23
1. Teorías del origen de la vida 1. Introducción Desde que el hombre tuvo la capacidad de pesar y de razonar, se empezó a preguntar como surgió la vida, surgiendo así uno de los problemas más complejos y difíciles que se ha planteado el ser humano, en su afán de encontrar una respuesta, se intento solucionarlo mediante explicaciones religiosas, mitológicas y científicas, a partir de estas ultimas han surgido varias teorías y otras han sido descartadas. El presente trabajo basado en la obra "el origen de la vida" del celebre autor Antonio Lazcano manejaremos la evolución de dicho pensamiento a través de los años, dando así una pauta para comprender mejor dicha evolución del pensamiento humano. 2. El Creacionismo Desde la antigüedad han existido explicaciones creacionistas que suponen que un dios o varios pudieron originar todo lo que existe. A partir de esto, muchas religiones se iniciaron dando explicación creacionista sobre el origen del mundo y los seres vivos, por otra parte, la cienciatambién tiene algunas explicaciones acerca de cómo se originaron los seres vivos como son las siguientes. 3. La Generación Espontánea Desde la antigüedad este pensamiento sé tenia como aceptable, sosteniendo que la vida podía surgir del lodo, del agua, del mar o de las combinaciones de los cuatro elementos fundamentales:aire, fuego, agua, y tierra. Aristóteles propuso el origen espontáneo para gusanos, insectos, y peces a partir de sustancias como él roció, el sudor y la humedad. Según él, este proceso era el resultado de interacción de la materia no viva, con fuerzas capaces de dar vida a lo que no tenia. A esta fuerza la llamo ENTELEQUIA. La idea de la generación espontánea de los seres vivos, perduro durante mucho tiempo. En 1667, Johann B, van Helmont, medico holandés, propuso una receta que permitía la generación espontánea de ratones: "las criaturas tales como los piojos, garrapatas, pulgas, y gusanos, son nuestros huéspedes y vecinos, pero nacen de nuestras entrañas y excrementos. Porque si colocamos ropa interior llena d sudo junto con trigo en un recipiente de boca ancha, al cabo de 21 días el olor cambia y penetra a graves de las cáscaras del trigo, cambiando el trigo en ratones. Pero lo más notable es que estos ratones son de ambos sexos y se pueden cruzar con ratones que hayan surgido de manera normal..." Algunos científico no estaban conformes con esas explicaciones y comenzaron a someter a la experimentación todas esas ideas y teorías. Francisco Redí, medico italiano, hizo los primeros experimentos para demostrar la falsedad de la generación espontánea. Logro demostrar que los gusanos que infestaban la carne eran larvas que provenían de huevecillos depositados por las moscas en la carne, simplemente coloco trozos de carne en tres recipientes iguales, al primero lo cerro herméticamente, el segundo lo cubrió con una gasa, el tercero lo dejo descubierto, observo que en el frasco tapado no había gusanos aunque la carne estaba podrida y mal oliente, en el segundo pudo observar que, sobre la tela, había huevecillos de las moscas que no pudieron atravesarla, la carne del tercer frasco tenia gran cantidad de larvas y moscas. Con dicho experimento se empezó a demostrar la falsedad de la teoría conocida como "generación espontánea" A finales del siglo XVII, Antón van Leeuwenhoek, gracias al perfeccionamiento del microscopio óptico, logro descubrir un mundo hasta entonces ignorado. Encontró en las gotas de agua sucia gran cantidad de

Teorías del origen de la vida

  • Upload
    revago

  • View
    54

  • Download
    5

Embed Size (px)

Citation preview

Page 1: Teorías del origen de la vida

1. Teorías del origen de la vida

1. Introducción

Desde que el hombre tuvo la capacidad de pesar y de razonar, se empezó a preguntar como surgió la vida, surgiendo así uno de los problemas más complejos y difíciles que se ha planteado el ser humano, en su afán de encontrar una respuesta, se intento solucionarlo mediante explicaciones religiosas, mitológicas y científicas, a partir de estas ultimas han surgido varias teorías y otras han sido descartadas.El presente trabajo basado en la obra "el origen de la vida" del celebre autor Antonio Lazcano manejaremos la evolución de dicho pensamiento a través de los años, dando así una pauta para comprender mejor dicha evolución del pensamiento humano.

2. El Creacionismo Desde la antigüedad han existido explicaciones creacionistas que suponen que un dios o varios pudieron originar todo lo que existe. A partir de esto, muchas religiones se iniciaron dando explicación creacionista sobre el origen del mundo y los seres vivos, por otra parte, la cienciatambién tiene algunas explicaciones acerca de cómo se originaron los seres vivos como son las siguientes.

3. La Generación Espontánea

Desde la antigüedad este pensamiento sé tenia como aceptable, sosteniendo que la vida podía surgir del lodo, del agua, del mar o de las combinaciones de los cuatro elementos fundamentales:aire, fuego, agua, y tierra. Aristóteles propuso el origen espontáneo para gusanos, insectos, y peces a partir de sustancias como él roció, el sudor y la humedad. Según él, este proceso era el resultado de interacción de la materia no viva, con fuerzas capaces de dar vida a lo que no tenia.

A esta fuerza la llamo ENTELEQUIA. La idea de la generación espontánea de los seres vivos, perduro durante mucho tiempo. En 1667, Johann B, van Helmont, medico holandés, propuso una receta que permitía la generación espontánea de ratones: "las criaturas tales como los piojos, garrapatas, pulgas, y gusanos, son nuestros huéspedes y vecinos, pero nacen de nuestras entrañas y excrementos. Porque si colocamos ropa interior llena d sudo junto con trigo en un recipiente de boca ancha, al cabo de 21 días el olor cambia y penetra a graves de las cáscaras del trigo, cambiando el trigo en ratones. Pero lo más notable es que estos ratones son de ambos sexos y se pueden cruzar con ratones que hayan surgido de manera normal..."

Algunos científico no estaban conformes con esas explicaciones y comenzaron a someter a la experimentación todas esas ideas y teorías.

Francisco Redí, medico italiano, hizo los primeros experimentos para demostrar la falsedad de la generación espontánea. Logro demostrar que los gusanos que infestaban la carne eran larvas que provenían de huevecillos depositados por las moscas en la carne, simplemente coloco trozos de carne en tres recipientes iguales, al primero lo cerro herméticamente, el segundo lo cubrió con una gasa, el tercero lo dejo descubierto, observo que en el frasco tapado no había gusanos aunque la carne estaba podrida y mal oliente, en el segundo pudo observar que, sobre la tela, había huevecillos de las moscas que no pudieron atravesarla, la carne del tercer frasco tenia gran cantidad de larvas y moscas. Con dicho experimento se empezó a demostrar la falsedad de la teoría conocida como "generación espontánea"

A finales del siglo XVII, Antón van Leeuwenhoek, gracias al perfeccionamiento del microscopio óptico, logro descubrir un mundo hasta entonces ignorado. Encontró en las gotas de agua sucia gran cantidad de microorganismos que parecían surgir súbitamente con gran facilidad. Este descubrimiento fortaleció los ánimos de los seguidores de la "generación espontánea"A pesar de los experimentos de Redí, la teoría de la generación espontánea no había sido rechazada del todo, pues lasinvestigaciones, de este científico demostraba el origen de las moscas, pero no el de otros organismos .

4. Spallanzani Y Needhad

En esos mismos tiempos, otro científico llamado Needhad, sostenía que había una fuerza vital que originaba la vida. Sus suposiciones se basan en sus experimentos: hervía caldo de res en una botella, misma que tapaba con un corcho, la dejaba reposar varios días y al observar al microscopio muestra de la sustancia, encontraba organismos vivos. Él afirmaba que el calor por el que había hecho pasar el caldo era suficiente para matar a cualquier organismo y que, entonces, la presencia de seres vivos era originada por la fuerza vital. Sin embargo Spallanzani no se dejo convencer como muchos científico de su época, realizando los mismos experimentos de Needhad, pero sellada totalmente las botellas, las ponía a hervir, la dejaba reposar varios días y cuando hacia observaciones no encontraba organismos vivos. Esto lo llevo a concluir que los organismos encontrados por Needhad procedían del aire que penetraba a través del corcho.

