The Ch

Embed Size (px)

Citation preview

  • 7/23/2019 The Ch

    1/53

    Tlie liemistry

    o

    by Ced ric L Ch ernick

    U S ATOMIC ENERGY COMMISSION

    Division of Technical Information

    Understanding

    the tom

    eries

  • 7/23/2019 The Ch

    2/53

    Tlie Cliem istryof

    tlie nolDle gases

    by Cedric L Che rnick

    CONTENTS

    THE GASES THEMSELVES 1

    Discovery 2

    Occurrence and Production

    4

    Uses 7

    EARLY HISTORY 10

    Attempts To Form Compounds

    10

    Why the Gases Are Inert 11

    PREPARATION OF THE FIRST XENON COMPOUNDS 18

    COMPOUNDS OF XENON

    23

    Fiuorme Contammg Compounds 23

    Oxygen Contammg Compounds

    28

    More Complex Compounds

    31

    COMPOUNDS OF OTHER NOBLE GASES 32

    Rddon 32

    Krypton

    32

    Helium Neon and Argon 33

    SHAPES OF MOLECULES 33

    Solid State

    33

    Gas Phase

    35

    Predicted Shapes and Chemical Bonding 37

    POSSIBLE USES 43

    SUGGESTED REFERENCES 45

    Uni ted States A to m ic Energy Comm ission

    Div is ion of Technica l In format ion

    Library of Congress Catalog Card Nu m ber 67 629 72

    1967

  • 7/23/2019 The Ch

    3/53

    These luminous Geisler tube script signs were

    made by E. O Sperling, a glassblower at the Na-

    tional Bureau of Standards, for the 1904 Louisi-

    ana Purch ase Exposition, St. Louts, Missouri

    They are believed to have been the first exam-

    ples of the use of the noble gases and hydrogen )

    for display purposes. Each tube was filled by

    P. G. Nutting, an NB S scientist, with a sam-

    ple of the appropriate gas obtained directly from

    Sir William Ram say see page J). About 1930,

    the commercial use of neon tube signs began see

    page 7), and since then neon signs have become

    comm onplace the world over. Meanw hile, until

    1962, at least, the noble gases rema ined among

    the mo st fascinating, m.ost puzzling, and least

    known of all elements.

  • 7/23/2019 The Ch

    4/53

    , - l i . .

    I - ^ I I 11 ^ ll

    1

    in

    Tlie CHemistry

    of

    tlie nolDle gases

    B y C E D R I C

    L

    C H E R N I C K

    THE GASES THEMSELVES

    If you've made upyour mind that ch em istry is adull

    subject , and want tocontinuetothink so, you shouldnot

    read this booklet . It will only upse t your com fortable con

    viction. If that should happen, itwill

    be

    quite tradit ional ,

    by

    the way,

    be cau se information about

    the

    "noble g as es "

    has been shat ter ing cherished bel iefs with remarkable

    consis tency

    for

    some year s

    now.

    For over 6 y e a r s the 6 ga ses helium, neon, argon,

    krypton, xenon,

    and

    radon were

    the

    confirmed bac he lors

    among

    the

    known elements .

    All the

    other elements would

    enter into chemical combination withone oranotherof their

    kind, i r respect ive ofwhether they w ere sol ids , ga ses ,

    or

    l iquids

    in

    the i r normal s ta te .

    Not so

    helium, neon, argon,

    krypton, xenon, andrad on . They w ere ch em ically aloof and

    would have nothing

    to do

    with other elements ,

    or

    even with

    one another.

    This behavior earned them aunique po sitionin the Pe-

    riodic Tableof

    the

    E lement s

    and

    they were called names

    like

    the

    " i ne r t ga s e s "

    orthe

    "noble gases".* They were

    also labeled the " ra re ga se s" , a lthough helium and argon

    a re

    not

    r e al ly " r a r e " . t

    The inability

    of

    these gases

    to

    form chem ical compounds

    was ,

    unti l 1962, oneofthe most accepted fundamentals in

    * " N o b l e " byr e a s o n of t h e i r a p p a r e n t r e l u c t a n c e to mingle wi th

    t h e c o m m o n h e r d of e l e m e n t s .

    t X e n o n , h o w e v e r ,

    is

    the r a r e s t of all s t a b l e e l e m e n t s on e a r t h .

  • 7/23/2019 The Ch

    5/53

    E l e m e n t

    Hel ium

    Neon

    Argon

    Krypton

    Xenon

    Radon

    Symb

    He

    Ne

    A r

    K r

    Xe

    Rn

    c h e m i s t r y . T h e n a l o n g c a m e s o m e s c i e n t i s t s w i th w h a t

    P h i l i p A b e l s o n , e d i t o r of t h e m a g a z i n e Science, l a t e r c a l l e d

    " a g e r m of s k e p t i c i s m " . In t h e s p a c e of o n l y a c o u p l e of

    m o n t h s a l l t h e d o g m a r e l a t i n g t o t h e i n e r t n e s s of x e n o n w a s

    o v e r t h r o w n i t h a d d e f i n i t e l y b e c o m e a " j o i n e r " . R a d o n

    a n d k r y p t o n b e g a n " m i n g l i n g " c h e m i c a l l y s o o n t h e r e a f t e r

    a n d , a l t h o u g h th e o t h e r t h r e e g a s e s a r e s t i l l h o l d i n g o u t , t h e

    d a m a g e t o a f i r m l y c h e r i s h e d b e l i e f w a s d o n e .

    Table I

    ABUNDANCE OF NOBLE GASES IN AIR AT SEA LEVEL

    Par t s per Mi l l ion (by volume)

    5

    18

    9430

    1

    0.1

    6 X 10~'^

    S o m e i d e a of t h e e x c i t e m e n t t h e s e d i s c o v e r i e s c a u s e d

    a m o n g s c i e n t i s t s c a n b e g l e a n e d f r o m t h e f a c t t h a t , l e s s

    t h a n a y e a r a f t e r t h e f i r s t d i s c o v e r y of a x e n o n c o m p o u n d

    w a s a n n o u n c e d , a c o n f e r e n c e on " N o b l e G a s C o m p o u n d s "

    w a s h e l d a t A r g o n n e N a t i o n a l L a b o r a t o r y n e a r C h i c a g o .

    S o m e 1 0 0 s c i e n t i s t s d i s c u s s e d w o r k t h e y h a d d o n e i n t h e

    f ie ld , a n d a l m o s t 60 m a d e f o r m a l r e p o r t s T h e p r o c e e d i n g s

    of t h a t m e e t i n g f i l l e d a 4 0 0 - p a g e b o o k e n t i t l e d Noble Gas

    Compounds.

    * N o t b a d , c o n s i d e r i n g t h a t j u s t a s h o r t t i m e

    b e f o r e n o t even one n o b l e g a s c o m p o u n d w a s k n o w n .

    T h i s b o o k l e t w i l l a t t e m p t to s h o w h o w t h e s e g a s e s l o s t

    t h e i r b a c h e l o r h o o d , a n d w h y t o d a y t h e y a r e c a l l e d " h e l i u m

    g r o u p g a s e s " o r " n o b l e g a s e s " i n s t e a d of " i n e r t g a s e s " .

    Discovery

    T h e f i r s t i n d i c a t i o n of t h e e x i s t e n c e of a n i n e r t c o n s t i t u

    e n t i n t h e a t m o s p h e r e c a m e in 1 7 85 w h e n H e n r y C a v e n d i s h t

    fo u nd th a t h e c o u l d n o t c o n v e r t a t m o s p h e r i c n i t r o g e n c o m -

    *Edi t ed by H . H . Hym an . See Sugges t ed R ef e r en ce s , page 45 .

    t T h e g r e a t E n g l i s h c h e m i s t a nd p h y s i c i s t w h o a l s o d i s c o v e r e d

    h y d r o g e n .

  • 7/23/2019 The Ch

    6/53

    pletely to nitrous acid. He concluded that, "if there is any

    part of our atmosphere which differs from the rest . . . i t is

    not m or e than 1/120 p a rt of the whole". Th is re su lt was

    apparently forgotten or neglected, and the problem arose

    again in stu die s on the density of nitrog en in the ea rly

    1890s. At that time Lord Rayleigh* discovered that nitrogen

    obtained by removal of the then known gases from an air

    sample, or "atmospheric ni t rogen", was denser than ni t ro-

    Sir William Ram say

    gen prep ared by chemical m ea ns tha t i s , "chemical n i t ro

    gen". A num ber of th eo rie s we re advanced for the d is c re p

    ancy in the densities of the nitrogen samples from the two

    so ur ce s. E i ther the "ch em ical" ni trogen was too l ight , or

    the "atm osph eric" ni t rogen too heavy, becau se of the pr e s

    ence of other gases. In 1894, however. Lord Rayleigh and

    W ill iam R am say t showed that the "atm os ph eric " ni t rogen

    was a m ixture of nitrogen and a hea vier, previou sly un di s

    co ve red , ga s. This gas turn ed out to be a new elem ent that

    was given the name "argon", on account of its chemical

    inactivity (from the Greek word, argon, meaning inactive,

    idle).

    *John W. S t ru t t , w ho inh e r i t e d the t i t l e Lo rd R ay le igh , w a s d i

    r e c t o r of t h e C a v e n d i s h L a b o r a t o r y a t C a m b r i d g e U n i v e r s i t y in

    Eng land w hen he d id th i s im po r tan t w ork . H e i s a lm os t a lw a ys

    r e f e r r e d t o b y h i s t i t l e .

    tR am sa y w a s a Sco t s c he m is t w ho w as kn igh ted in 1902 . H e r e

    ce iv ed the 1904 N obe l P r i z e in ch em is t ry fo r h i s d i sc ov er i e s of

    nob le g a se s . Lord R ay le igh r ec e iv ed the 1904 N obe l P r i z e in

    phys ics in r ecogn i t ion o f h i s n i t rogen s tud ies w i th R am say .

    3

  • 7/23/2019 The Ch

    7/53

    The d i s co ve ry of t he o th e r 5 g as es fo ll owed rap id ly ; by

    1900 they had a l l be en i so l a t e d and i den t i f i ed . Ra m sa y and

    h i s a s s i s t a n t , M o r r i s T r a v e r s , in c o nt in u in g t h e i r r e s e a r c h

    on a rgo n mad e us e of newly deve loped me tho ds fo r l i que fy

    i ng g a s e s . T h e e a r t h ' s a t m o s p h e r e c o n s i s t s m a i n ly of n i t r o

    gen (78%), oxy gen (21%), and ar go n (1%), w hich hav e bo i l ing

    p o i n t s s u ff ic i e n tl y d i f f e r e n t ( - 1 9 5 . 8 C , - 1 8 2 . 9 6 C , a nd

    1 8 5 . 7 C , r e s p e c t i v e l y ) t h a t t h e y c a n r e a d i l y b e s e p a

    ra t e d by f r ac t i on a l d i s t i l l a t i on of l i qu id a i r . As R am sa y

    a n d T r a v e r s i m p r o v e d t h e i r t e c h n i q u e s , t h e y fo un d t h a t

    t h e y c o u l d o b t a in s e v e r a l m o r e f r a c t i o n s w h en d i s t i l l i n g

    l iq u id a i r . T h r e e of t h e s e f r a c t i o n s c o n t a i n e d e l e m e n t s

    n e v e r b e f o r e i s o l a t e d , n a m e l y , n e o n ( G r e e k ,

    neos,

    new),

    k r y p t o n ( G r e e k ,

    kryptos,

    h idde n) , and xenon (G reek ,

    xenon,

    s t r a n g e r ) .

