema completo, un total de 8 horas de clase, que de-berán completarse con 2 horas para prácticas de laboratorio y ejercicios de formulacióny nomenclatura.METODOLOGIA

Es un tema descriptivo de los compuestos orgánicos aromáticos. Salvo la primeraparte, referente a la estructura del anillo bencénico que requiere una explicación ex-haustiva y detallada para su fácil comprensión, el resto del tema requiere una simpleexposición descriptiva de los hidrocarburos aromáticos sus métodos de obtención, pro-piedades, reacciones y compuestos de interés industrial.

Debe ir acompañada la explicación con algunos experimentos básicos de laboratoriosobre las reacciones más elementales del anillo bencénico y su interpretación.

Deberá utilizarse obligatoriamente la nomenclatura oficial de IUPAC y exigir estanomenclatura en todas las actividades del alumnado.CONTENIDOS MÍNIMOS

Diferencia entre compuestos alifáticos y aromáticos. Aromaticidad.El benceno. Estructuras propuestas.Estructura resonante y estabilidad.Nomenclatura de hidrocarburos aromáticos polisustituidos.Nomenclatura de hidrocarburos heterocíclicos. Métodos de obtención.Reacciones de Adición de hidrógeno, halógenos.Reacciones de Sustitución: nitración, halogenación y sulfonación.Algunos compuestos aromáticos de interés industrial. Aplicaciones.Tolueno. Naftaleno. Nitrobenceno. Anilina. Acido benzoico.

MATERIALES Y RECURSOS DIDÁCTICOSMaterial general de laboratorio para prácticas: material vidrio, balanzas, productos

químicos, buretas, indicadores.Transparencias sobre las principales estructuras aromáticas estudiadas, en especial,

las distintas estructuras propuestas del benceno.Modelos moleculares para la construcción de las moléculas.Hojas de ejercicios de formulación y nomenclatura de compuestos aromáticos.

EVALUACIÓNSe evaluará el tema mediante ejercicios escritos que comprendan preguntas sobre

cuestiones básicas del tema.Ejercicios de nomenclatura y formulación de compuestos aromáticos y sus estructu-

ras espaciales.Evaluación de las prácticas de laboratorio realizadas.