5. Pasteur

En 1862, Louis Pasteur, medico francés, realizo una serie de experimentos encaminados a resolver el problema de la generación espontánea. Él pensaba que los causantes de la putrefacción de la materia orgánica eran los microorganismos que se encontraban en el aire. Para demostrar su hipótesis, diseño unos matraces

Page 2: Teorías del origen de la vida

cuello de cisne, en los cuales coloco líquidos nutritivos que después hirvió hasta esterilizarlos. Posteriormente, observo que en el cuello de los matraces quedaban detenidos los microorganismos del aire y aunque este entraba en contacto con la sustancia nutritiva, no había putrefacción de la misma. Para verificar sus observaciones, rompió el cuello de cisne de un matraz, y al entrar en contacto él liquido con el aire y los microorganismos que contenía él ultimo, se producía una descomposición de la sustancia nutritiva De esta manera quedo comprobada por él celebre científico la falsedad de la teoría de la generación espontánea 

6. La Panspermia

Una propuesta mas para resolver el problema del origen de la vida la presento Svante Arrhenius, en 1908. su teoría se conoce con el nombre de panspermia. Según esta, la vida llego a la Tierra en forma de esporas y bacterias provenientes del espacio exterior que, a u vez, se desprendieron de un planeta en la que existían.A esta teoría se le pueden oponer dos argumentos: Se tiene conocimiento de que las condiciones del medio interestelar son poco favorables para la supervivencia de cualquier forma de vida. Además, se sabe que cuando un meteorito entra en la atmósfera, se produce una fricción que causa calor y combustión destruyendo cualquier espora o bacteria que viaje en ellos. El problema con esta es que tampoco soluciona el problema del origen de la vida, pues no explica como se formo esta en el planeta hipotético del cual se habría desprendido la espora o bacteria

7. La Teoría De Oparin – Haldane

Con el transcurso de los años y habiendo sido rechazada la generación espontánea, fue propuesta la teoría del origen físico-químico de la vida, conocida de igual forma como teoría de Oparin – Haldane.La teoría de Oparin- Haldane se basa en las condiciones físicas y químicas que existieron en la Tierra primitiva y que permitieron el desarrollo de la vida.De acuerdo con esta teoría, en la Tierra primitiva existieron determinadas condiciones de temperatura, así como radiaciones del Sol que afectaron las sustancias que existían entonces en los mares primitivos. Dichas sustancias se combinaron dé tal manera que dieron origen a los seres vivos. En 1924, el bioquímico Alexander I. Oparin publico "el origen de la vida", obra en que sugería que recién formada la Tierra y cuando todavía no había aparecido los primeros organismos, la atmósfera era muy diferente a la actual, según Oparin, eta atmósfera primitiva carecía de oxigeno libre, pero había sustancias como el hidrógeno, metano y amoniaco. Estos reaccionaron entre sí debido a la energía de la radiación solar, la actividad eléctrica de la atmósfera y a la de los volcanes, dando origen a los primeros seres vivos. En 1928, John B.S.Haldane, biólogo ingles, propuso en forma independiente una explicación muy semejante a la de Oparin. Dichas teorías, influyeron notablemente sobre todos los

científicos preocupados por el problema del origen de la vida.

8. Condiciones que permitieron la vida 

Hace aproximadamente 5 000 millones de años se formo la Tierra, junto con el resto del sistema solar. Los materiales de polvo y gas cósmico que rodeaban al Sol fueron fusionándose y solidificándose para formar los todos los planetas. Cuando la Tierra se condenso, su superficie estaba expuesta a los rayos solares, al choque de meteoritos y a la radiación de elementos como el torio y el uranio. Estos proceso provocaron que la temperatura fuera muy elevada. La atmósfera primitiva contenía vapor de agua (H2O), metano (CH4), amoniaco (NH3), ácido cianhídrico (HCN) y otros compuestos, los cuales estaban sometidos al calor desprendido de los volcanes y a la radiación ultravioleta proveniente del sol. Otra característica de esta atmósfera es que carecía de oxigeno libre necesario para la respiración. Como en ese tiempo tampoco existía la capa formada por ozono, que se encuentra en las partes superiores de la atmósfera y que sirven para filtrar el paso de las radiaciones ultravioletas del sol, estas podían llegar en forma directa a la superficie de la Tierra. También había gran cantidad de rayos cósmicos provenientes del espacio exterior, así como actividad eléctrica y radiactiva, que eran grandes fuentes de energía. Con el enfriamiento paulatino de la Tierra, el vapor de agua se condeno y se precipito sobre el planeta en forma de lluvias torrenciales, que al acumularse dieron origen al océano primitivo, cuyas características definieran al actual.

9. ¿Cómo fueron los primeros organismos?

Los elementos que se encontraban en la atmósfera y los mares primitivos se combinaron para formar compuestos, comocarbohidratos, las proteínas y los aminoácidos. Conforme se iban formando estas sustancias, se fueron acumulando en los mares, y al unirse constituyeron sistemas microscópicos esferoides delimitados por una membrana, que en su interior tenían agua y sustancias disueltas. Estos tipos de sistemas pluricelulares, podemos estudiarlos a partir de modelos parecidos a los coacervaros (gotas microscópicas formadas por macromoléculas a partir de la mezcla de dos soluciones de estas, son un posible modeloprecelular). Estos son mezclas de soluciones orgánicas complejas, semejantes a las proteínas y a los azúcares. Oparin demostró que en el interior de un coacervado ocurren reacciones químicas que dan lugar a la formación de sistemas y que cada vez adquieren mayor complejidad. Las propiedades y características do los coacervados hacen suponer que los primeros sistemas precelulares se les parecían mucho.

Los sistemas precelulares similares a los coacervados sostienen un intercambio de materia y energía en el medio que los rodea. Este tipo de funciones también las

Page 3: Teorías del origen de la vida

realizan las células actuales a través de las membranas celulares. Debido a que esos sistemas precelulares tenían intercambio con su medio, cada vez se iban haciendo más complejos, hasta la aparición de los seres vivos. Esos sistemas o macromoléculas, a los que Oparin llamo PROTOBIONTES, estaban expuestos a las condiciones a veces adversas del medio, por lo que no todos permanecieron en la Tierra primitiva, pues las diferencias existentes entre cadasistema permitían que solo los más resistentes subsistieran, mientras aquellos que no lo lograban se disolvían en el mar primitivo, el cual ha sido también llamado SOPA PRIMITIVA.Después, cuando los protobiontes evolucionaron, dieron lugar a lo que Oparin llamo EUBIONTES, que ya eran células y, por lo tanto, tenían vida. Según la teoría de Oparin – Haldane, así surgieron los primeros seres vivos.

Estos primeros seres vivos eran muy sencillos, pero muy desarrollados para su época, pues tenían capacidad para crecer al tomar sustancias del medio, y cuando llegaban a cierto tamaño se fragmentaban en otros más pequeños, a los que podemos llamar descendientes, estos conservaban muchas características de sus progenitores.

Estos descendientes iban, a su vez, creciendo y posteriormente también se fragmentaban; de esta manera inicio el largo proceso de evolución de las formas de vida en nuestro planeta.

Modelos actuales

No existe un modelo generalizado del origen de la vida. Los modelos actualmente más aceptados se construyen de uno u otro modo sobre cierto número de descubrimientos acerca del origen de los componentes celulares y moleculares de la vida, enumerados en el orden más o menos aproximado en el que se postula su emergencia: Las posibles condiciones prebióticas terminaron con la creación de ciertas moléculas pequeñas básicas (monómeros) de la vida, como los aminoácidos. Esto fue demostrado en el experimento Urey-Miller llevado a cabo por Stanley L. Miller y Harold C. Urey en 1953. Los fosfolípidos (de una longitud adecuada) pueden formar espontáneamente bicapas lipídicas, uno de los dos componentes básicos de la membrana celular.La polimerización de los nucleótidos en moléculas de ARN al azar pudo haber dado lugar a ribozimas autorreplicantes (hipótesis del mundo de ARN).

Las presiones de selección para una eficiencia catalítica y una diversidad mayor terminaron en ribozimas que catalizaban la transferencia de péptidos (y por ende la formación de pequeñasproteínas), ya que los oligopéptidos formaban complejos con el ARN para formar mejores catalizadores. De ese modo surgió el primer ribosoma y la síntesis de proteínas se hizo más prevalente.

Las proteínas superan a las ribozimas en su capacidad catalítica y por tanto se convierten en el biopolímero dominante. Los ácidos nucleicos quedan restringidos a un uso predominantemente genómico.El origen de las biomoléculas básicas, aunque aún no se ha establecido, es menos controvertido que el significado y orden de los pasos 2 y 3. Los reactivos químicos inorgánicos básicos a partir de los cuales se formó la vida son el metano, amoníaco, agua, sulfuro de hidrógeno (H2S), dióxido de carbono y anión fosfato.

Aún no se ha sintetizado una protocélula utilizando los componentes básicos que tenga las propiedades necesarias para la vida (el llamado enfoque «de abajo a arriba»). Sin esta prueba de principio, las explicaciones tienden a quedarse cortas. No obstante, algunos investigadores están trabajando en este campo, como por ejemplo Jack Szostak de la Universidad Harvard. Otros autores han argumentado que un enfoque «de arriba a abajo» sería más asequible. Uno de estos intentos fue realizado por Craig Venter y colaboradores en el Institute for Genomic Research. Utilizaba ingeniería genética con células procariotas existentes con una cantidad de genes progresivamente menor, intentando discernir en qué punto se alcanzaban los requisitos mínimos para la vida. El biólogo John Desmon Bernal acuñó el término biopoiesis para este proceso, y sugirió que había un número de «estadios» claramente definidos que se podían reconocer a la hora de explicar el origen de la vida:

Estadio 1: El origen de los monómeros biológicos.Estadio 2: El origen de los polímeros biológicos.Estadio 3: La evolución desde lo molecular a la célula.

Bernal sugirió que la evolución darwiniana pudo haber comenzado temprano, en algún momento entre los dos primeros estadios listado

2. Teorias de la evolucion

Creacionismo

Se denomina creacionismo al conjunto de creencias, inspirada en doctrinas religiosas, según la cual la Tierra y cada ser vivo que existe actualmente proviene de un acto de creación por uno o variosseres divinos, cuyo acto de creación fue llevado a cabo de acuerdo con un propósito divino.