    R a m s a y w a s a l s o i n s t r u m e n t a l in d i s c o v e r i n g t h e e x i s

    t ence o f he l i um (Greek , helios, t he sun ) . Th i s e l e m en t had

    bee n no t ed i n t he su n ' s sp ec t ru m as ea r ly a s 1868 , bu t was

    o nly i s o l a t e d a s a t e r r e s t r i a l e l e m e n t i n 1 89 5 w h e n R a m s a y

    o b t a in e d i t b y h e a t i n g th e u r a n i u m - c o n t a i n i n g m i n e r a l c l e v e -

    i t e . * ( T he h e l i u m i n t h i s m i n e r a l w a s p h y s i c a l l y t r a p p e d

    and was no t chemica l l y combined . )

    The f ina l nob l e ga s t o be d i sc ov er ed wa s r a do n . In 1900

    F r i e d r i c h D o r n , a G e r m a n p h y s i c i s t , fo un d t h a t r a d i u m

    e v o l v ed a g a s t h a t h e c a l l e d " r a d i u m e m a n a t i o n " . T h i s g a s

    w a s l a t e r g i v e n t h e n a m e niton, bu t s in ce 1923 i t h a s be en

    known as

    radon.

    A l l i s o t o p e s of r a d o n a r e r a d i o a c t i v e .

    Occurrence and Production

    T h e a t m o s p h e r e i s o u r m a j o r s o u r c e f o r n e o n , a r g o n ,

    k ryp ton , and xenon , and t h es e g a se s a r e now p ro duc ed

    c o m m e r c i a l l y a s a b y - p r o d u c t d u r i n g f r a c t i o n a l d i s t i l l a ti o n

    of l iqu id a i r t o p ro du ce l i qu id oxygen and n i t r og en . L iqu e

    fac t i on of t hous and s o f t ons o f a i r p e r day m ak e s t h es e 4

    g a s e s a v a i l a b l e i n s u f f i c i e n t q u a n t i t i e s f o r p r e s e n t n e e d s .

    He l ium i s t he s ec ond m o s t ab undan t e l em en t i n t he u n i

    v e r s e . A b o ut 7 6% of t h e m a s s of t h e u n i v e r s e , i t i s e s t i -

    *Th i s m ine ra l i s a l so know n a s u r an in i t e ; one va r i e ty of u r a n -

    i n i t e ,

    p i t c h b l e n d e , i s a n i m p o r t a n t s o u r c e of u r a n i u m f o r p r o d u c

    t ion of a tomic energy .

    4

  • 7/23/2019 The Ch

    8/53

    m ated, is hyd rogen; helium m ak es up about 23%, and all the

    oth er elem en ts tog ethe r co m pose the re m ain ing 1% of the

    m a s s .

    H elium is so light tha t it is continually esc ap ing from

    the ear th ' s a tmosphere into inters te l lar space. The present

    concentration of helium in the atmosphere therefore prob

    ably represents a steady-state concentration, that is , the

    amount being re le ase d f rom the ea r t h ' s c ru st i s equal to

    the amount e scaping from the atm os ph ere into sp ac e. The

    con stant esc ape exp lains why t he re is so little to be found

    in our air. Helium can be obtained from the atmosphere in

    the sam e way neon, argo n, krypton , and xenon a re , but is

    m or e readil y obtained from accu m ulation s that have built

    up in the ear th ' s crust .

    Th is helium in the e art h is continually being formed by

    radioactive decay. All radioactive materials that decay by

    emitting alpha particles produce helium, since an alpha

    particle is nothing more than a helium nucleus with a posi

    tive charge. Most of the helium in the earth 's crust comes

    from the decay of uranium and thorium.

    The helium is obtained by tapping natural gas wells,

    which yield an ave rag e h elium con tent of about 2%. M ost

    of thes e helium we lls a re in an ar ea within 250 m ile s of

    A m aril lo, T ex as , although s m all am ounts have been found

    in natural gas elsewhere in the U. S. Since the early 1950s

    helium-containing gases also have been found in South

    A frica, R us sia , and Can ada. In oth er p a rt s of the world the

    helium content of natural gases and mineral springs is too

    low to make separat ion commercia l ly a t t ract ive .

    The helium is recovered from the natural gas by an ini

    tia l liquefaction tha t lea ve s only heliu m and nitro ge n in

    gaseous form. Fu r the r l iquefaction, this t ime under p r e s

    s u r e ,

    ca us es mo st of the nitrog en to condense and leav es

    helium of about 98% pu rity in the gas p h as e. Th is can be

    fur ther purified by pass in g it through a l iq ui d- ni tro ge n-

    cooled trap containing charcoal, which absorbs the re

    maining impuri t ies .

    The final one of our noble gases, radon, is obtained from

    the radioactive decay of radium. One gram of radium pro

    duc es about 0.0001 m il li li te r of radon p er day. (We should

    * F o r m o r e a b o u t r a d i o a c t i v i t y s e e Our Atomic World and o ther

    book le t s i n t h i s s e r i e s .

    5

  • 7/23/2019 The Ch

    9/53

    a J ,(> =l -.

    Figure 1

    A U. S. Bureau of Mines helium plant in Keyes, Okla-

    hom a, uitli the cold boxes ', or refrigerating units, in the fore-

    ground

    ke ep in mind , how eve r , t ha t 1 g r am of r a d i um i s a ve ry

    l a rg e amo un t i n t e r m s of t he t o t a l ava i l ab l e .* ) Radon ha s a

    s h o r t h a l f -l i f e ( th e c o m m o n e s t i so t op e ,+ c o m i n g f r o m r a

    d ium , i s r ad on -22 2 who se ha l f - l i f e i s 3.8 da ys ) , wh ich

    m ea ns t ha t abou t ha lf t he r ad on a to m s wi l l d i s i n t eg ra t e

    in a l i t t l e u nd er 4 da ys . S ince r ad ium ha s a m uch long er

    ha l f - l i fe than tha t , about 1620 y e a r s , the am oun t of dau gh ter

    r a d o n i n c o n t a c t w it h t h e p a r e n t r a d i u m r e a c h e s a c o n s t a n t

    concen t ra t i on . In o the r words t he amoun t o f r adon be ing

    p r o d u c e d i s b a l a n c e d b y t h e a m o u n t d i s i n t e g r a t i n g , a nd a s

    *F ro m the d i s c ov e ry of r ad ium by M ar i e and P i e r r e Cu r i e in

    1898 un t i l 1940 on ly about 1000 g ra m s we re i so la ted , and a l though

    pro du c t io n in cr ea se d du r ing W or ld W ar I I, i t i s doubt fu l w he ther

    th e r e a r e m or e t han 100 g r a m s of pu re r ad ium ava i l ab l e in t he

    W es t e rn W or ld t oday .

    t I so topes a r e t he va r iou s fo rm s of t he s a m e e l em en t . Fo r a f ull

    de f in it i on of t h i s and o th e r un fam i l i a r w o rds , s e e Nuclear Terms,

    A Brief Glossary, a com pan ion book le t in t h i s s e r i e s .

    6

  • 7/23/2019 The Ch

    10/53

    soon as the pr im ary so ur ce (the radium) is rem ove d, the

    radon concentration begins to decrease because of i ts con

    tinuin g d isi nt eg rat io n. After 1 half-life (3.8 days) only half

    the radon re m ai ns ; after a second half- life,

    %

    of that will

    have disintegrated, that is

    %

    of

    %

    o r

    %;

    in a month there

    will be le s s than 1% left; and after

    n

    half-lives the fraction

    remaining wil l be

    {%) .

    The amou nt of rado n one can

    iso lat e at any given tim e is , th er ef or e, d ependent on the

    amount of radium originally available.

    A number of isotopes of the noble gases can be produced

    artif icially, either directly by bombardment in a particle

    a cc el er at o r, or as the prod uct of decay of an artificially

    excited atom, or by nuclear

    fission.

    The la tte r method is

    used for production of krypton and xenon in atom ic re ac to rs .

    Fi ssio n is a pro ce ss in which a heavy atom spli ts to form

    2 ligh ter atoms of approximately equal m as s* ; one or

    m or e ne utro ns and a la rg e amount of energy also are

    r e leased s imul taneous ly .

    Uses

    Many of the uses of these gases are outgrowths of their

    in er tn es s . The gre ate r abundances , and hence lower cos ts ,

    of helium and argon re su lt in their use as in er t atm o

    spheres in which to weld and fabricate metals . The elec

    tr ical and other properties of the noble gases make most

    of them ideal gases for filling numerous types of electronic

    tubes and in lasers. For this , the gases may be used singly

    or mixed with one or m ore of the ot he rs. Pe rh ap s the be st

    known use is in the fam iliar "neon " adv ertisin g sign s. The

    glow produced by neon alone is red. The other gases pro

    duce less bril l iant colors: helium (pale pink), argon (blue) ,

    krypton (pale blue), and xenon, (blue-green).

    H elium, be cau se of its li gh tn es s, finds us e a s a lifting

    gas for balloo ns and a ir sh ip s, although it is he av ier than

    hydrogen. This weight d isadvan tage, how ever, is far o ve r

    balanced by the fact that helium is nonflammable. Recently,

    * F o r e x a m p l e , if u r a n i u m - 2 3 5 f i s s i o n s , k r y p t o n - 9 0 a n d b a r i u m -

    144 ,

    o r x e n o n - 1 4 0 a n d s t r o n t i u m - 9 4 m i g h t b e f o r m e d .

    t F o r a f ull exp l ana t i on of f i s s i on , s e e Our Atomic

    World

    a

    c o m p a n i o n b o o kl e t i n t h i s s e r i e s .

    7

  • 7/23/2019 The Ch

    11/53

    5

    C

    M

    3

    D

    8

  • 7/23/2019 The Ch

    12/53

    Figure 3

    A technician checks a liquid-helium refrigerator prior

    to shipment. This unit is designed to cool masers and supercon

    ducting magnets used for space comm unication.

    h e l iu m h as b een u s ed a s a co o l in g m ed iu m in n u c l ea r r eac

    t o r s , and i t i s a l so a d i luen t fo r oxygen in b r ea th in g s y s

    t e m s f or d e e p - s e a d i v e r s . H e l i u m b e i n g l e s s s o l u b le i n t h e

    b lo o d t h a n n i t r o g e n , t h e h e l i u m - o x y g e n m i x t u r e i s p r e f e r

    a b le t o n o r m a l a i r f or p e r s o n s w o r k i n g u n d e r p r e s s u r e ,

    s i n c e i t s u s e t e n d s to p r e v e n t t h e b e n d s , a s e r i o u s c o n

    d i t ion cau sed by gas bu bb les in the body f lu ids and t i s su e s .

    L iqu id he l iu m , which i s the on ly su bs tan ce tha t w i ll r em a in

    l iq u i d a t t e m p e r a t u r e s c l o s e t o a b s o l u t e z e r o ( - 2 7 3 C ) , i s

    f in d in g i n c r e a s i n g u s e in l o w - t e m p e r a t u r e p h y s i c s cryo

    genics.* R ad o n h a s b een u s ed a s a s o u r c e of g am m a r a y s

    f o r t r e a t m e n t o f c a n c e r , b u t m o r e c o n v e n i e n t g a m m a - r a y

    s o u r c e s p ro d u c e d in n u c l e a r r e a c t o r s no w a r e m o r e f r e

    q u en t ly ch o s en f o r m ed ic a l t h e r a p y .

    *See Cryogenics, Tlie Uncom mon Cold another booklet in this

    se r ies , fo r an explana t ion of th i s b ranch of sc ience .

  • 7/23/2019 The Ch

    13/53

    EARLY HISTORY

    Attempts To Form Compounds

    As in the ca se of o t he r e l e m en ts , the d i s co ve ry of the

    nob le g a se s wa s fo llowed by an exa m ina t io n of th e i r ch em

    i c a l p r o p e r t i e s . It s o on b e c a m e o b vi o us t h a t t h e s e e l e m e n t s

    w e r e d i f f e r e n t t h e y w o u ld n ot e n t e r i n to c h e m i c a l c o m

    b ina t ion wi th any o th e r e l em en ts o r wi th one an o th e r . M any

    a t t e m p t s w e r e m a d e to i n d u c e c h e m i c a l r e a c t i o n s b e t w e e n

    n o b l e g a s e s a nd b o t h m e t a l s a nd n o n m e t a l s . A g r e a t m a n y

    t e c h n i q u e s w e r e u s e d b u t n o ne p r o v e d s u c c e s s f u l . A l t ho u g h

    m a n y c l a i m s w e r e m a d e t h a t c o m p o u n d s h a d b e e n f o r m e d

    con ta in ing nob le gas a t om s che m ica l ly bound to o th e r

    a t o m s , m o s t of t h e s e e i t h e r w e r e u n c o n v i n c i n g o r s h o w n

    t o b e i n c o r r e c t . T h e s c i e n t i s t s w ho c a m e c l o s e s t t o s u c c e s s

    w e r e t h e A m e r i c a n c h e m i s t s , D o n Y o s t a n d A l b e r t K a y e .

    In 1933 they s e t ou t to t e s t the p r ed ic t ion , m ad e tha t ye a r

    b y a n o t h e r A m e r i c a n , L i n u s P a u l i n g , t h a t k r y p t o n a nd x e n on

    m i g h t r e a c t w i th f l u o r i n e . Y o s t an d K a y e p a s s e d e l e c t r i c

    d i s c h a rg e s th ro ug h m ix tu re s of xenon and f luo r ine and of

    k r y p t o n a nd f l u o r i n e . T h e i r r e s u l t s w e r e i n c o n c l u s i v e a nd

    t h e y s t a t e d i n a c o m m u n i c a t i o n t o t h e Journal of tlie Am eri

    can Chemical Society, I t can no t be sa id tha t de f in i t e e v i

    den ce for com pound for m at io n w as found . It do es no t fo l low,

    o f cou r se , tha t xenon f luo r ide i s incapab le o f ex i s t ing .

    V ery soon a f t e r the d i sc ov e r y of the nob le ga se s i t w as

    shown tha t a rgo n , k ry p to n , and xenon wi l l fo rm hy dr a t e s

    c o m p o u n d s i n w h i c h t h e g a s e s a r e a s s o c i a t e d w i th w a t e r

    m o l e c u l e s . A t f i r s t t h e h y d r a t e s w e r e th o u g h t t o b e t r u e

    c h e m i c a l c o m p o u n d s , b u t t h e y w e r e l a t e r s h o w n t o b e

    clathrate com poun ds ; in th i s type of compound the in e r t gas

    i s t r a p p e d i n h o l e s i n a c r y s t a l l i n e c a g e f o r m e d b y t h e

    w a t e r m o l e c u l e s . T h e h o s t m o l e c u l e in h y d r a t e s i s w a t e r ,

    b u t s e v e r a l o t h e r c l a t h r a t e h o s t s ha v e a l s o b e e n u s e d , s u c h

    as the o rg an ic com pou nds pheno l and qu ino l . F o r a c o m

    p o un d t o a c t a s a h o s t t h e c a v i t i e s i n i t s c r y s t a l l i n e s t r u c

    t u r e m u s t b e l a r g e e n o u g h t o p r o v i d e r o o m f o r t h e i n e r t

    gas a tom , bu t sm a l l enough to kee p i t t r a pp ed in the cag e .

    So f a r no hos t m o l ec u le s have been found who se ca ge s a r e

    sm a l l enough to ke ep he l ium o r neon a to m s t r a pp ed , so no

    10

  • 7/23/2019 The Ch

    14/53

    c l a t h r a t e c o m p o u n d s of t h e s e g a s e s a r e k n own . In c i d e n t a l l y ,

    t h e p h e n o m e n o n of c l a t h r a t e fo rm a t i o n p ro v i d e s a me t h o d

    of se pa ra t in g neon f rom a rg on by t ra pp ing the a rgo n in a

    c l a th ra t e cage and pum ping off t he neon .

    C l a t h r a t e c o m p o u n d s a r e n ot t r u e c h e m i c a l c o m p o u n d s ,

    b e c a u s e t h e y d o no t c o n t a i n r e a l c h e m i c a l b o n d s . T h e o n ly

    fo rc e s b e t w e e n t h e i n e r t g a s a n d t h e h o s t m o l e c u l e a r e

    r e l a t i v e l y w e a k e l e c t r o s t a t i c i n t e r a c t i o n s . T h e i n e r t g a s i s

    r e a d i l y r e l e a s e d b y d e s t r o y i n g t he c r y s t a l l i n e c a g e , e i t h e r

    by d i s so lv in g the ho s t i n a su i t ab le so lven t o r by hea t ing i t

    t o i t s me l t ing po in t .

    Why the Gases Are Inert

    B e fo re d i s c u s s i n g t h e r e a s o n s fo r t h e i n e r t n e s s of t h e

    nob le g as es i t i s i n t e re s t in g to look a t t he re l a t io ns h i ps

    b e t w e e n e l e m e n t s , a n d h ow t h e y c o m b i n e c h e m i c a l l y w i th

    one an o th e r . The the o ry tha t each e l e m en t ha s a f ixed co m

    b i n i n g c a p a c i t y wa s p r o p o s e d by t h e E n g l i s h c h e m i s t S i r

    E d w a rd F ra n k l a n d i n 1 8 5 2 . T h i s c a p a c i t y w a s c a l l e d th e

    valence of an a to m . As m os t of t he e l em en t s then known

    would co m bine wi th e i th e r oxygen o r hyd roge n , t he va le nc e

    va lue s w er e re l a t e d to the num be r of a tom s of oxygen o r

    hy dro gen wi th w h ich one a to m of each e l e m en t wou ld c o m

    b i n e .

    Tw o a to m s of hy dro ge n c om bin e wi th 1 a to m of oxygen

    to for m H2O, so hyd rog en w as g iven a va len ce of 1 , and ox y

    gen a va len ce of 2 . T he va len ce of any o th er e le m en t w as

    then the number o f a toms o f hydrogen (o r twice the number

    of oxygen a to m s) tha t com bin ed w i th 1 a tom of tha t e l em en t .

    In am m on ia we have the fo rm ula NH3, so n i t ro ge n ha s a

    va len ce of 3 ; in ca rb on d iox ide , CO2, the ca rb on va len ce i s

    4 .

    V a l e n c e s a r e a l w a y s w ho le n u m b e r s . S o m e e l e m e n t s

    e x h i b i t mo re t h a n o n e v a l e n c e , a n d t h e ma x i mu m v a l e n c e

    appea rs to be 8 .

    In t h e l a t e 1 8 6 0s t h e R u s s i a n c h e m i s t D m i t r i M e n d e l e e v

    ma d e a n i n t r i g u i n g o b s e rv a t i o n wh e n l i s t i n g t h e e l e me n t s

    in the o r d e r of i n c r ea s i ng a tom ic we ig h t s . He found tha t t he

    f i r s t e l em en t a f t e r hyd roge n w as l i t h ium wi th a va len ce of

    1, the s eco nd h eav ies t w as be ry l l iu m wi th a va len ce of 2 ,

    the th i r d , bo ro n wi th a va len ce of 3 , and so on . As he c on

    t inued he found a sequence of valences that went 1 , 2 , 3 , 4 ,

  • 7/23/2019 The Ch

    15/53

    3 , 2 , 1 , and then repea ted itself If h e a r r a n g e d t h e e l e m e n t s

    in v e r t i c a l co lu m ns nex t t o one an o th e r , i n t he o rd e r of

    i n c r e a s i n g a t o m i c w e i g h t s , h e fo un d t h e e l e m e n t s i n e a c h

    h o r i z o n t a l r o w a c r o s s t h e p a g e h a d t h e s a m e v a l e n c e a n d

    s t r i k i n g l y s i m i l a r c h e m i c a l p r o p e r t i e s .

    T h i s k in d of p e r i o d i c i t y , o r r e g u l a r r e c u r r e n c e , h ad b e e n

    n o t e d b y o t h e r s c i e n t i s t s , b u t M e n d e l e e v m a d e a g r e a t s t e p

    Dmitri Mendeleev

    fo rw a rd by l e av ing ga ps in h i s t ab l e w he re the nex t known

    ele m en t , in or d e r of we igh t , d id not f it b ec au se i t had the

    w r o n g v a l e n c e o r t h e w r o n g p r o p e r t i e s . H e p r e d i c t e d t h a t

    t h e s e g a p s w o u ld b e f il le d b y y e t - t o - b e - d i s c o v e r e d e l e

    m e n t s , a nd h e e v e n w e n t a s f a r a s t o p r e d i c t t h e p r o p e r t i e s

    of so m e of t h e s e e l em en t s f rom the po s i t i on they wou ld

    occupy in h i s t ab l e . A re p r od uc t io n of an ea r ly ve rs io n of

    M e n d e l e e v ' s P e r i o d i c T a b l e of t h e E l e m e n t s i s s h o w n i n

    F i g u r e 4 . A s c a n b e s e e n , t h i s w a s b a s e d o n t h e 6 3 e l e m e n t s

    t h e n k n o w n . I n l a t e r v e r s i o n s of t h e T a b l e t h e e l e m e n t s a r e

    a r r a n g e d in o r d e r a c r o s s t h e h o r i z o n t a l r o w s , a nd t h o s e

    w i th s i m i l a r p r o p e r t i e s f al l in t h e s a m e v e r t i c a l c o lu m n .

    At the t im e of t he se t t i ng up of t he Pe r io d ic T ab le t he

    n o b l e g a s e s w e r e s t i l l u n d i s c o v e r e d . T h e r e w e r e n o g a p s

    l e ft fo r t he m , a s sp a c e s cou ld be l e ft on ly w he re a t l e a s t 1

    e l e m e n t i n a g r o u p w a s a l r e a d y k n o w n . W h e n a r g o n w a s

    d i s c o v e r e d s o m e p r o b l e m t h e r e f o r e a r o s e a s to i t s p l a c e

    12

  • 7/23/2019 The Ch

    16/53

    Figure 4

    Above is an early (1869) version of Men deleev's Periodic

    Table. The heading reads, Tentative system of the elements .

    The subheading reads, Based on atomic Heights and chemical

    similarities . This table is reprod uced from D m it r i Ivanovich

    M e n d e l e e v , N. A. Figurovskii, Russian Academ y of Science, Mo s

    cow, 1961.

    i n t h e p e r i o d i c s y s t e m . I t s a t o mi c w e i g h t s u g g e s t e d i t m i g h t

    b e l o n g s o m e w h e r e n e a r p o t a s s i u m . W h en i t s l ac k of c h e m

    i c a l r e a c t i v i t y w a s d i s c o v e re d , M e n d e l e e v p ro p o s e d t h a t i t

    had ze ro va len ce and shou ld co m e be tw een ch lo r ine and

    p o t a s s i u m . He s u g g e s t e d t h a t a g ro u p of s u c h g a s e s mi g h t

    be found. Th e va le nc e p er io d ic i t y the n would be 0 , 1 , 2 , 3 ,

    4,

    3 , 2 , 1 . T his new gro up led to a co m ple te pe r io d i c i ty

    of 8 , wh ich we sh a l l se e i s a v er y s ign i f ic an t nu m be r .