Por extensión a esa definición, el adjetivo «creacionista» se ha aplicado a cualquier opinión o doctrina filosófica o religiosa que defienda una explicación del origen del mundo basada en uno o más actos de creación por un dios personal, como lo hacen, por ejemplo, las religiones del Libro. Por ello, igualmente se denomina creacionismo a los movimientos pseudocientíficos y religiosos que militan en contra del hecho evolutivo.

Page 4: Teorías del origen de la vida

El creacionismo se destaca principalmente por los «movimientos antievolucionistas», tales como el diseño inteligente,3 cuyos partidarios buscan obstaculizar o impedir la enseñanza de la evolución biológica en las escuelas y universidades. Según estos movimientos creacionistas, los contenidos educativos sobre biología evolutiva han de sustituirse, o al menos contrarrestarse, con sus creencias y mitos religiosos o con la creación de los seres vivos por parte de un ser inteligente. En contraste con esta posición, lacomunidad científica sostiene la conveniencia de diferenciar entre lo natural y lo sobrenatural, de forma que no se obstaculice el desarrollo de aquellos elementos que hacen al bienestar de los seres humanos. Las cosmogonías y mitos de carácter creacionista han estado y permanecen presentes en muy distintos sistemas de creencias, tantomonoteístas, como politeístas o animistas. El movimiento creacionista políticamente más activo y conocido es de origen cristianoprotestante y está implantado, principalmente, en los Estados Unidos. Diseño Inteligente 

Diseño inteligente es el termino utilizado para describir a la corriente pro-religiosa que sostiene que el origen o evolución del Universo, la vida y el hombre, son el resultado de acciones racionales emprendidas de forma deliberada por uno o más agentes inteligentes.  Es considerada una pseudociencia con características dogmáticas por la comunidad científica, y por las asociacionesescépticas. Si bien sus partidarios proclaman que se trataría de una propuesta científica legítima, capaz de sustentar un programa de investigación metodológicamente riguroso, el diseño inteligente es considerado por la comunidad científica de las ciencias naturales afines al tema7 sólo como una justificación a posteriori de la creencia en un creador determinado (el Dios de las religiones monoteístas),3 presentada como una versión de creacionismo contemporáneo anti-evolución que trata de buscar la respetabilidad intelectual que el creacionismo clásico no ha sido capaz de obtener.

Movimiento del diseño inteligente

El movimiento del diseño inteligente apareció y se desarrolló en Estados Unidos en torno a 1987, a través de una versión moderna del argumento teleológico para la existencia de Dios, después de que hubieran fracasado, salvo éxitos menores y provisionales, los intentos de los representantes del literalismo bíblico de lograr la enseñanza del relato de la creación del Génesis en la clase de Ciencias Naturales. El movimiento del Diseño Inteligente igualmente rechaza las posturas representadas por la Evolución teísta y el Creacionismo evolutivo que, aunque creen en la existencia de un creador y un propósito, a diferencia del Movimiento del Diseño Inteligente la Evolución teísta y el Creacionismo evolutivo sí aceptan que los seres vivos se

han diferenciado a través de un proceso de evolución natural sin la intervención directa de Dios; al considerar a Dios el creador de las leyes de la naturaleza, pero "sin actuar directamente" del desarrollo de los procesos que actúan en ella, y que son descritos por lasciencias naturales.

Una de las principales críticas científicas que se hacen al diseño inteligente es que no es una teoría científica real (como sí lo es la Teoría Sintética de la Evolución), ya que no sustenta sus bases en el método científico, a partir de experimentaciones y observaciones críticas y científicas. Otras críticas no menos importantes se refieren a la falsedad de sus principales afirmaciones,9 como por ejemplo, que los sistemas "irreduciblemente complejos" no pueden surgir por evolución darwiniana. Así, el consenso científico es señalar que el diseño inteligente intenta negar el hecho de que la teoría de la evolución es considerada una de las más grandes y sólidas teorías científicas actuales, que describe un hecho sobre el que no existen pruebas o evidencias científicas que lo refuten. El debate, especialmente intenso en Estados Unidos, se ha extendido a otros países, generalmente por medio de la influencia de las iglesias evangélicas y otros grupos religiosos fundamentalistasgracias a los cuales se ha convertido en una posición de creciente fuerza.

Posturas de las diferentes religiones

La posición pública de la Iglesia Católica y de la mayoría de los católicos es la de respetar la autonomía de la ciencia y sus hallazgos, desplazando la discusión sobre la verdad de las Escrituras y la justificación de las creencias a un plano netamente metafísico. Aun así, dentro de la Iglesia Católica también ha habido pronunciamientos que aparentemente favorecen algunos postulados del Diseño Inteligente, los que han sido apoyados por parte de figuras católicas tan importantes como el Arzobispo de Viena, quien postuló que cualquier modo de pensamiento que niegue o busque desestimar la abrumadora evidencia en favor del diseño en biología es ideología, no ciencia.10 En este sentido, el Papa Benedicto XVI, quien aunque no ha dado su respaldo al movimiento del diseño inteligente, sí ha manifestado estar aparentemente de acuerdo con algunos de sus postulados, al opinar que considerar «al hombre y su razón» un producto casual de la evolución es irracional,11 o al decir que"también es cierto que la teoría de la evolución no está demostrada fehacientemente" .12 Sin embargo, hay que aclarar que el papa Benedicto XVI, en relación a una supuesta incompatibilidad entre creación y evolucionismo (propio de los seguidores del Diseño Inteligente), igualmente se pronunció de la siguiente forma: "Esta contraposición es absurda, porque, por una parte, existen muchas pruebas científicas en favor de la evolución, que se presenta como una realidad que debemos ver y que enriquece nuestro conocimiento de la vida y del ser como tal. Pero la doctrina de la evolución no responde a todos los interrogantes y sobre todo no responde al gran

Page 5: Teorías del origen de la vida

interrogante filosófico: ¿de dónde viene todo esto y cómo todo toma un camino que desemboca finalmente en el hombre?"13Así, la postura de la Iglesia Católica, expresada repetidas veces, es que la Creación y la Evolución no se excluyen ni se contraponen, dejando en claro, eso sí, que "la evolución no responde a todas las preguntas del hombre"; en relación a las preguntas metafísicas.14

La teoría de Lamarck  

Juan Bautista Lamarck fue el primer naturalista que formuló una teoría explicativa sobre los procesos evolutivos. La expuso en su Filosofía zoológica, publicada en 1809.Podemos resumir la concepción de Lamarck en los siguientes puntos:La influencia del medio. Los cambios medioambientales provocan nuevas necesidades en los organismos.Ley del uso y del desuso. Para adaptarse al medio modificado, los organismos deben modificar el grado de uso de sus órganos. Un uso continuado de un órgano produce su crecimiento (de aquí la frase: la función «crea» el órgano). Un desuso prolongado provoca su disminución.Ley de los caracteres adquiridos. Las modificaciones «creadas» por los distintos grados de utilización de los órganos se transmiten hereditariamente. Esto significa que a la larga los órganos muy utilizados se desarrollarán mucho, mientras que los que no se utilicen tenderán a desaparecer.En resumen, según Lamarck la evolución se explica por acumulación de caracteres adquiridos en el curso de varias generaciones

III.4. Crítica de la teoría de Darwin o Darwinismo

En 1859, el británico Charles Darwin publicó el libro El Origen de las Especies. En este libro explica su teoría de la evolución. En su teoría, Darwin plantea que la evolución de las especies se basa en dos factores: la variedad de la descendencia y la selección natural.La variedad de la descendencia. Darwin plantea que los hijos son diferentes entre sí y diferentes a sus padres en algunas características físicas.La aparición de seres vivos, en una misma especie se debe a la reproducción sexual. La reproducción sexual permite que los descendientes hereden caracteres de ambos padres, lo cual los hace diferentes. Si tomamos como ejemplo las jirafas antiguas, se cree que había una descendencia de jirafas con el cuello más largo que otras.La selección natural. La selección natural es el proceso mediante el cual sobreviven los individuos mejor adaptados a su medio. Esto quiere decir que los organismos que tienen órganos más adecuados a las características del medio donde viven son los que sobreviven. Los que no se adaptan al mercado son eliminados naturalmente.

III.5. Las leyes de Mendel

La teoría de Mendel, al contrario que la de Darwin, ha sido siempre un ejemplo claro y sencillo de la aplicación del método inductivo. Unos experimentos controlados dan lugar a una interpretación teórica que, dentro de su contexto es irrefutable. Sin embargo, hay que tener en cuenta que la interpretación se hizo de acuerdo con los conocimientos de la época.Hay que reconocer que nunca se ha pretendido presentar la teoría de Mendel o las leyes de Mendel como una teoría de la evolución (por la desnaturalización del significado de evolución), pues la combinación de genes, por si misma, no produce caracteres diferentes de los originales. Tampoco ayuda mucho a la teoría de Darwin el hecho de que lasleyes de Mendel introdujeran elementos o mecanismos de la evolución desconocidos con anterioridad, no es de extrañar que se ignorara su aportación por la comunidad científica durante 50 años, un caso difícil de entender si no fuera por la explicación que nos brinda la sociología de la ciencia de Kuhn. Por la dinámica que imprime a la evolución y dadas las múltiples ventajas de la diferenciación sexual, la Teoría General de la Evolución Condicionada de la Vida (TGECV) sí entiende la importancia de las leyes de Mendel y, en general, que la teoría de Mendel ha realizado una gran aportación a la teoría de la evolución en su correcta acepción y que mantiene su vigencia con las oportunas correcciones conceptuales.