    B o th F ra n k l a n d a nd M e n d e l e e v b a s e d t h e i r i d e a s on t h e i r

    k n o w l ed g e of c h e m i c a l p r o p e r t i e s . T h e t h e o r e t i c a l s u p p o r t

    fo r bo th p ro p os a l s ca m e wi th the dev e lop m en t of a the o ry

    of a t o m i c s t ru c t u r e an d t h e

    electronic

    theo ry of va l en ce .

    T h e o r i e s s t a t i n g t h a t m a t t e r i s c o m p o s e d of s m a l l , i n d i

    v i s i b l e p a r t i c l e s , c a l l e d a t o m s , h ad b e e n p r o p o s e d a s

  • 7/23/2019 The Ch

    17/53

    ea r ly a s 400 B .C . , bu t w e r e of a ph i loso ph ic ra th e r t han

    s c i e n t i f i c n a t u r e . T h e s c i e n t i f i c a t o m i c t h e o r y r e a l l y

    s t a r t ed wi th the Eng l i sh sc i en t i s t John Da l ton in t he 19 th

    c e n t u r y . In h i s t h e o r y s m a l l , i n d i v i s i b l e , a n d i n d e s t r u c t i b l e

    p a r t i c l e s a l s o w e r e c a l l e d a t o m s , b u t h e g a v e t h e m p r o p

    e r t i e s t h a t h a d p h y s i c a l s i g n i f i c a n c e . M o r e i m p o r t a n t ,

    D a l t o n ' s t h e o r y n o t o n ly w o u ld e x p l a in o b s e r v e d e x p e r i

    m e n t a l r e s u l t s , b u t a l s o c o u ld p r e d i c t t h e r e s u l t s of n e w

    e x p e r i m e n t s .

    T ow ard the end of the 19th cen tu ry the d i s co v er y of the

    e l e c t r o n d e m o n s t r a t e d t h at a t o m s t h e m s e l v e s w e r e d i v i s i b l e

    a n d l e d t o t h e p r o p o s a l of t h e o r b i t a l a t o m . T h e a t o m c a m e

    to be co ns id e r ed a s be ing m ad e up of a nu c le us , con ta in in g

    m o s t of t h e m a s s , a nd e l e c t r o n s r e v o l v i n g a r o u n d t h e n u

    c l e u s r a t h e r l i k e t h e p l a n e t s r e v o l v e a r o u n d th e s u n . * E a c h

    e l ec t ro n ha s a s ing le o r un i t neg a t ive cha rg e and the en t i r e

    a t o m i s e l e c t r i c a l l y n e u t r a l , o r u n c h a r g e d , b e c a u s e in t h e

    n u c l e u s t h e r e a r e a n u m b e r of p r o t o n s ( e q u al t o t h e n u m b e r

    of e l ec t r o n s ) , e ach of wh ich ha s a un i t po s i t i v e ch a r g e .

    Atomic Num ber Th e n u m b er of p ro to ns in a g iven a to m

    of an e l emen t i s c a l l ed the atomic number. In ad di t io n to

    t h e p r o t o n s , t h e n u c l e u s c o n t a i n s u n c h a r g e d p a r t i c l e s c a l l e d

    n e u t r o n s . T h e n e u t r o n s a n d p r o t o n s h a v e a b o u t t h e s a m e

    m a s s ,

    a n d t h e e l e c t r o n s , by c o m p a r i s o n , h a v e n e g l i g i b l e

    m a s s . A n e l e m e n t of a t o m i c m a s s (A) a n d a t o m i c n u m b e r

    (Z ) w i ll h a v e a n u c l e u s c o n s i s t i n g of Z p r o t o n s a n d ( A - Z )

    n e u t r o n s , a nd t h i s w i ll b e s u r r o u n d e d b y Z e l e c t r o n s . F o r

    ex am pl e , an a tom of l i t h iu m wi th m a s s (A) of 7 and a tom ic

    n um b er (Z) o f 3 wi l l have a nuc leu s c on s i s t i ng of 3 p r o

    t o n s a nd 4 n e u t r o n s ( A - Z ) , s u r r o u n d e d b y 3 e l e c t r o n s .

    The l i g h te s t e l e m en t , hy dro gen , ha s Z equ a l t o 1 , and

    e a c h s u c c e s s i v e l y h e a v i e r e l e m e n t d i f f e r s f r o m t h e o n e

    p re ce d i ng i t by an in c r e a se of 1 i n Z , and ha s one m o r e

    p r o t o n a nd o n e m o r e e l e c t r o n th a n t h e n e x t l i g h t e r o n e .

    T h u s ,

    t h e s e c o n d h e a v i e s t e l e m e n t , h e l i u m , h a s Z e q u a l

    t o 2 , a n d s o o n . F o r t h e h e a v i e r e l e m e n t s , s u c h a s u r a n i u m

    (Z = 92) , one m igh t im ag ine a ch ao t i c s i t u a t io n wi th m any

    * T h i s t h e o r e t i c a l m o d e l of t h e a t o m h a s s i n c e b e e n m o d i f ie d

    to exp la in add i t iona l ex pe r im en ta l r e s u l t s m o re fu l ly . Now an a tom

    of ten i s co ns ide red a s a nu c leu s w i th e l e c t r on s m oving rap id ly and

    ran do m ly a roun d ity and ha v i r ^ no de f in i te bound ary su r fa ce .

    14

  • 7/23/2019 The Ch

    18/53

    e l e c t ro n s b u z z i n g a l l a ro u n d t h e n u c l e u s . Fo r t u n a t e l y , t h e

    e l e c t r o n s a r e r e s t r i c t e d t o m o v e m e n t in c e r t a i n fix ed o r

    b i t s o r

    shells.*

    T h e n u m b e r of e l e c t ro n s i n e a c h s h e l l , a n d

    t h e o rd e r i n wh ic h a d d i t io n a l e l e c t r o n s b u i l d u p t h e s h e l l s

    of h e a v i e r e l e m e n t s , i s g o v e r n e d b y q u a n t u m m e c h a n i c a l

    c o n s i d e r a t i o n s . T h e f i r s t s h e l l m a y c o n t a i n 2 e l e c t r o n s ,

    the sec on d one 8 , the th i rd 18 and so on . H ow ever , the

    m a x i m u m n u m b e r of e l e c t r o n s p o s s i b l e in a ny o u t e r m o s t

    she l l i s 8 .

    Su b s h e l l s T h e s h e l l s t h e ms e l v e s a r e a c t u a l l y s p l i t i n t o

    s u b s h e l l s , w h i c h a r e d e s i g n a t e d b y t h e l e t t e r s s, p, d, a n d / ,

    s u c c e s s i v e l y m o v i n g o u t w a r d f ro m t h e n u c l e u s . T h e n u m b e r

    of e l e c t ro n s i n a g i v e n s u b l e v e l i s r e s t r i c t e d , b e i n g a

    m ax im um of 2 fo r s , 6 fo r p, 10 fo r d, and 14 f o r / . Th e

    v a r i o u s s h e l l s a r e d i s t i n g u i s h e d f r o m o n e a n o t h e r by n u m

    b e r s f r o m 1 t o 7 , w h e r e 1 i n d i c a t e s t h e i n n e r m o s t s h e l l

    a nd 7 th e o u t e r m o s t . A f u r t h e r r e s t r i c t i o n i s t h a t t h e r e i s

    only an s su ble ve l for the f i r s t sh e l l , on ly s and p for the

    se co nd , and only s , p, and d for the th i rd . Beyond the th i rd

    l eve l s ,

    p, d,

    a nd / s u b l e v e l s a r e a l l p e r m i t t e d . T h e s e r e

    s t r i c t i o n s a r e a c t u a l l y t h e s a m e a s t h o s e i n d i c a t e d i n t h e

    p r e c e d i n g p a r a g r a p h ; n a m e l y , t h e f i r s t s h e l l c o n t a i n s 2

    e l e c t r o n s , w h ic h we w r i t e I s ^ , t h e s e c o n d s h e l l h a s 8 ,

    wri t ten 2s^2/ )^ , the th i rd 18 , wri t ten 3s^3p^3d^\

    T h e e l e c t r o n s d o n o t n e c e s s a r i l y f il l t h e s h e l l s a nd s u b -

    s h e l l s i n c o n s e c u t i v e o rd e r . T h e f i r s t ( l ig h t e st ) 18 e l e

    m e n t s ' e l e c t r o n s a r e a d d e d r e g u l a r l y , t h e e l e c t r o n s f i ll in g

    the I s , 2 s , 2p, 3s , and Zp s u b s h e l l s i n s e q u e n c e . H o w e v e r ,

    i n t h e n i n e t e e n t h e l e m e n t , t h e ne w e l e c t ro n d o e s n o t g o in t o

    th e 3d su bs he l l , a s m igh t be exp ec te d , bu t i n to the 4s s u b -

    s h e l l . (Qu e s t i o n s of t h i s s o r t a r e d e c i d e d o n t h e b a s i s of

    e n e r g y c o n s i d e r a t i o n s . It i s e n e r g e t i c a l l y m o r e f a v o r a b l e

    to pu t t he 19 th e l ec t ro n in to the 4s su bs he l l . ) F ro m th i s

    p o i n t o n we c a n w r i t e d own t h e e l e c t r o n i c c o n f i g u ra t i o n s

    of the suc cee d in g (heav ie r ) e l e m e n t s on ly if we know the

    *A s h e l l i s a l s o r e f e r r e d t o in o t h e r t h e o r i e s a s a n energy level.

    t Q u a n t u m m e c h a n i c s i s a f o r m of m a t h e m a t i c a l a n a l y s i s i n v o l v

    ing quan ta , o r de f in i te un i t s o f en e rg y in which r ad i a t io n i s em i t t ed

    o r a b s o r b e d . T h e d if f er e n t o r b i t s , o r e n e r g y l e v e l s , of p l a n e t a r y

    e l e c t r o n s a r e s e p a r a t e d f r o m e a c h o t h e r b y w h o le n u m b e r s o l

    q u a n t a .

  • 7/23/2019 The Ch

    19/53

    order in which the subshells are filled. We should note that

    when the electrons do go into the

    M

    subshell this is con

    sidered to be inside the 4s level. Consequently, there can

    be 10 ele ctro ns in this sub shell without violating the ru le

    of having a maximum of 8 ele ctr on s in the ou term os t sh ell .

    Table II

    E L E C T R O N I C S T R U C T U R E S O F S E L E C T E D E L E M E N T S

    E l e m e n t

    H y d r o g e n

    H e l i u m

    L i t h i u m

    B e r y l l i u m

    B o r o n

    N e o n

    S o d i u m

    A r g o n

    P o t a s s i u m

    C a l c i u m

    S c a n d i u m

    T i t a n i u m

    A t o m i c

    N u m b e r

    1

    2

    3

    4

    5

    1 0

    1 1

    18

    1 9

    2 0

    2 1

    2 2

    l s

    l s 2

    ls\

    ls\

    l s 2 ,

    ls\

    ls\

    1 S 2 ,

    ls\

    ls\

    1 S 2 ,

    ls\

    E l e c t r o n i c S t r u c t u r e

    2s

    2s2

    2s\

    2s\

    2s2

    2s\

    2s\

    2s\

    2s\

    2s\

    2/)i

    2/>S

    2p^, 3 s '

    2 />^ 3s2, 2,p^

    2p^, 3s2 , 3 / )^ 4s*

    2/>6, 3s2, 3p, 4s2

    2/>, 3s2, 3p\ 3d\

    2p^,

    3s\ 3p^,

    3rf2,

    4s2

    4s 2

    This is always the case for

    d

    and / su bs hel ls: they a re

    always ins ide the next or n ext-b ut-o ne s subs hell when

    being fi lled. Table II gives the ele ctro nic s tr u ct u re s for

    seve ra l e l ements .*

    Now we a r e read y to look at the ele ctr on ic theo ry of

    valen ce and som e of it s co ns eq ue nc es. About 1920 a nu m

    b er of che m ists , m ost notably the A m erican G. N. Lew is,

    suggested that the electrons in the outermost shells were

    responsible for e lements ' chemical react ions. Compounds

    (that is , m olecules) a re formed by the tra ns fer o r shar ing

    of electrons, and the number of such electrons provided or

    obtained by an atom of any element during the combining

    p ro ce ss is i t s vale nce. How ever, ther e is a kind of re g u

    lation of the num ber of elec tro ns that can pa rtic ipa te in this

    bonding. It was suggested that the elements were always

    being prodded to attain the maximum number of electrons

    in their outer shell , namely 8. An electronic structure with

    *F or a d i s cu s s io n of the e lec t ro n ic c on f igu ra t ion of an o th e r

    i n t e r e s t i n g f a m i ly of t h e e l e m e n t s s e e

    Rare Earths, The Fraternal

    Fifteen,

    a c o m p a n i o n b o o k l e t i n t h i s s e r i e s .

  • 7/23/2019 The Ch

    20/53

    8 e lec tro ns in the o uter shell is co nsid ered to be m ore

    stable and is called a closed-shell a r rangem ent . A toms ,

    then, tend to adjust their electronic structure to that of the

    nearest

    elem ent with a completed outer sh ell . The adju st

    m ent is mad e by losing , gaining, or sh arin g ele ctro ns with

    other atoms.

    The close d-s he l l arra ng em en t of ele ctro ns happens to

    be the e lectro nic st ru ct u re of ato m s of the noble g a se s.

    Moreover , only the 6 noble ga ses have this arra ng em en t

    of m aximum stab il i ty. Th is fact is the b a si s for the sh o rt

    hand notat ion for wri t ing electronic s t ructures . From

    Ta ble II we can see the ele ctro nic st ru c tu re of sodium is

    Is^,

    2s^,

    2p^,

    3s ;

    sodium ha s 1 elec tron m ore than the

    c losed-shel l a r rangement I s^ , 2s^ , 2p^, which is the elec

    t ron ic s t ru ctu re of neon. The sodium electron ic configura

    t ion can therefore be writ ten (Ne), 3s^ Similarly potas

    sium can be writ ten (Ar), 4s\ scandium can be indicated

    by (Ar), 3d*, 4s^, etc. The close(3-shell arrangements are

    also called

    cores.

    Two atoms with the same number of electrons outside

    a stable co re would tend strongly to adjust the ir e le c

    tro nic configuration in a si m ila r m an ne r; that is , they

    would have the same valence and therefore the same chem

    ical p ro p er t ie s. This fact is bo rne out by the fact that e le

    m en ts in the sam e group in the Per io di c Tab le have the

    sam e outer e lec t ronic s t ru c t u re s . Table III on pages 2 4 -2 5

    is a m odern ve rsio n of the Pe riod ic Tab le, showing the

    elec t ronic s t ruc tures . Note tha t d i f ferent e lements some

    t im es appear to have ident ical e lec t ron ic s t ru ct u re s; for

    example, the outer shells of calcium and zinc are both 4s^.

    H ow ever, ca lciu m is (Ar), 4s^ wh ile zinc is (A r), 3rf", 4 s ^

    The presence of the complete d sub she ll cau ses zinc to

    have somewhat di fferent propert ies . Those elements in

    which the

    d

    and / su bsh ells a re being fil led a re called

    tran

    sition

    elements, as opposed to the

    nontransition

    e lements

    in which the electrons are going into s and

    p

    subshe l l s .

    The fact that the noble gases have completed outer

    sh e lls m ea ns that they have nothing to gain by losin g,

    gaining, or shar ing electrons. They al ready have the s table

    e lec t ronic s t ruc tures tha t o ther e lements are s t r iv ing to

    atta in. Th is m ean s that they should have zero valence and

  • 7/23/2019 The Ch

    21/53

    s h o u l d n o t f o r m c h e m i c a l c o m p o u n d s . T h u s , t h e o b s e r v e d

    e x p e r i m e n t a l f a c t t h a t th e g a s e s w e r e i n e r t w a s s u p p o r t e d

    b y t h e o r y . T h i s s t a r t l i n g a g r e e m e n t b e t w e e n e x p e r i m e n t a nd

    t h e o r y w a s s u c c e s s f u l i n d i s c o u r a g i n g a t t e m p t s t o m a k e

    c h e m i c a l c o m p o u n d s w i th t h e n o b l e g a s e s f o r a p e r i o d of

    a l m o s t 4 0 y e a r s .

    PREPARATION OF THE FIRST

    XENON COMPOUNDS

    Unti l 1962 a l l the accepted ev idence poin ted to the fac t

    t h a t t h e n o b l e g a s e s w e r e c h e m i c a l l y i n e r t . A few b r a v e

    s o u l s h a d p r e d i c t e d t h a t c o m p o u n d s of t h e m m i g h t e x i s t ,

    b u t t e x t b o o k s a n d t e a c h e r s s t r e s s e d t h e i n e r t n e s s of t h e

    g a s e s a n d t h e s e s t a t e m e n t s w e n t u n c h a l l e n g e d .

    As we have s een , the d i s covery o f the f i r s t nob le gas was

    an ou tcome o f an inves t iga t ion o f the dens i ty o f n i t rogen .

    Th e d i s co ve ry o f the f i r s t ch em ica l compound of a nob le

    g a s w a s a l s o a b y - p r o d u c t of a n u n r e l a t e d i n v e s t i g a t i o n .

    T h e b e g i n n i n g r e a l l y g o e s b a c k t o t h e M a n h a t t a n P r o j e c t *

    a nd t h e p r o d u c t i o n of t h e f i r s t a t o m i c b o m b . An i m p o r t a n t

    ing red ien t fo r the bo m b w as the u r an iu m i so top e ^^^U, T h i s

    w a s s e p a r a t e d fr o m n a t u r a l u r a n i u m (w h ic h i s a m i x t u r e

    con ta in ing m os t ly a no the r i s o to pe , ^^^u) by gas eo us d i f fu

    s i o n , t h e "g a s " f o r t h i s p r o c e s s b e i n g a v o l a t i l e u r a n i u m

    c o m p o u nd , u r a n i u m h e x a f l u o r i d e , U F g. T h i s w a r t i m e i n t e r

    e s t i n UFg c r e a t e d a n i n t e r e s t i n o t h e r m e t a l l i c h e x a

    f l u o r i d e s , c o m p o u n d s c o n t a i n i n g 6 fl u o r i n e a t o m s b o u nd t o

    1 m e t a l a t o m . T h e st u d y of t h e p r o p e r t i e s of t h e s e c o m

    p o u n d s , a n d t h e s e a r c h f o r n e w h e x a f l u o r i d e s , w a s u n d e r

    t a k e n a f t e r t h e w a r i n m a n y l a b o r a t o r i e s , e s p e c i a l l y t h o s e

    of t h e U . S . A t o m i c E n e r g y C o m m i s s i o n , wh i c h h a d w o r k e r s

    e x p e r i e n c e d in h a n d l in g s u c h c h e m i c a l l y r e a c t i v e m a t e r i a l s .

    A g r o u p of s c i e n t i s t s a t t h e A E C ' s Ar g o n n e Na t i o n a l L a b

    o r a t o r y w a s p a r t i c u l a r l y a c t i v e i n t h i s f ie l d. T h e y d i s

    c o v e r e d h e x a f l u o r i d e s of p l a t i n u m , t e c h n e t i u m , r u t h e n i u m ,

    a nd r h o d i u m , a n d i n v e s t i g a t e d t h e p r o p e r t i e s o f t h e s e a n d

    o t h e r h e x a f l u o r i d e m o l e c u l e s .

    *The W or ld W ar II code na m e fo r the p r o g r am of the W ar

    D e p a r t m e n t u n i t t h a t p r e d a t e d th e p r e s e n t A t o m i c E n e r g y C o m

    m i s s i o n .

    18

  • 7/23/2019 The Ch

    22/53

    The nex t s t ep in the s to ry took p lace a t the Univers i ty o f

    B r i t i s h C o lum bia in V anc ouv er , w he r e N e i l B a r t l e t t , a young

    B r i t i s h c h e m i s t , w a s d o in g r e s e a r c h o n f l u o r i d e s of p l a t i -

    i nu m . H e and one of h i s co l l ea gu es d i s c ov e r ed a compoun d

    con ta in ing p la t inu m , oxygen , and f luo r in e , w hich they fo r

    m ula ted a s 02"'"PtFg~. In o r d e r to form th is typ e of c o m

    pound, an e l ec t ro n m u s t be re m ov ed f rom the O2 p a r t of the

    m ole cu l e , l ea v in g i t w i th a ne t po s i t i ve ch a r ge . T h i s e l e c t r o n

    be co m es a s s o c i a t ed w i th t he P tFg p a r t , g iv ing t h i s pa r t a

    n e t n e g a t i v e c h a r g e . T h e s u r p r i s i n g t h i n g a b o u t t h i s r e a c

    t i on i s t ha t t he ene r gy r e qu i r e d t o r e m ov e an e l e c t r o n

    f r om an oxygen m ole cu l e , t he

    ionization potential,

    i s qu i te

    h igh . A s a m a t t e r of f ac t , no compound con ta in ing

    Oz"*"

    had

    e v e r bee n known be fo re the d is c o v e ry of 02 '^PtFg"" . Al though

    the O z '^P tFg" t hey f i r s t s yn the s i ze d w a s no t m ad e d i r e c t l y

    f r om P tFg , B a r t l e t t s oon found tha t P tFg and m ol ec u l a r oxy

    gen wi l l r eac t to g ive th i s compound. This sugges ted to h im

    tha t P tFg (p la t inum hex af luo r ide) m us t have a s t ro n g a f

    f i n i t y f o r e l ec t r ons .

    Soon af te r th e d i sc o ve ry of 02"'"P tFg~ . B ar t l e t t r e a l i z e d

    tha t the io n iza t ion po ten t ia l o f xenon i s a lm os t ex ac t ly the

    s a m e as t ha t of m o l ec u l a r oxygen . T h i s l ed h im to w onder

    if t he p l a t i n um hex a f lu o r id e , w i th i t s pow e r f u l e l e c t r o n -

    a t t r a c t i n g p r o p e r t i e s , c o u l d p u l l an e l e c t r o n a w ay fr o m

    xenon to form a ch em ic a l com pou nd. He dec ided to t r y an

    ex pe r im en t t o co n f i r m th i s ide a . H e f il led a g l a s s co n t a ine r

    wi th a known am ount of the deep re d p la t inu m he xa f luo r ide

    v a p o r a n d s e p a r a t e d i t b y a g l a s s d i a p h r a g m f ro m a s i m i l a r

    co nt a i ne r f i ll ed wi th a known am oun t of the c o lo r l es s

    xenon g as . W hen the d i ap h r a gm be tw e en t hem w as b r o ke n

    t h e r e w a s a n i m m e d i a t e a nd s p e c t a c u l a r r e a c t i o n : T h e 2

    g a s e s c o m b i n e d to p r o d u c e a y e l lo w s o l i d I n it ia l m e a

    s u r e m e n t s of t h e a m o u n t s of g a s e s r e a c t i n g i n d i c a t e d

    tha t t he com bin ing r a t i o w as 1 to l. In the Ju n e 1962

    Proceedings of the Chem ical Society of London,

    B a r t l e t t

    r e p o r t e d p r e p a r a t i o n of t h e w o r l d ' s f i r s t c o m p o u n d i n

    which a noble g as was c he m ica l ly bound the ye l low so l id ,

    X e+P tFg" .