La interpretación inicial no plantea ningún problema, pues es asumido y actualizado con el avance general de la ciencia; sin embargo, lo que sí puede plantear serios problemas, es la forma en que la teoría de Mendel se sigue explicando en las escuelas. Los conceptos de gen dominante y recesivo de las leyes de Mendel se siguen explicando con un enfoque un poco antiguo, y claro, donde pueden existir ciertas dificultades conceptuales, como ¿Qué pasa cuando dos genes dominantes se juntan?, se recurre a conceptos como co-dominancia; porque en realidad se desconocen, con carácter general, los mecanismos genéticos que hacen que un gen o trozo de código genético particular se comporte como de carácter dominante o no. En muchos casos sí se deben de conocer, al menos parcialmente, pero lo que ocurre es que no se pueden explicar fácilmente sobre la base del concepto simple de dominancia y en el contexto de aleatoriedad general.

Un poco más difícil de explicar, con la idea clásica de las leyes de Mendel, sería el concepto de co-recesión.Desde el punto de vista de la Teoría General de la Evolución Condicionada de la Vida, los conceptos de gen dominante y recesivo derivados de las leyes de Mendel se ven alterados por la propia esencia del proceso evolutivo. Un gen no es dominante o recesivo sino que se comporta como dominante o recesivo (esta idea también la comparte el pensamiento clásico) dependiendo de con qué otro gen le

Page 6: Teorías del origen de la vida

comparamos, y lo que es más importante (por ser un concepto nuevo aportado por la teoría citada), en función de las restricciones o condiciones de desarrollo de la información genética que contienen, podemos citar como ejemplo más común el de verificación o no de dicha información.

En la actualidad, por la importancia de las leyes de Mendel, no puede ser suficiente el decir que un gen es dominante o recesivo, se ha de razonar por qué un gen se comporta como dominante, explicando las causas de tal comportamiento. En gran medida, el concepto se mantiene en su acepción primitiva porque se encuentra asociado a la idea de genes con características discretas (rojo, blanco, rosa, pero no tonalidades en plena evolución) porque es más conveniente para la noción imperante de evolución.

Los conceptos básicos de gen dominante y gen recesivo en las leyes de Mendel pierden su sentido y, en caso de mantenerlo, resultan totalmente impropios. Como veremos más adelante, el llamado gen recesivo resulta ser el más potente y evolucionado en los casos en que la verificación es una de las condiciones asociadas a la información transmitida. Consecuentemente, la Teoría General de la Evolución Condicionada de la Vida ( TGECV) cambia la terminología, denominando gen significativo a aquel gen que se comporta como dominante (por decirlo de alguna forma, porque tampoco es exactamente eso lo que ocurre, como se explicará más adelante) en un determinado proceso.

Neodarwinismo o

El Neodarwinismo es la teoría o corriente científica que engloba a las teorías de la evolución que de alguna manera mantienen la esencia de la Teoría Darwinista, es decir, variaciones aleatorias de los individuos y la selección natural.

El Neodarwinismo se basa en el desarrollo de la ciencia, como las leyes de Mendel y la genética, y se limita a constatar que las variaciones de los seres vivos se producen en su estado germinal cuando el verdadero problema es cuándo y por qué se producen las variaciones en la información genética y sus condiciones asociadas para conseguir su desarrollo efectivo, incluso después de varias generaciones. La actual biología molecular está descubriendo la forma en que la naturaleza lleva a cabo la verificación genética y otros controles (sin conocer a priori las razones que los justifican) mediante el estudio del ADN, en particular, un artículo científico se refería a los trozos de ADN denominados Histones. De todas formas, no es necesario recurrir a conocimientos tan profundos de biología molecular sobre el ADN puesto que es conocido que algunas proteínas, llamadas factores de trascripción, activan o inhiben la expresión de determinados genes.

A finales del siglo XIX la Teoría Neodarwinista era una cosa, a mediados del siglo pasado otra, debido a la consolidación de la Síntesis Evolutiva Moderna y, a finales del mismo, había vuelto a cambiar por la aparición de laTeoría del Equilibrio Puntuado o Puntualismo.

Como se puede observar, el Neodarwinismo se mantiene gracias a que se adapta a casi todo, siguiendo su propio principio de adaptación tautológica. Cuando no puede adaptarse se recurre a las paradojas biológicas, aunque se las llame casos aislados para evitar parecerse a ciertas teorías físicas modernas.

El Neodarwinismo o Teoría Neodarwinista sigue siendo la doctrina imperante a pesar de que se considere algo pasado de moda, ahora se acepta directamente que Darwin tenía razón aunque el razonamiento sea el de la última actualización del Neodarwinismo, sea la de la Síntesis Evolutiva Moderna (Teoría Sintética de la Evolución) o la que se esté discutiendo en cada momento histórico. Síntesis Evolutiva  

La teoría sintética de la evolución o neodarwinismo se caracteriza por:

Un rechazo de la herencia de los caracteres adquiridos.

La ratificación de los gradualismo en la evolución.

El reconocimiento del mecanismo de la selección natural con sus dos fases actualizadas:

Primera, la producción de mutaciones cromosómicas o variabilidad genética.

Segunda, la selección de los portadores de dotación genética más favorable para hacer frente a las presiones ecológicas; éstos, estadísticamente hablante, tienen una probabilidad de supervivencia y de procreación más alta que el resto de la población.

Es ciertamente difícil para un no-biólogo distinguir entre la corriente del Neodarwinismo inicial y la Teoría Sintética de la evolución, ésta es una continuación de la anterior, al igual que Neodarwinismo o Teoría Neodarwinista era una continuación de la Teoría de Darwin como su propio nombre indica. Con el avance de la ciencia no se pueden ignorar ciertos conocimientos, es necesario cambiar para mantenerse.

La ciencia moderna debería ser algo más humilde y reconocer que la Síntesis Evolutiva ni el carácter aleatorio de las modificaciones genéticas y otros elementos de dicha teoría evolucionista no están demostrados científicamente, lo cual no impide que siga siendo la teoría generalmente aceptada en el presente. 

Page 7: Teorías del origen de la vida

4.

Al final de la primera parte del camino hemos llegado hasta el fagocito primitivo, una célula dotada de una organización eficiente para alimentarse de bacterias, un poderoso cazador que ahora a podría moverse con libertad persiguiendo a sus presas y con el tiempo se convertirá en hospedador de los endosimbiontes.

La Adopción de procariotas como huéspedes permanentes del interior de fagocitos, mayores en tamaño, señaló la fase final de la evolución de las células Eucariótidas. Los precursores de los

peroxisomas pudieron ser los primeros procariotas que acabaron convirtiéndose en orgánulos eucariotas.

Destoxificaban compuestos destructores originados por los niveles crecientes de oxígeno en la atmósfera, (hay que tener en cuenta que las primeras células que hicieron su aparición sobre la Tierra, vivían en un planeta sin rastro de Oxígeno, el Oxígeno molecular libre es un producto de la vida). Los precursores de mitocondrias mostraban una mayor eficacia en la labor protectora de las células hospedadoras frente al oxígeno. El desarrollo de peroxisomas y mitocondrias permitió la adopción de precursores de plastos, como los cloroplastos, centros productores de oxígeno de la fotosíntesis. En esta etapa final las células hospedadoras recibieron los medios para la síntesis de materiales utilizando la energía de la luz solar.

A diferencia de mitocondrias y plastos, los peroxisomas no contienen restos de un sistema genético independiente, pero esto tendría una explicación. Mitocondrias y plastos han perdido la mayor parte de sus genes originales que han pasado al núcleo, y los peroxisomas primitivos por ser los primeros capturados por el fagocito primigeneo podrían haber perdido todo su ADN.

Paulatinamente la mayoría de los genes de los endosimbiontes se fueron transfiriendo al núcleo de la célula hospedadora.La adopción de endosimbiontes desempeño un papel crucial en el nacimiento de los eucariotas, pero más importante fue la aparición tras una evolución lenta de unos mil millones de años de un microorganismo fagocítico primitivo que poseía la mayoría de los atributos de las células eucariotas modernas.

De todos los arboles que he visto este me parece muy claro y directo, partiríamos de una forma ancestral común de hace unos 4000 mil millones de años, (aunque recientemente el grupo que lidera Russell F. Doolittle, de la Universidad de California en San Diego, mantienen la teoría de que el último antepasado común de todos los seres vivos existió hace algo más de 2000 millones de años. Hace entre 2500 y 2000 millones de años que

Page 8: Teorías del origen de la vida

apareció el fagocito primitivo del que evolucionaron las eucariótidas.

LA CÉLULA PROCARIOTA: LAS BACTERIAS Son células sin núcleo, la zona de la célula, donde está el ADN y ARN no está limitado por membrana. Ej. Bacteria. 

Actualmente están divididas en dos grupos: • Eubacterias, que poseen paredes celulares formadas por peptidoglicano o por mureína. Incluye a la mayoría de las bacterias y también a las cianobacterias. • Arqueobacterias, que utilizan otras sustancias para constituir sus paredes celulares. Son todas aquellas características que habitan en condiciones extremas como manantiales sulfurosos calientes o aguas de salinidad muy elevada. 