    T h e a n n o u n c e m e n t w a s g r e e t e d w i th s u r p r i s e a nd in

    s o m e p l a c e s disbelief. T h i s i s no t s u r p r i s i n g s i nce one of

    t h e a c c e p t e d a n d r e v e r e d d o g m a s of c h e m i s t r y h a d j u s t

  • 7/23/2019 The Ch

    23/53

    b e e n s h a t t e r e d b y h i s o n e e x p e r i m e n t . M o r e s u r p r i s e s w e r e

    y e t t o c o m e .

    T h e s c i e n t i s t s a t A r g o n n e , w h e r e P t Fg h a d b e e n f i r s t

    m a d e , c o n f i r m e d B a r t l e t t ' s r e s u l t s a l m o s t a s s o o n a s t h ey

    le a r ne d of h i s ex pe r i m en ts . They wen t on to ex tend h i s

    wo r k , a n d s h o w e d t h a t x e n o n wo u l d a l s o c o m b i n e a m a z

    i n g l y w i t h t h e h e x a f l u o r i d e s of p l u t o n i u m , r u t h e n i u m , a n d

    r h o d i u m .

    Ho we v e r , t h i n g s w e r e n o t a s s t r a i g h t f o r w a r d a s t h ey h a d

    a t f i r s t s e e m e d . T h e c o m b i n i n g r a t i o s , wh i c h h a d b e e n

    1-to-l i n t h e f i r s t e x p e r i m e n t s , w e r e fo un d t o v a r y i r

    r e g u l a r l y f r o m o n e h e x a f l u o r id e to a n o t h e r , a n d s o m e

    t i m e s e v e n v a r i e d f o r t h e s a m e h e x a f l u o r i d e . E v e n w i t h

    P t Fg i t a p p e a r e d t h a t t h e r e m i g h t b e a t l e a s t 2 c o m p o u n d s

    fo rm ed , Xe PtFg and Xe(PtFg)2 . T h i s th re w so m e doub t on

    the id ea t ha t X ePtFg and 02 '^P tFg~ m igh t be com ple te ly

    an a lo go us . Th e g rou p a t A rgon ne beg an to w ond er if the

    a t t r a c t i o n b e t we e n x e n o n a n d t h e h e x a f l u o r i d e s wa s d u e ,

    n o t t o t h e s t r o n g a t t r a c t i o n of t h e h e x a f l u o r i d e s f o r e l e c

    t r o n s , b u t i n s t e a d t o t h e h e x a f l u o r i d e s ' a b i l i t y to p r o v i d e

    f l u o r i n e , t h a t i s , t o a c t

    as fluorinating

    ag en t s . If th i s w er e

    s o , i t w as r eas on ed , the xenon m igh t ac tu a l ly r e a c t wi th

    f l u o r i n e itself.

    Ho w a r d H . C l a a s s e n , t h e n a n Ar g o n n e c o n s u l t a n t f r o m

    W heaton C ol le ge , and H en ry Se l ig and Joh n G. M alm of the

    Ar g o n n e C h e m i s t r y D i v i s i o n n e x t d e c i d e d t o t e s t t h i s i d e a .

    A known am oun t of xenon w as c ond ensed in a n ic ke l co n

    ta in e r and a f ive fo ld e x c e s s of f luo r ine wa s add ed . Th e

    co n t a in e r w as s e a le d and he a ted to 400 C fo r 1 ho ur . Af te r

    c o o l i n g th e c o n t a i n e r t o t h e t e m p e r a t u r e of d r y i c e ( - 7 8 C ),

    t h e e x p e r i m e n t e r s p u m p e d t h e u n r e a c t e d g a s a w a y . If

    x e n o n we r e r e a l l y a n i n e r t g a s , t h e c o n t a i n e r s h o u l d h a v e

    b e e n e m p t y a t t h i s s t a g e . T o e v e r y o n e ' s s u r p r i s e i t w a s

    not e m p t y wh e n we i g h e d . F u r t h e r m o r e , t h e g a i n i n we i g h t

    cou ld be a ccou n ted fo r exac t ly by as su m in g tha t a l l the

    xenon in i t i a l ly p re se n t had r ea c t ed wi th f luo r in e to fo r m a

    compound wi th the fo r m ul a XeF 4 . The c on ten t s of the can

    w a s s u b l i m e d i n to a g l a s s t u b e a s b r i l l i a n t , c o l o r l e s s

    c r y s t a l s ( F i g u r e 5 ) . W i t h in we e k s o f t h e t i m e t h e o r i g i n a l

    a n n o u n c e m e n t f t h e p r e p a r a t i o n of Xe P t Fg r e a c h e d A r

    gonn e , a s im pl e com pound co n ta in ing a nob le ga s and one

  • 7/23/2019 The Ch

    24/53

    Figure

    Crystals of xenon tetrafluoride. Also see cover photo-

    graph.)

    o th e r e l e m e n t h ad b e e n p re p a re d . Th e d a t e w a s A u g u s t 2 ,

    1962.

    O ne m i g h t w o n d e r w hy t h e e x p r e s s i o n m o r e s u r p r i s e s

    w e re y e t t o c o m e w a s u s e d a c o u p le of p a r a g ra p h s a g o .

    T h o se who had o bje c ted to the v i o l a t io n of t l ie ide a of

    a b s o lu t e i n e r tn e s s of t h e n o b le g a s e s c o u ld s t i l l r a t i o n a l i z e

    th a t a co m poun d a s exo t ic a s one be tw ee n Xe and PtF g

    m igh t no t con ta in t r u e ch em ic a l bond ing , and tha t i t migh t

    e v e n b e a n e w ty p e of c l a t h r a t e c o m p o u n d . Th e p re p a ra t io n

    of XeF4 re m ov ed a l l such po ss ib le ex p la na t ion s , and the

    ch em ic a l wo r ld w as faced wi th the naked t ru th tha t a t l e a s t

    o n e i n e r t g a s w a s n o t i n e r t . C h e m i c a l t e x t b o o k s b e c a m e

    o b s o le t e o v e rn ig h t i n t h i s r e s p e c t , a nd p ro fe s s o r s a nd

    t e a c h e r s h a d t o r e w r i t e t h e i r l e c t u r e n o t e s .

  • 7/23/2019 The Ch

    25/53

  • 7/23/2019 The Ch

    26/53

    COMPOUNDS OF XEIMON

    Fluorine-Containing Compounds

    As we h a v e a l r e a d y s e e n , t h e f i r s t n o b l e g a s c o m p o u n d s

    c o n t a i n e d t h e e l e m e n t f l u o r i n e .* Of t h e m a n y c o m p o u n d s

    d i s c o v e r e d s i n c e t h e n , i t t u r n s o u t t h a t t h e y a l l e i t h e r c o n

    t a i n f l u o r in e o r a r e m a d e f r o m f l u o r i n e - c o n t a i n i n g c o m

    p o u n d s . L e t u s c o n s i d e r f i r s t th e 3 k n own b i n a r y f l u o r i d e s ,

    th a t i s , com po un ds con ta in ing on ly xeno n and f lu o r i ne . By

    h e a t i n g t o g e t h e r a m i x t u r e of x e n o n a n d f l u o r i n e u n d e r

    a p p r o p r i a t e c o n d i t io n s , c h e m i s t s c a n p r o d u c e x e n o n d i -

    f l u o r i d e , Xe F2 , x e n o n t e t r a f l u o r i d e , Xe F4 , a n d x e n o n h e x a -

    f l u o r i d e , Xe Fg . W h i c h of t h e s e f l u o r i d e s i s p r o d u c e d d e

    p e n d s o n t h e r a t i o of f l u o r i n e t o x e n o n , t h e t e m p e r a t u r e

    of t h e r e a c t i o n , a nd t h e p r e s s u r e i n t h e r e a c t i o n v e s s e l .

    T h e se m ay b e ad ju s ted to fo rm any one of the 3 f lu o r ide s

    i n a r e a s o n a b l y p u r e s t a t e . If c a r e i s n o t t a k e n , h o w e v e r ,

    m i x t u r e s of t h e f l u o r i d e s r e s u l t a n d t h e s e a r e d i ff i cu l t t o

    s e p a r a t e . T a b l e IV o n p a g e 26 s h o w s t h e c o n d i t i o n s t h a t

    h a v e b e e n u s e d t o p r e p a r e s e v e r a l - g r a m q u a n t i t i e s of X e F 2 ,

    XeFi , and XeFg .

    In o r d e r t o p r e p a r e a f l u o r i d e of x e n o n i t i s o nly n e c e s

    s a r y t o h a v e a s o u r c e o f f l u o r i n e a t o m s , wh i c h t h e n r e a c t

    wi th the xen on . He a t ing f lu o r in e g a s i s one way to p r od uc e

    s u c h a t o m s ; t h e y h a v e a l s o b e e n p r o d u c e d b y s u b j e c t i n g

    f l u o r i n e , o r f l u o r i n e - c o n t a i n i n g c o m p o u n d s , t o e l e c t r i c

    d i s c h a r g e s o r i o n i z i n g r a d i a t i o n s , s u c h a s t h e g a m m a r a y s

    f r o m a c o b a l t - 6 0 s o u r c e o r a b e a m of e l e c t r o n s , a b e a m of

    u l t r a v i o l e t l ig h t , o r a b e a m of n e u t r o n s f r o m a r e a c t o r .

    T h e f a c t t h a t x e n o n f l u o r i d e s c a n b e f o r m e d a n s w e r e d

    a p u z z l i n g q u e s t i o n t h a t h a d b e e n p l a g u i n g s c i e n t i s t s a n d

    e n g i n e e r s w ho w e r e s t u d y in g r e a c t o r f u e l s , t In e x p e r i

    m e n t s t o t e s t th e fu e l s a n d f ue l a s s e m b l i e s f o r a m o l t e n -

    s a l t r e a c t o r , a m i x t u r e of l i t h i u m f l u o r i d e , b e r y l l i u m

    f l u o r i d e , z i r c o n i u m f lu o r i d e , a n d u r a n i u m fl u o r i d e w a s

    Fluorine is the most active nonmetallic element, and combines

    with all other elements (disregarding the noble gases) so strongly

    that it cannot be prep are d from any of its natu ral compounds by

    any purely chemical reduction.

    tFor more about reac tors , see

    Nuclear Reactors

    and

    Atomic

    Fuel,

    companion booklets in this series.

  • 7/23/2019 The Ch

    27/53

    Table I I I PERIODIC TABLE OF THE ELE ME NTS

    \ G R O U P

    \ .

    PERIOD\

    1

    2

    3

    4

    5

    6

    7

    la

    1.00797

    H

    Is

    6.939

    Li

    2 .

    11

    22 9898

    Na

    3 .

    15 39.102

    K

    4s

    37 85.47

    Rb

    5s

    132.905

    Cs

    Ss

    (223)

    Fr

    6s26p67.l

    l l a

    I l ia

    IVa

    4

    9 0122

    Be

    2.2

    12

    24312

    Mg

    3.2

    2 0 40.08

    Ca

    4.2

    38 87.62

    Sr

    5.2

    56 .37.34

    Ba

    6.2

    (226)

    Ra

    6.26p67.2

    2 1 44.956

    Sc

    3J '4 .2

    39

    ^ ' 88.905

    Y

    4

  • 7/23/2019 The Ch

    28/53

    Table IV

    CONDITIONS USED FOR PREPARING THE XENON FLUORIDES

    Compound

    XeF2

    XeF4

    XeFg

    Ra t io Xe /F2

    7 . 5 : 1

    1 :5

    1:20

    T e m p e r a t u r e

    (C)

    400

    400

    250

    T i m e

    (hours )

    16

    1

    16

    P r e s s u r e

    ( a t m o s p h e r e s )

    75

    6

    50

    u s e d a s t h e f u e l. T h i s w a s s e a l e d i n a c o n t a i n e r a n d s u b

    j e c t e d t o n e u t r o n i r r a d i a t i o n . U n d e r t h e s e c o n d i t i o n s t h e

    ^^^U in the u r an iu m f lu o r i de , UF4 , u n d e rg o e s f i s s i on . The

    f i s s i o n r e s u l t s i n t h e ^^^U a t o m s ' b r e a k i n g u p i n t o n e w

    f i s s i o n - p r o d u c t a t o m s of n e a r l y e q u al m a s s , a nd s o m e

    f r e e n e u t r o n s , a n d t h e r e l e a s e o f a l a r g e a m o u n t o f e n e r g y .