Célula procariota Procariota (Pros = Antes, Karion = Núcleo) es una célula sin núcleo celular diferenciado, es decir, su ADN no está confinado en el interior de un núcleo, sino libremente en el citoplasma. Las células con núcleo diferenciado se llaman eucariotas. Procarionte es un organismo formado por células procariotas. La celula procariota, también procarionte, organismo vivo cuyo núcleo celular no está envuelto por una membrana, en contraposición con los organismos eucariotas, que presentan un núcleo verdadero o rodeado de membrana nuclear. Además, el término procariota hace referencia a los organismos conocidos como móneras que se incluyen en el reino Móneras o Procariotas. Están metidos en los dominios Bacteria y Archaea. Entre las características de las células procariotas que las diferencian de las eucariotas, podemos señalar: ADN desnudo y circular; división celular por fisión binaria; carencia de mitocondrias (la membrana citoplasmática ejerce la función que desempeñarían éstas), nucleolos y retículo endoplasmático. Poseen pared celular, agregados moleculares como el metano, azufre, carbono y sal. Pueden estar sometidas

a temperatura y ambiente extremos (salinidad, acidificación o alcalinidad, frío, calor). miden entre 1/10 Mm, posee ADN y ARN, no tienen orgánulos definidos. 

Evolución Está aceptado que las células procariotas del dominio Archaea fueron las primeras células vivas, y se conocen fósiles de hace 3.500 millones de años. Después de su aparición, han sufrido una gran diversificación durante las épocas. Su metabolismo es lo que más diverge, y causa que algunas procariotas sean muy diferentes a otras.  Algunos científicos, que encuentran que los parecidos entre todos los seres vivos son muy grandes, creen que todos los organismos que existen actualmente derivan de esta primitiva célula. A los largo de un lento proceso evolutivo, hace unos 1500 millones de años, las procariotas derivaron en células más complejas, las eucariotas. 

5. ¿Qué es una planta?

Actualmente se denominan plantas a aquellos organismos — individuos o especies — que forman parte del reino Plantae. Ocurre que la circunscripción actual (la definición de lo que ahora abarca) el reino Plantae es diferente de su circunscripción en el pasado, y muy diferente de la del antiguo y abandonado «reino vegetal».

Concepción tradicional de "plantae".

Inicialmente la diversidad de los seres vivos fue categorizada como perteneciente exclusivamente a dos reinos: el de los animales ("Animalia") y el de las plantas ("Plantae"). Hasta fines del siglo XIX, eran los dos únicos reinos en los que se agrupaban los seres vivos, y cada grupo nuevo era catalogado bien como animal, o bien como planta. Debido a eso, fueron circunscriptos como "plantas" una diversidad de grupos —actualmente ubicados en otros reinos—, porque conjuntamente poseían la única característica común de no ingerir alimentos como lo hacían los animales. Cuando se encontraba un organismo "dudoso", lo llamaban "animal" si fagocitaba o ingería alimentos, y "planta" si era autótrofo o saprófito. Así fueron llamadas "plantas": las cianobacterias, los hongos, todos los taxones agrupados bajo el nombre de "algas", y las plantas terrestres.

Aún pueden observarse esos grupos circunscriptos dentro del reino Plantae en los antiguos sistemas de clasificación, como el de Engler (1892). Si bien hoy la circunscripción de Plantae es más acotada, aún se estudian todos esos grupos dentro del campo de la botánica. Se puede decir que la botánica estudia todo lo que tradicionalmente ha sido considerado vegetal. Todavía hoy es frecuente en la literatura de divulgación, e incluso en libros de texto, el uso de planta como sinónimo de vegetal, lo que dificulta al lector la

Page 9: Teorías del origen de la vida

comprensión de la diversidad tal como la ciencia la concibe actualmente.

Concepción actual sobre Plantae

En el siglo XX empezaron a surgir nuevos datos. Con el advenimiento del conocimiento de que ni todos los autótrofos, ni todos los heterótrofos que fagocitan o ingieren tenían un respectivo antecesor común —porque esas formas de vida se habían generado muchas veces entre los seres vivos—, y el uso de técnicas más avanzadas (el perfeccionamiento de la microscopía de luz, el surgimiento de la microscopía electrónica y el uso de técnicas bioquímicas para la identificación de organismos), surgió la necesidad de modificar el número de reinos, para agrupar organismos que ya no eran tan similares según la nueva visión. Así fue rápidamente aceptada la existencia de 5 reinos.

De los tradicionales reinos Animalia y Plantae se fueron escindiendo los reinos Monera, que agrupa a todos los procariotas incluyendo a las cianobacterias; Fungi, que agrupa a todos los comúnmente conocidos como "hongos", y Protista, que agrupa a todos los eucariotas unicelulares (también muchos autores coincidían que había que agrupar a todos los reinos salvo Monera, en el SuprarreinoEukarya, ya que las diferencias entre los procariotas y los eucariotas son mucho más grandes que entre los diferentes reinos de eucariotas).

Por lo tanto, los primeros grupos en ser "desterrados" del Reino Plantae fueron las cianobacterias y los hongos, que fueron derivados a otros Reinos, y también algunos organismos que eran fotosintéticos pero unicelulares fueron ubicados en el reino Protista. Debido a las dificultades para estudiar a las Protistas, y a la falta de análisis genéticos que dieran idea de sus posibles parentescos, Protista fue creado más para ubicar en algún lugar a los organismos que no se sabía qué parentesco tenían con el resto (cajón de sastre), que porque se creyera que tuvieran un antecesor común.

Plantas terrestres y algas

Entonces quedó como parte del reino Plantae lo que comúnmente conocemos como "plantas terrestres y algas". Definir al reino Plantae a través de sus características se volvió más fácil: pertenecen al reino Plantae todos los organismos eucariotas multicelulares que obtienen la energía para crecer y realizar sus actividades de la luz del Sol, energía que toman a través del proceso de fotosíntesis, proceso que ocurre en sus cloroplastos con ayuda de alguna forma de clorofila. Esto no es óbice para que algunas de ellas, secundariamente, hayan evolucionado hacia una adaptación alsaprofitismo, al hemiparasitismo o al parasitismo.

Principales características

A diferencia del reino Animalia (reino animal), las plantas son organismos autótrofos, ya que poseen cloroplastos, que permiten la fotosintesís; además no poseen capacidad de locomoción. Comparten con ese reino la característica de ser seres eucariotas.

Origen y evolución

Surgimiento

Las plantas se originaron entre los primeros seres vivos de La Tierra. Descienden de los eucariotas autótrofos aparecidos en el proterozoico. Sus primeros representantes no fueron vasculares. Por el contrario tenían estructuras apenas diferenciadas. Dependían del agua completamente para su vida. La evolución de las algas las lleva a desarrollar las primeras hojas. Inmediatamente en el Silúricocomienzan a desarrollarse las primeras plantas terrestres independientes de las evolucionadas algas de nuestros días.

Plantas terrestres

Las plantas terrestres se desarrollaron al aire libre por primera vez aún desde su antiguo orden. Cubrían rocas cercanas a lagos y ríos. A medida que necesitaban menos del agua para su subsistencia comenzaron a crecer y a tomar forma. Por primera vez tuvieron esporas diferenciadas y raíces fijas que daban nutrimentos a la planta.

Aunque de 5 cm, según se estima, comenzaron a tener su evolución y a tener partes especializadas en la fotosíntesis:las hojas. Mientras algunas quedaron siendo algas de las rocas, otras vivieron en tierra firme en lugares de humedad. Para su supervivencia fue necesario que redujeran su tamaño, se les llamó briófitos o musgos. Otro grupo se desarrolló, por el contrario, con gran tamaño y definieron una reproducción, hábitat de sombra y participación en el ecosistema. El papel de los helechos es quizás el más importante, siendo las desafiantes de las reglas y adaptaciones del mundo vegetal. Durante el carbonífero aparecieron derivadas de otro grupo de grandes plantas las gimnospermas. Desde entonces la evolución de las plantas se ve marcada fundamentalmente en la reproducción.

De la espora a la flor

Las coníferas por una reproducción más sofisticada y sin necesidad de humedad alguna se convirtieron en el jurásico junto a los helechos en las plantas dominantes. Aunque las angiospermas ya habían aparecido, su desarrollo se hallaba incompleto. Unos 70 millones de años después se adaptaron con la reproducción sexual más sofisticada dentro de las plantas: la flor. Atrayendo insectos, son polinizadas por donde los gametos masculinos caídos de los pedúnculos

Page 10: Teorías del origen de la vida

del estambre pasan por el tubo polínico hasta el ovario donde fecunda al óvulo. La flor se transforma y llega a ser un fruto. Por su jugosidad es consumido por herbívoros y las semillas listas para germinar caen al suelo. Luego del eoceno, las plantas con flores colonizaron el planeta

Animalia

En la clasificación científica de los seres vivos, el reino Animalia (animales) o Metazoa (metazoos) constituye un amplio grupo de organismoseucariotas, heterótrofos, pluricelulares y tisulares. Se caracterizan por su capacidad para la locomoción, por la ausencia de clorofila y de pared en suscélulas, y por su desarrollo embrionario, que atraviesa una fase de blástula y determina un plan corporal fijo (aunque muchas especies pueden sufrir posteriormente metamorfosis). Los animales forman un grupo natural estrechamente emparentado con los hongos y las plantas. Animalia es uno de los cinco reinos de la naturaleza, y a él pertenece el ser humano.