    A m o n g t h e e x p e c t e d f i s si o n p r o d u c t s t h e r e a l w a y s a r e

    s o m e x e n o n i s o t o p e s , a n d t h e a m o u n t of x e n o n s o p r o d u c e d

    i s s o m e t i m e s u s e d a s a m e a s u r e of t h e a m o u n t of f i s s i o n

    t h a t h a s t a k e n p l a c e . Yo u c a n i m a g i n e t h e s u r p r i s e of t h e

    s c i e n t i s t s wh e n n o x e n o n c o u l d b e f ou nd i n t h e g a s e s f r o m

    t h e m o l t e n - s a l t r e a c t o r e x p e r i m e n t s , a l th o u g h o t h e r p r o d

    u c t s s h o we d t h a t f i s s i o n h a d u n d o u b t e d l y t a k e n p l a c e .

    Puzzle Explained W i th the d i s c ov er y o f xeno n t e t r a f lu o r id e

    the puz z le w as ex p la ine d . It tu rn ed ou t tha t f r e e f luo r ine i s

    g e n e r a t e d in th e r e a c t o r - f u e l m i x t u r e b y t he n e u t r o n i r r a

    d i a t i o n . Un d e r c e r t a i n c o n d i t i o n s t h i s f l u o r i n e c a n r e a c t

    wi th the f i s s io n p r od uc t xenon to fo rm a xeno n f lu o r i de . In

    th os e c a se s w he re no xeno n was found , the con d i t ion s had

    b e e n r i g h t f o r x e n o n f l u o r i d e f o r m a t i o n . T h i s w a s a n o t h e r

    c a s e i n wh i c h a d i s c o v e r y i n o n e f ie l d of s c i e n c e a n s w e r e d

    a p r o b l e m i n a n o t h e r .

    P e r h a p s t h e m o s t s t a r t l i n g e x p e r i m e n t w i t h x e n o n a n d

    f l u o r i n e w a s r e p o r t e d t o w a r d s t h e e n d of 1 9 6 5 . Xe n o n a n d

    f luo r ine when mix ed in a d ry g la s s f l a sk w i l l r e a c t if the

    m i x t u r e i s e x p o s e d to s u n l i g h t In t h i s c a s e t h e e n e r g y p r o

    v ided by the sun l igh t i s enough to p r od uc e the nee ded f lu o

    r i n e a t o m s . T h i s b e i n g t h e c a s e , o n e m a y wo n d e r why i t

    t oo k s o m a n y y e a r s to p r e p a r e t h e f i r s t n o b le g a s c o m

    p o u n d s . Se v e r a l e x p l a n a t i o n s h a v e b e e n o f f e r e d , s u c h a s

    the d if fi cu lty in ge t t ing tho rough ly d r i ed g la s s w a re , and

    lac k of know ledge of the t ec hn iqu es fo r hand l ing f luo r ine

  • 7/23/2019 The Ch

    29/53

    Tab l e V

    P H Y S IC A L P R O P E R T I E S O F T H E X E NO N F L U O R I D E S

    Compound

    X e F j

    XeF4

    XeFe

    Color of

    Solid

    C o l o r l e s s

    C o l o r l e s s

    C o l o r l e s s

    Color of

    Vapor

    C o l o r l e s s

    C o l o r l e s s

    G r e e n i s h -

    Yel low

    Mel t ing

    P o m t

    (C)

    129

    1 1 7

    49.5

    Vapor

    P r e s s u r e

    at 25C

    (mm)

    4 .6

    2 .5

    27

    Dens i ty

    g m / c c

    at 25C

    4.32

    4.04

    3.41

    an d r e ac t i v e f l u o r id e s . T h e s e u n d o u b ted ly p l ay ed a p a r t ,

    bu t the m aj or f ac to r wa s p roba b ly the l ack of an ade qu a te

    amount o f xenon . (Unt i l r ecen t ly xenon was no t genera l ly

    av a i l ab l e i n m o s t l ab o r a to r i e s b ecau s e o f i t s h ig h co s t . )

    T h e x e no n f l u o r i d e s a r e c o l o r l e s s c r y s t a l l i n e m a t e r i a l s

    a t r o o m t e m p e r a t u r e , b u t t he y r e a c t r e a d i l y w i th m o i s t u r e .

    F o r t h i s r e a s o n t h ey m u s t b e h an d led in t h o r o u g h ly d r i e d

    eq u ip m e n t an d a r e u s u a l l y m an ip u l a t ed in m e ta l v acu u m

    s y s t e m s . A ty p i c a l ex p e r im en ta l s e tu p i s sh o w n o n p ag e 22 .

    Th e n eces s i t y o f av o id in g a r eac t i o n w i th w a te r ( h y d r o ly s i s )

    i s e x t r e m e l y i m p o r t a n t , a s w e s h a l l s e e l a t e r . P r o v i d i n g

    th i s p r ec au t io n i s o b s e r v e d , t h e f l u o r id e s a r e s t ab l e a t

    r o o m t e m p e r a t u r e a nd c a n b e s t o r e d f o r p r o l o n g e d p e r i o d s

    in n i c k e l c o n t a i n e r s .

    S o m e o f t h e p h y s i ca l p r o p e r t i e s o f t h e f l u o r id e s a r e

    g iven in Ta b le V . Eac h of the f l uo r id es wi l l r e a c t w i th

    h y d r o g e n , f o r m in g h y d r o g en f l u o r id e an d l i b e r a t i n g e l e

    m en ta l x en o n ; f o r ex am p le ,

    XeF 4 + 2H2 Xe + 4H F

    T h e r e l a t i v e e a s e of t h i s r e a c t i o n w i th h y d r o g e n e s t a b l i s h e s

    X eFg a s t h e m o s t r e ac t i v e of t h e x en o n f l u o r id e s , an d X eF j

    a s t h e l e a s t r e a c t i v e . T h i s o r d e r of r e a c t i v i t y h a s b e e n

    co n f i r m ed b y o th e r e x p e r im en t s , i n w h ich t h e x en o n f l u o

    r i d e s ac t a s f l u o r in a t i n g ag en t s . In ad d i t i o n , it h a s b een

    found t ha t both X eF j and XeF4 can be s to re d in thoro ugh ly

    d r i ed g l a s s co n t a i n e r s , b u t X eFg r e a c t s ev en w i th d r y g l a s s

    o r q u a r t z . N o te t h a t x en o n , in f o r m in g th e t h r e e f l u o r id e s ,

    exh ib i t s va lences o f 2 , 4 , and 6 .

  • 7/23/2019 The Ch

    30/53

    Oxygen Containing Compounds

    U n d e r n o r m a l c o n d i t i o n s i t d o e s n ot a p p e a r t o b e p o s

    s ib l e t o o b t a in a c h e m ica l r e ac t i o n b e tw e en o x y g en an d

    xenon o r b e tw een oxygen and a xenon f lu or id e . In tho se

    c a s e s w h e r e o x yg e n h a s b e e n i n t r o d u c e d i nt o a x e n o n -

    co n ta in in g co m p o u n d th e i n t r o d u c t io n h a s b ee n ach i ev ed

    b y th e r e p l ac em en t of f l u o r in e . O ne of t h e f i r s t o x y g en -

    c o n t a i n i n g c o m p o u n d s t o b e d i s c o v e r e d w a s x e n o n o x i d e

    t e t r a f l u o r i d e , X e O F 4 . C h e m i s t s a t t e m p t i n g t o s t o r e X e Fg

    in g l a s s fo un d th a t a c l ea r , co lo r l e s s li q u id w as f o r m ed

    by re ac t io n of the XeFg wi th the g l a s s . The l iqu id w as

    ana lyz ed and found to have the fo rm ul a XeOF4. Th e oxygen

    h ad b e en o b t a in ed fr o m th e g l a s s , w h ich m a y b e r e g a r d ed a s

    s i l i co n d io x id e , S iOj . Th e r e ac t i v e f l u o r in e in t h e X eFg

    rep laced the oxygen in the

    SiOj ,

    conver t ing i t to S iF4 :

    2XeF6 + SiOz = 2XeOF4 + SiF4

    Sinc e f lu or in e h a s a va le nc e of 1 and oxygen a va le nc e of 2 ,

    2 f l u o r in e a t o m s h ad t o b e r em o v ed to a l l o w th e i n s e r t i o n

    of 1 oxygen a to m .

    Th i s o x y g en - co n ta in in g co m p o u n d i s a l s o f o r m ed w h en

    X e Fg r e a c t s w i t h j u s t e n o u gh w a t e r t o p r o v i d e f o r t h e r e

    p l a ce m en t of 2 of t h e f l u o r in e a to m s . Th i s r e ac t i o n m a y b e

    w r i t t e n :

    XeFg + HjO = XeOF4 + 2 H F

    X e n on o x id e t e t r a f l u o r i d e i s s o m e w h a t l e s s r e a c t i v e t h a n

    X eF g , b u t i s m o r e r e ac t i v e t h an X eF 4 . I t m a y b e k ep t u n

    ch an g ed in d r i e d n i ck e l co n t a i n e r s , b u t i t s l o w ly a t t a c k s

    g l a s s o r q u a r t z .

    The re ac t io n of XeFg wi th enough w a te r to p ro v id e fo r

    th e r e p l ac em en t of a l l 6 f l u o r in e a to m s w i th o x y g en a t o m s

    y i e l d s X eO s, x en o n t r i o x id e :

    XeFg + SHjO = X eO j + 6 HF

    X en on t r i o x id e a l s o r e s u l t s w h en X eO F 4 i s a l l o w ed to r e

    m a in i n co n t ac t w i th g l a s s f o r p r o lo n g ed p e r io d s , o r w h en

  • 7/23/2019 The Ch

    31/53

    XeOF4 r e a c t s w i t h w a t e r . T h e r e a c t i o n of Xe F4 wi th wa t e r

    c a n a l s o r e s u l t i n t h e f o r m a t i o n o f

    XeO^.

    T h i s i s a s o m e

    w h a t s u r p r i s i n g r e a c t i o n , h o w e v e r . I n

    XeO^

    the xenon ha s

    a va len ce of 6 , the xenon be in g com bine d wi th th re e oxygen

    a t o m s e a c h o f v a l e n c e 2 . W h e n

    XeO^

    i s fo rmed f rom XeFg

    o r X eO Fi the va len ce of the xenon in the o r ig i na l c o m

    pou nds i s a l s o 6 . Ho we ver , when XeOs i s p re p a re d f rom

    XeF4, the va lenc e o f the xenon in the s t a r t in g m a te r i a l i s

    on ly 4 . Th i s type o f r eac t ion comes abou t by

    disproportion-

    ation

    of the x enon a to m s; so m e of th em end up in a h i gh er

    va len ce s t a t e and so m e in a low er one , tha t i s , so m e of

    t h e x en o n a t o m s a r e o x i d i z e d a n d o t h e r s a r e r e d u c e d . T h e

    p r o d u c t i o n o f x e n o n t r i o x i d e f r o m x e n o n t e t r a f l u o r i d e a n d

    w a t e r m a y b e f o r m u l a t e d t h u s :

    3XeF4 + 6H2O = Xe + 2Xe03 + 12HF

    S ta r t in g off wi th 3 xenon a to m s eac h hav ing a va le nc e of 4 ,

    t h e p r o c e d u r e e n d s u p w i t h

    1

    xenon a tom of va len ce ze ro and

    2 of va len ce 6 , thus ba la nc ing the v a l en ce s . In a lk a l in e so lu

    t i o n s , f o r e x a m p l e c a u s t i c s o d a , t h e d i s p r o p o r t i o n a t i o n c a n

    go a s t ep fu r th e r and y ie ld com pou nds con ta in ing xenon

    wi th a va lence o f 8 , such as sod ium perxena te , Na4Xe06 .