Características generales

La movilidad es la característica más llamativa de los organismos de este reino, pero no es exclusiva del grupo, lo que da lugar a que sean designados a menudo como animales ciertos organismos que pertenecen al reino Protista.

En el siguiente esquema, se muestran las características comunes a todos los animales:

Organización celular. Eucariota y pluricelular.Nutrición. Heterótrofa por ingestión (a nivel celular, por fagocitosis y pinocitosis), a diferencia de los hongos, también heterótrofos, pero que absorbenlos nutrientes tras digerirlos externamente.Metabolismo. Aerobio (consumen oxígeno).Reproducción. Todas las especies animales se reproducen sexualmente (algunas sólo por partenogénesis), con gametos de tamaño muy diferente (oogamia) y zigotos (ciclo diplonte). Algunas pueden, además, multiplicarse asexualmente. Son típicamente diploides.Desarrollo. Mediante embrión y hojas embrionarias. El cigoto se divide repetidamente por mitosis hasta originar una blástula.Estructura y funciones. Poseen colágeno como proteína estructural. Tejidos celulares muy diferenciados. Sin pared celular. Algunos con quitina. Fagocitosis, en formas basales. Ingestión confagocitosis ulterior o absorción en formas derivadas ("más evolucionadas"), con capacidad de movimiento, etc.Simetría. Excepto las esponjas, los demás animales presentan una disposición regular de las estructuras del cuerpo a lo largo de uno o más ejes corporales. Los tipos principales de simetría son la radial y la bilateral.

Con pocas excepciones, la más notable la de las esponjas (filo Porifera), los animales tienen tejidos diferenciados y especializados. Estos incluyen músculos, que pueden contraerse para controlar el movimiento, y un sistema nervioso, que envía y procesa señales. Suele haber también una cámara digestiva interna, con una o dos aberturas. Los animales con este tipo de organización son conocidos como eumetazoos, en contraposición a los parazoos y mesozoos, que son niveles de organización más simples ya que carecen de algunas de las características mencionadas.

Todos los animales tienen células eucariontes, rodeadas de una matriz extracelular característica compuesta de colágeno y glicoproteínas elásticas. Ésta puede calcificarse para formar estructuras como conchas, huesos y espículas. Durante el desarrollo del animal se crea un armazón relativamente flexible por el que las células se pueden mover y reorganizarse, haciendo posibles estructuras más complejas. Esto contrasta con otros organismos pluricelulares como las plantas y los hongos, que desarrollan un crecimiento progresivo ya que sus células permanecen en el sitio medianteparedes celulares.

6. Genética de poblaciones

La genética de poblaciones es la rama de la genética cuyo objeto es describir la variación y distribución de la frecuencia alélica para explicar los fenómenos evolutivos. Para ello, define a una población como un grupo de individuos de la misma especie que están aislados reproductivamente de otros grupos afines. Estas poblaciones, están sujetas a cambios evolutivos en los que subyacen cambios genéticos, los que a su vez están influenciados por factores como la selección natural y la deriva genética que actúan principalmente disminuyendo la variabilidad de las poblaciones, omigración y mutación que actúan aumentándola. Cabe destacar, que la pérdida de variabilidad genética en las poblaciones trae consigo dos graves problemas:

Coarta la posibilidad de que el hombre pueda realizar mejoramiento genético en la especie.

Disminuye la eficacia biológica (fitness) de las especies ante nuevos cambios ambientales.

Por su parte, la presencia de variabilidad genética es deseable no solo para mejoramiento genético o conservación de especies, ya que el rol fundamental de la variabilidad genética es ser las materia prima para los procesos evolutivos, sin variabilidad no hay evolución. La interacción de estos factores con las poblaciones en el tiempo, permite la existencia de gran número de especies con variadas estructuras poblacionales y formas de vida.

Page 11: Teorías del origen de la vida

Así, la genética de poblaciones es un elemento esencial de la síntesis evolutiva moderna. Sus principales fundadores, Sewall Wright, J.B.S. Haldane y Ronald Fisher, establecieron además las bases formales de la genética cuantitativa. Las obras fundacionales de la genética de poblaciones son The Genetical Theory of Natural Selection (Fisher 1930), Evolution in Mendelian Populations (Wright 1931) y The Causes of Evolution (Haldane 1932).

7. Herencia genética

La herencia genética es la transmisión a través del material genético contenido en el núcleo celular, de las características anatómicas, fisiológicas o de otro tipo, de un ser vivo a sus descendientes. El ser vivo resultante tendrá características de uno o de los dos padres.

La herencia consiste en la transmisión a su descendencia de los caracteres de los ascendentes. El conjunto de todos los caracteres transmisibles, que vienen fijados en los genes, recibe el nombre de genotipo y su manifestación exterior en el aspecto del individuo el de fenotipo. Se llama idiotipo al conjunto de posibilidades de manifestar un carácter que presenta un individuo. Para que los genes se transmitan a los descendientes es necesaria una reproducción idéntica que dé lugar a una réplica de cada uno de ellos; este fenómeno tiene lugar en la meiosis.

Las variaciones que se producen en el genotipo de un individuo de una determinada especie se denominan variaciones genotípicas. Estas variaciones genotípicas surgen por cambios o mutaciones(espontáneas o inducidas por agentes mutagénicos) que pueden ocurrir en el ADN. Las mutaciones que se producen en los genes de las células sexuales pueden transmitirse de una generación a otra. Las variaciones genotípicas entre los individuos de una misma especie tienen como consecuencia la existencia de fenotipos diferentes. Algunas mutaciones producen enfermedades, tales como la fenilcetonuria, galactosemia, anemia falciforme, síndrome de Down, síndrome de Turner, entre otras. Hasta el momento no se ha podido curar una enfermedad genética, pero para algunas patologías se está investigando esta posibilidad mediante la terapia génica.

Lo esencial de la herencia queda establecido en la denominada teoría cromosómica de la herencia, también conocida como teoría cromosómica de Sutton y Boveri:

Los genes están situados en los cromosomas.

Los genes están dispuestos linealmente en los cromosomas.

La recombinación de los genes se corresponde con el intercambio de segmentos cromosómicos (Crossing over).

La transferencia genética horizontal es factor de confusión potencial cuando se infiere un árbol filogenético basado en la secuencia de un gen. Por ejemplo, dadas dos bacterias lejanamente relacionadas que han intercambiado un gen, un árbol filogenético que incluya a ambas especies mostraría que están estrechamente relacionadas puesto que el gen es el mismo, incluso si muchos de otros genes tuvieran una divergencia substancial. Por este motivo, a veces es ideal usar otras informaciones para inferir filogenias más robustas, como la presencia o ausencia de genes o su ordenación, o, más frecuentemente, incluir el abanico de genes más amplio posible.

Críticas a la definición de herencia como herencia genética

La Teoría de los sistemas de desarrollo (DST) se opone a la definición de herencia como transmisión de genes y aplica el concepto a cualquier recurso que se encuentre en generaciones sucesivas y que contribuya a explicar por qué cada generación se parece a la que le precede. Estos recursos incluyen factores celulares y factores externos como la gravedad o la luz solar. La DST utiliza, por tanto, el concepto de herencia para explicar la estabilidad de la forma biológica de una generación a otra.

8. Leyes de Mendel

Las Leyes de Mendel son un conjunto de reglas básicas sobre la transmisión por herencia de las características de los organismos padres a sus hijos. Estas reglas básicas de herencia constituyen el fundamento de la genética. Las leyes se derivan del trabajo realizado por Gregor Mendel publicado en el año 1865 y el 1866, aunque fue ignorado por largo tiempo hasta su redescubrimiento en1900.

La historia de la ciencia encuentra en la herencia mendeliana un hito en la evolución de la biología sólo comparable con las Leyes de Newton en el desarrollo de la Física. Tal valoración se basa en el hecho de que Mendel fue el primero en formular con total precisión una nueva teoría de la herencia, expresada en lo que luego se llamaría "Leyes de Mendel", que se enfrentaba a la poco rigurosa teoría de la herencia por mezcla de sangre. Esta teoría aportó a los estudios biológicos las nociones básicas de la genética moderna. No obstante, no fue sólo su trabajo teórico lo que brindó a Mendel su envergadura científica a los ojos de la posteridad; no menos notables han sido los aspectos epistemológicos y metodológicos de su investigación. El reconocimiento de la importancia de una experimentación rigurosa y sistemática, y la expresión de los resultados observacionales en forma

Page 12: Teorías del origen de la vida

cuantitativa mediante el recurso a laestadística ponían de manifiesto una postura epistemológica totalmente novedosa para la biología de la época.2 Por esta razón, la figura de Mendel suele ser concebida como el ejemplo paradigmático del científico que, a partir de la meticulosa observación libre de prejuicios, logra inferir inductivamente sus leyes, que en el futuro constituirían los fundamentos de la genética. De este modo se ha integrado el trabajo de Mendel a la enseñanza de la biología: en los textos, la teoría mendeliana aparece constituida por las famosas dos leyes, concebidas como generalizaciones inductivas a partir de los datos recogidos a través de la experimentación. Las leyes de Mendel

Las tres leyes de Mendel explican y predicen cómo van a ser los caracteres físicos (fenotipo) de un nuevo individuo. Frecuentemente se han descrito como «leyes para explicar la transmisión de caracteres» (herencia genética) a la descendencia. Desde este punto de vista, de transmisión de caracteres, estrictamente hablando no correspondería considerar la primera ley de Mendel (Ley de la uniformidad). Es un error muy extendido suponer que la uniformidad de los híbridos que Mendel observó en sus experimentos es una ley de transmisión, pero la dominancia nada tiene que ver con la transmisión, sino con la expresión del genotipo. Por lo que esta observación mendeliana en ocasiones no se considera una ley de Mendel. Así pues, hay tres leyes de Mendel que explican los caracteres de la descendencia de dos individuos, pero solo son dos las leyes mendelianas de transmisión: la Ley de segregación de caracteres independientes (2ª ley, que, si no se tiene en cuenta la ley de uniformidad, es descrita como 1ª Ley) y la Ley de la herencia independiente de caracteres (3ª ley, en ocasiones descrita como 2ª Ley).

1ª Ley de Mendel: Ley de la uniformidad

Establece que si se cruzan dos razas puras para un determinado carácter, los descendientes de la primera generación serán todos iguales entre sí (igual fenotipo e igual genotipo) e iguales (en fenotipo) a uno de los progenitores.

No es una ley de transmisión de caracteres, sino de manifestación de dominancia frente a la no manifestación de los caracteres recesivos. Por ello, en ocasiones no es considerada una de las leyes de Mendel. Indica que da el mismo resultado a la hora de descomponerlo en fenotipos (F).

2ª Ley de Mendel: Ley de la segregación

Conocida también, en ocasiones como la primera Ley de Mendel, de la segregación equitativa o disyunción de los alelos. Esta ley establece que durante la formación de los gametos cada alelo de un par se separa del otro miembro para determinar la constitución genética del

gameto filial. Es muy habitual representar las posibilidades de hibridación mediante un cuadro de Punnett.

Mendel obtuvo esta ley al cruzar diferentes variedades de individuos heterocigotos (diploides con dos variantes alélicas del mismo gen: Aa), y pudo observar en sus experimentos que obtenía muchos guisantes con características de piel amarilla y otros (menos) con características de piel verde, comprobó que la proporción era de 3:4 de color amarilla y 1:4 de color verde (3:1).

Según la interpretación actual, los dos alelos, que codifican para cada característica, son segregados durante la producción de gametos mediante una división celular meiótica. Esto significa que cada gameto va a contener un solo alelo para cada gen. Lo cual permite que los alelos materno y paterno se combinen en el descendiente, asegurando la variación.

Para cada característica, un organismo hereda dos alelos, uno de cada pariente. Esto significa que en las células somáticas, un alelo proviene de la madre y otro del padre. Éstos pueden ser homocigotos o heterocigotos.

En palabras del propio Mendel: "Resulta ahora claro que los híbridos forman semillas que tienen el uno o el otro de los dos caracteres diferenciales, y de éstos la mitad vuelven a desarrollar la forma híbrida, mientras que la otra mitad produce plantas que permanecen constantes y reciben el carácter dominante o el recesivo en igual número. " Gregor Mendel

3ª Ley de Mendel: Ley de la segregación independiente

En ocasiones es descrita como la 2ª Ley. Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros, no existe relación entre ellos, por tanto el patrón de herencia de un rasgo no afectará al patrón de herencia de otro. Sólo se cumple en aquellos genes que no están ligados (en diferentes cromosomas) o que están en regiones muy separadas del mismo cromosoma. Es decir, siguen las proporciones 9:3:3:1.

9. Patrones de herencia mendeliana

Mendel describió dos tipos de "factores" (genes) de acuerdo a su expresión fenotípica en la descendencia, los dominantes y los recesivos, pero existe otro factor a tener en cuenta en organismosdioicos y es el hecho de que los individuos de sexo femenino tienen dos cromosomas X (XX) mientras los masculinos tienen un cromosoma X y uno Y (XY), con lo cual quedan conformados cuatro modos o "patrones" según los cuales se puede trasmitir una mutación simple:Gen dominante ubicado en un autosoma (herencia autosómica dominante).

Page 13: Teorías del origen de la vida

Gen recesivo ubicado en un autosoma (herencia autosómica recesiva).Gen dominante situado en el cromosoma X (herencia dominante ligada al cromosoma X).Gen recesivo situado en el cromosoma X (herencia recesiva ligada al cromosoma X).

Fenómenos que alteran las segregaciones mendelianas

Herencia ligada al sexo

Es la herencia con el par sexual. El cromosoma X porta numerosos genes en tanto el cromosoma Y tan solo unos pocos y la mayoría en relación con la masculinidad. El cromosoma X es común para ambos sexos, pero solo el hombre posee cromosoma Y.

Herencias influidas por el sexo y limitadas al sexo

En las herencias limitadas al sexo pueden estar comprometidos mutaciones de genes con cromosomas autosómicos cuya expresión solamente tiene lugar en órganos del aparato reproductor masculino o femenino. Un ejemplo es el defecto congénito septum vaginal transverso, de herencia autosómica recesiva, o la deficiencia de 5 α reductasa que convierte a la testosterona en dihidrotestosterona que actúa en la diferenciación de los genitales externos masculinos, por lo que su ausencia simula genitales femeninos cuando el niño nace.

Una mutación puede estar influida por el sexo, esto puede deberse al efecto del metabolismo endocrino que diferencia a machos y hembras. Por ejemplo, en humanos la calvicie se debe al efecto de un gen que se expresa como autosómico dominante, sin embargo en una familia con la segregación de este gen solo los hombres padecen de calvicie y las mujeres tendrán su cabello más escaso después de la menopausia. Otro ejemplo puede ser la deficiencia de la enzima 21 hidroxilasa que interviene en el metabolismo de los glucocorticoides. Cuando esta enzima está ausente, la síntesis de glucocorticoides se desplaza hacia la formación de testosterona y esta hormona está comprometida en la embriogénesis de los genitales externos del varón, por lo que su presencia anormal en el desarrollo de un feto femenino produce la masculinización de los genitales femeninos, mientras que en el caso de un feto varón, solo incrementa el desarrollo de los masculinos. Una anormalidad de este tipo, permitirá sospechar un diagnostico clínico más rápidamente en una niña, basado en el examen de los genitales del recién nacido, que en un niño.

Estructura génica del cromosoma Y

Por tener un solo cromosoma X, a los individuos de sexo masculino no se les pueden aplicar los términos "homocigoto" o "heterocigoto" para genes ubicados en este cromosoma y ausentes en elcromosoma Y. Ya sean

genes que expresen el carácter dominante o recesivo, si están situados en el cromosoma X, los varones siempre lo expresarán y al individuo que lo porta se le denominahemicigoto.

De lo anterior se deduce que, puesto que las hembras tienen un solo tipo de cromosoma sexual, el X, sus gametos siempre tendrán la dotación cromosómica 23,X, mientras los masculinos pueden portar una X, dando lugar a un individuo femenino (XX), o una Y, con lo que se originaría un individuo masculino (XY). Debido a esto se dice que las mujeres son homogaméticas (todos sus gametos tienen igual constitución) y que los hombres son heterogaméticos (tienen gametos 23,X y 23,Y).

Sistema de compensación de dosis génica del cromosoma X

En insectos, tal como se ha visto en Drosophila, se descubrió la existencia de un gen que ejerce de compensador de dosis, cuando se encuentra en dosis única (como ocurre en machos) produce la activación de la expresión de los genes del cromosoma X. En mamíferos no se ha encontrado un gen con función equivalente.

Lionización

La lionización o inactivacion del cromosoma X se produce porque, a diferencia del cromosoma Y, el X tiene gran cantidad de genes activos que codifican para importantes productos, tales como elfactor VIII de la coagulación. Podría pensarse, por tanto, que si las hembras tienen dos X deben tener el doble de los productos o enzimas cuyos genes están en ese cromosoma con relación a los individuos del sexo masculino, sin embargo, esto no ocurre así.

Se ha observado en mamíferos que en las células somáticas del sexo femenino (46,XX), solo uno de los dos cromosomas X es activo. El otro permanece inactivo y aparece en células en interfase como un cuerpo denso fuertemente coloreado, que se inactiva y se adosa a la membrana nuclear en la periferia del núcleo, y que recibe el nombre de cuerpo de Barr. La inactivación del cromosoma X tiene lugar en el estado de mórula, alrededor del tercer día después de la fertilización y se completa, en la masa de células internas que darán origen al embrión, al final de la primera semana de desarrollo embrionario. La selección del cromosoma X que se inactivará, es un fenómeno generalmente aleatorio teniendo en cuenta que al ocurrir la fecundación cada cromosoma X tiene origen materno y paterno, en unas células se inactivará el X materno (Xm) y en otras el X paterno (Xp). Una vez que se inactiva uno de los dos cromosomas X las células descendientes mantendrán el mismo cromosoma X inactivo originándose un clon celular (Xm) o (Xp) activos. Es decir, al inicio de la inactivación, ésta es al azar, primero se inactiva al azar cualquiera de las dos X, ya sea la heredada de la madre o del padre; pero una vez ocurrida

Page 14: Teorías del origen de la vida

se mantiene el mismo cromosoma X que se inactivó en la primera célula del clon y las células que deriven de ésta durante el proceso de crecimiento y desarrollo mantendrán en adelante inactivado el mismo cromosoma X.

La inactivación (desactivación) del cromosoma X está determinada por el gen XIST. Este gen esta involucrado en la transcripción específica de inactivación que funciona por un mecanismo demetilación preferencial, esto significa que si no hay ninguna alteración de estructura en los dos cromosomas X del genoma femenino, la inactivación debe ocurrir de forma aleatoria, pero si existiera alguna alteración con gran compromiso en la función de uno de los dos cromosomas X habría una activación no completamente aleatoria. El locus del gen XIST se encuentra localizado en Xq13.3.

La inactivación del X determina consecuencias genéticas y clínicas:

Compensación de dosis: iguala la dosis de productos de genes con el hemicigótico para genes localizados en el cromososa X, determinando concentraciones proteicas similares en ambos sexos, para genes ligados al X.

Variaciones en la expresión de mutaciones en hembras heterocigóticas: por ejemplo, presencia de síntomas más o menos severos en hembras portadoras para hemofilias A o B, distrofia muscularDuchenne, distrofias retinianas recesivas ligadas al X.

Los órganos femeninos se comportan como mosaicos. Este fenómeno se puede manifestar en zonas en las que se manifieste un alelo (procedente del X de la madre) y otras zonas en las que se manifiesta el otro alelo. Se observa en fenómenos como el color del pelaje de algunas hembras de felinos, de forma que los felinos de tres colores son hembras, y los de dos colores son machos;7en el albinismo ocular recesivo ligado al X; o en el test inmunohistoquímico para la detección de la distrofina en hembras heterocigóticas para la distrofia muscular Duchenne.

Penetrancia de un gen o de una mutación específica

Penetrancia es el término que se emplea para referirse a la expresión en términos de todo o nada dentro de una población de individuos. Si la mutación se expresa en menos del 100% de los individuos portadores o heterocigóticos se dice que la mutación tiene una penetrancia reducida y que ese individuo aparentemente “sano” para el carácter o enfermedad que se estudia en la familia puede trasmitir la mutación a su descendencia y éstos expresar el defecto. La penetrancia reducida parece ser el efecto de la relación de la mutación en cuestión y otros genes del genoma, con los cuales se encuentra interactuando.

Expresividad de un gen o mutación específica

Expresividad se usa para referirse al grado de severidad que se manifiesta en el fenotipo. En términos clínicos, es sinónimo de gravedad. La expresión de un gen también depende de la relación de éste con el resto del genoma, pero también de la relación genoma-ambiente. Para referirse a estas gradaciones fenotípicas se utiliza el término expresividad variable del gen o de la mutación.

Efecto pleiotrópico de un gen o mutación específica

Con en término pleiotropía o efecto pleiotrópico de un gen se hace referencia a todas las manifestaciones fenotípicas en diferentes órganos o sistemas que son explicables por una simple mutación. Un ejemplo clásico para explicar este término lo constituye el síndrome Marfan, cuya mutación afecta al gen FBN1 que codifica a la proteína fibrilina, esta proteína se encuentra en el tejido conectivo y explica las manifestaciones esqueléticas, oculares y cardiovasculares que caracterizan al síndrome.

Heterogeneidad genética

Este término se aplica tanto a mutaciones en genes localizados en diferentes cromosomas que producen expresión similar en el fenotipo (heterogeneidad no alélica) como a mutaciones que afectan a diferentes sitios del mismo gen (heterogeneidad alélica). Esta categoría complica extraordinariamente el estudio etiológico de variantes del desarrollo de origen genético y constituye una amplia y fundamental fuente de diversidad genética del desarrollo.

Nuevas mutaciones con expresión dominante

Cuando tiene lugar una mutación de novo que se expresa como dominante, o sea, en un genotipo heterocigótico, ocurre que padres que no presentan el efecto de la mutación pueden tener un descendiente afectado. La ausencia de antecedentes familiares, una vez que se excluyen fenómenos como la penetrancia reducida del gen y variaciones mínimas de la expresividad dificulta llegar al planteamiento de una mutación de novo cuando en la literatura el defecto o enfermedad no ha sido reportada con anterioridad, con un tipo específico de herencia.

Efecto de letalidad en un genotipo específico

Algunas mutaciones se expresan de forma tan severa que producen letalidad en un genotipo específico. Un ejemplo pudiera ser el efecto de una doble dosis de una mutación que se expresa como dominante o el efecto en un genotipo hemicigótico, como ocurre en la incontinencia pigmenti, enfermedad humana dominante ligada al cromosoma X.

Enfermedad hereditaria

Las enfermedades hereditarias son un conjunto de enfermedades genéticas caracterizadas por

Page 15: Teorías del origen de la vida

transmitirse de generación en generación, es decir de padres a hijos, y que se suelen manifestar en la infancia.No debe confundirse enfermedad hereditaria con:

Enfermedad congénita: es aquella enfermedad que se adquiere con el nacimiento y se manifiesta desde el mismo. Puede ser producida por un trastorno durante el desarrollo embrionario o durante el parto.

Enfermedad genética: es aquella enfermedad producida por alteraciones en el ADN, pero que no tiene por qué haberse adquirido de los progenitores; así ocurre, por ejemplo, con la mayoría de los cánceres.

Clasificación de las enfermedades hereditarias

Enfermedades monogénicas

Son enfermedades hereditarias monogénicas las producidas por la mutación o alteración en la secuencia de ADN de un solo gen. También se llaman enfermedades hereditarias mendelianas, por transmitirse en la descendencia según las leyes de Mendel. Se conocen más de 6.000 enfermedades hereditarias monogénicas, con una prevalencia de un caso por cada 200 nacimientos.

Las enfermedades monogénicas se transmiten según los patrones hereditarios mendelianos como:

Enfermedad autosómica recesiva. Para que la enfermedad se manifieste, se necesitan dos copias del gen mutado en el genoma de la persona afectada, cuyos padres normalmente no padecen la enfermedad, pero portan cada uno una sola copia del gen mutado, por lo que pueden transmitirlo a la descendencia. La probabilidad de tener un hijo afectado por una enfermedad autosómica recesiva entre dos personas portadoras de una sola copia del gen mutado (que no manifiestan la enfermedad) es de un 25%.

Enfermedad autosómica dominante. Sólo se necesita una copia mutada del gen para que la persona esté afectada por una enfermedad autosómica dominante. Normalmente uno de los dos progenitores de una persona afectada padece la enfermedad y estos progenitores tienen un 50% de probabilidad de transmitir el gen mutado a su descendencia, que padecerá la enfermedad.

Enfermedad ligada al cromosoma X. El gen mutado se localiza en el cromosoma X. Estas enfermedades pueden transmitirse a su vez de forma dominante o recesiva.

Algunas enfermedades monogénicas son:Anemia falciforme (cromosoma 11) - autosómica recesivaFibrosis quística (cromosoma 7, básicamente) - autosómica recesiva

Fenilcetonuria (cromosoma 12, básicamente) - autosómica recesivaEnfermedad de Batten (cromosoma 16) - autosómica recesivaHemocromatosis (cromosoma 6 la forma clásica) - autosómica recesivaDeficiencia de alfa-1 antitripsina (cromosoma 14) - autosómica recesivaEnfermedad de Huntington (cromosoma 4) - autosómica dominanteEnfermedad de Marfan (cromosoma 15, básicamente) - autosómica dominanteDistrofia muscular de Duchenne (cromosoma X)) - ligada al sexo recesivaSíndrome de cromosoma X frágil (cromosoma X) - ligada al sexo recesivaHemofilia A (cromosoma X) - ligada al sexo recesiva[editar]Enfermedades poligénicasSon producidas por la combinación de múltiples factores ambientales y mutaciones en varios genes, generalmente de diferentes cromosomas. También se llaman enfermedades multifactoriales. Algunas de las enfermedades crónicas más frecuentes son poligénicas, como por ejemplo: Hipertensión arterial, Enfermedad de Alzheimer, Diabetes mellitus, varios tipos de cáncer, incluso la obesidad. La herencia poligénica también se asocia a rasgos hereditarios tales como los patrones de la huella digital, altura, color de los ojos y color de la piel. Posiblemente la mayoría de las enfermedades son enfermedades multifactoriales, producidas por la combinación de trastornos genéticos que predisponen a una determinada susceptibilidad ante los agentes ambientales.

Enfermedad cromosómica

Son debidas a alteraciones en la estructura de los cromosomas, como pérdida o deleción cromosómica, aumento del número de cromosomas o translocaciones cromosómicas. Algunos tipos importantes de enfermedades cromosómicas se pueden detectar en el examen microscópico. La trisomía 21 o síndrome de Down es un trastorno frecuente que sucede cuando una persona tiene tres copias del cromosoma 21 (entre un 3 y un 4% de los casos son hereditarios; el resto son congénitos).

Enfermedad mitocondrial

Artículo principal: Enfermedad mitocondrial

Este tipo de enfermedad hereditaria es relativamente infrecuente. Es causada por mutaciones en el ADN mitocondrial, no cromosómico. La enfermedad mitocondrial tiene diferentes síntomas que pueden afectar a diferentes partes del cuerpo. Las mitocondrias tienen su propio ADN. En los últimos años se ha demostrado que más de 20 trastornos hereditarios resultan de las mutaciones en el ADN de las mitocondrias. Dado que las mitocondrias provienen sólo del óvulo son heredadas exclusivamente de la

Page 16: Teorías del origen de la vida

madre.Una persona con un trastorno mitocondrial puede presentar patrones de herencia materna (solo los individuos relacionados por un pariente materno están en riesgo). Los hombres no transmiten la enfermedad a sus hijos.