    T h e p e r x e n a t e s a l t s r e a c t w i th c o n c e n t r a t e d s u l p h u r i c a c id

    to y ie ld the 8 -va len t xenon t e t ro x i de , Xe04 .

    EX TR EM E CARE MUST BE TAK EN WITH BOTH O F THE

    XE NON OXI DE S, B E C AUSE T HE Y AR E POW E R FUL E X

    PLO SIVE S UNDER CER TA IN CONDITIONS. Xenon t r io x id e

    i s r e l a t iv e l y s a fe in so lu t ion in w a t e r . When the w a t e r ev ap

    o ra te s , how eve r , the p u re xenon t r io x id e i s l ef t in the fo rm

    of c o l o r l e s s c r y s t a l s , wh i c h a r e a s p o we r f u l a s T NT i n

    th e i r ex p lo s ive p ow er Un l ike the c as e wi th TN T, i t i s no t

    known under wha t cond i t ions the c rys ta l s can be hand led

    s a f e l y , n o r e x a c t l y wh a t c a u s e s t h e m t o e x p l o d e . T h i s

    m a k e s wo r k i n g w i th x e n on t r i o x i d e

    extremely hazardous.

    M o r e o v e r , b e c a u s e t h e x e n on f l u o r i d e s r e a c t w i t h m o i s t u r e

    to g ive xenon t r io x i de , even w ork ing wi th these c o m p o u n d s

    c a n a l s o b e d a n g e r o u s . T h e m e t a l c o n t a i n e r s ho wn i n F i g

    u r e 7 w as da m ag ed by the exp los io n of about 100 m g.

    ( 0 .0 0 3 5 oz . ) of x e n o n t r i o x i d e . E v e n e x p e r i e n c e d an d c a r e

    fu l s c ien t i s t s have been in ju red when work ing wi th xenon

  • 7/23/2019 The Ch

    32/53

    Figure This nickel can, about 4 inches long and i % inches iiide

    photo IS approximately actual size), uas ruptured by detonation of

    100 mtlligianis of XeO j.

    c o m p o u n d s . T h e s e , t h e n , a r e n o t m a t e r i a l s to b e w o r k e d

    wi th in a ba se m en t l ab or a t o r y in a ho m e, bu t shou ld on ly

    b e h a n d le d m w e l l - e q u i p p e d l a b o r a t o r i e s by e x p e r i e n c e d

    w o r k e r s w h o g i v e e v e r y r e g a r d to s a f e ty p r e c a u t i o n s .

  • 7/23/2019 The Ch

    33/53

    More Complex Compounds

    Me n t i o n h a s b e e n m a d e o f Xe P t Fg a n d s i m i l a r c o m p o u n d s

    i n wh i c h x e n o n c o m b i n e s w i t h m e t a l h e x a f l u o r i d e s . T h e

    e x a c t n a t u r e of t h e s e c o m p o u n d s i s h a r d t o e l u c i d a t e a n d

    i s s t i l l be ing inv es t iga ted . Bo th xenon d i f luo r id e and xenon

    hex af luo r ide wi l l r e a c t w i th a nu m be r of o t he r f lu o r id es to

    f o r m addition compounds. T ab le VI show s the fo rm ula s of

    s o m e o f t h e c o m p l e x e s t h a t h a v e b e e n r e p o r t e d . Ap a r t

    Table VI

    COMPLEXES OF XENON AND KRYPTON FLUORIDES

    N o b l e G a s

    C o m p o u n d

    C o m p l e x i n g

    F l u o r i d e

    N a F

    K F

    R b F

    C s F

    S b F j

    A s F j

    B F 3

    T a F j

    VF5

    X e F 2

    X e F 4

    R a t i o o f N o b l e G a s C (

    *

    *

    1 : 2

    *

    *

    1 : 2

    *

    *

    *

    t

    t

    *

    X e F g

    3 m p o u n (

    1 :2

    1 :2

    1 : 2

    1 :1

    1 :2

    1 : 1

    1 :2

    1 : 1

    2 : 1

    1 :1

    1 :1

    t

    2 : 1

    X e O F 4 K r F g

    i to C o m p l e x i n g F l u o r i d e

    *

    1 :3

    1 : 6

    2 : 3

    1 : 3

    2 : 3

    1 : 1

    1 : 2

    t

    t

    2 .1

    *

    t

    t

    *

    *

    t

    1 : 2

    J

    t

    *No compou nd fo r m ed .

    tHas no t been t r i ed .

    tCompound fo rms ; fo rmu la no t ye t known .

    U n s t a b le a b ov e - 2 0 C .

    f r o m t h e i r c h e m i c a l c o m p o s i t i o n , a nd a few p h y s i c a l p r o p

    e r t i e s , n o t m u c h e l s e i s k no wn a b o u t t h e s e c o m p l e x e s .

    Xe n o n t e t r a f l u o r i d e d o e s n o t a p p e a r to f o r m a s i m i l a r

    s e r i e s o f a d d i t i o n c o m p o u n d s .

    31

  • 7/23/2019 The Ch

    34/53

    COMPOUNDS OF OTHER NOBLE GASES

    Radon

    The ioniz ation po ten tial of ra don is the low est of any of

    the noble gases, which might lead one to think it would be

    the mo st willing to form com pou nds. T his m ay in fact be

    the case, but experiments wi th radon are severely ham

    pe red be cau se of i ts high rad ioa ctiv ity. Work done with

    very sm all a m oun ts of m at er ia l (about one bil lionth of

    a gram ) ha s shown that radon ga s re a c ts with fluorine

    at 400C to yield a compound that is not gaseous at room

    temperature, as both radon and f luorine are. The course

    of the reaction was followed only by monitoring with ra

    diat ion detect ing inst ruments the movement of the radio

    activity associated with one of the products of decay of the

    radon. The formula of the compound produced has not been

    de term ine d, and furth er investigation will be needed in

    which la rg e r qu anti t ies of radon can be us ed . Th is wil l

    req uire elabo rate shielding to pro tec t the ex pe rim en ters

    from the high radioactivity.

    Krypton

    After xenon and radon, krjrpton should be the most likely

    of the rem ainin g noble ga se s to form comp ound s. I ts io niz a

    tion potential is somewhat higher than that of either oxygen

    or xenon, and it will not react with platinum, ruthenium,

    or rhodium h exafluo rides (PtFg, RuFg, md RhFg, re s p e c

    t ively).

    The simple heating of krypton and fluorine also has

    failed to prod uc e a com pound. Ho we ver, a krypton fluoride

    compound can be formed under the more drast ic experi

    mental condit ions of passing an electric discharge or an

    electron beam through a mixture of the 2 gases. The

    krypton fluoride wil l decom pose alm os t as fast as i t is

    form ed if it is left in the d isc h ar g e o r beam zo ne s. But if

    the con tainer is im m er se d in a cold bath the krypton fluo

    ride con den ses on the c on tainer w all , and is thus remo ved

    from the zone in which the energy is g en era ted . In thi s way

    krypton difluoride also ha s been produ ced, and pos sibly

    krypton tetra flu orid e. The e vidence for the forma tion of

    the lat ter i s somewhat inconclusive, however .

    32

  • 7/23/2019 The Ch

    35/53

    Krypton difluoride is a colorless, crystall ine compound

    that decomposes into krypton and fluorine at room temper

    ature. At the temperature of dry ice, 78C, krypton di

    fluoride may be sto re d unchanged for prolonged per io ds

    of time. Chemically, it is a much more reactive compound

    than xenon difluoride, and in fact, it s fluorinating p ro p e r

    t ie s app ear to be even gr e at er than those of xenon he xa

    fluoride.

    Helium

    Neon and Argon

    All evidence now available points to the fact that these

    ga se s a re st i l l in er t . If one w ere to look at the pr op er tie s

    of the fluo rides of krypton we have ju st disc us se d, in co m

    pa ris on with those of the xenon flu ori de s, one would im

    m ediately expect that fluor ide s of the th re e ligh test noble

    gases could be prepared only under extreme conditions,

    and even then would be stable a t only low te m p er a tu re s .

    Attempts to prepare compounds have so far failed, but

    who knows what may be found some day? Only a few years

    ago the idea of a xenon fluoride seemed preposterous, too.

    SHAPES OF MOLECULES

    Solid State

    In solid s, the m olecu les a re condensed to form cr y st al s,

    and the way in which the atom s a re ar ra ye d in the m ol e

    cu les may be determ ined by using be am s of X ray s or

    ne utr on s. When such a beam is dir ect ed at a cr ys tal i t

    e i ther p as se s through the sp ace s between a toms und is

    turbed , or else i t str ik es an atom and is sc atte red or d e

    flected. The amount of sc at te rin g can be detected and m ea

    sured, giving a pattern that can be related to the location of

    the atoms and therefore to the structure of the crystal .

    The de term ina tion of the actua l ar ra y of the ato m s in

    any unknown crystal has to be made in an indirect manner.

    A gue ss is m ade of i ts prob able st ru ct u re and the pa ttern

    that this str uc tu re would prod uce i s calculated . This pa t

    te rn i s com pared with the exp erim enta l pa tter n. When an

    exact m atch is obtained, i t is app aren t the st ru ct ur e is

    known. T his used to be a long, tediou s op eratio n, but m od

    ern computer technology has simplified the process.

  • 7/23/2019 The Ch

    36/53

    T h e a t o m s of m a t e r i a l a r e s p r e a d o ut i n a ll t h r e e d i

    m e n s i o n s t h r o u g h o u t e v e r y c r y s t a l a n d t h i s c o m p l e x i t y i n

    t h e o r y co u ld le a d to v e r y c o m p l i c a t e d s t r u c t u r e s . F o r

    t u n a t e l y , i t t u r n s o u t t h a t t h e r e a r e c e r t a i n a r r a y s of a t o m s

    6

    9

    O

    9

    Xenon atoms

    Fluorine atoms

    -0

    Figure 8 Crystal structure ofXeF^,

    left, and XeF^.

    t h a t r e p e a t t h e m s e l v e s th r o u g h o u t t h e c r y s t a l l a t t i c e ; t h e s e

    a r e c a l l e d u n i t c e l l s , a n d th e p r o b l e m i s r e d u c e d t o o n e

    of f ind ing the lo ca t io ns of the a to m s in eac h of the un i t

    c e l l s .

    B o th X - r a y - d i f f r a c t i o n a n d n e u t r o n - d i f f r a c t i o n t e c h n i q u e s

    h a v e b e e n u s e d t o d e t e r m i n e t h e s t r u c t u r e s of X e F2 a n d

    XeF4 , and the X - r ay m e thod a lone ha s bee n use d fo r XeOs .

    F i g u r e 8 s h o w s t h e c r y s t a l s t r u c t u r e s of X e F 2 a nd X e F 4 s o

    de te r m in ed . The h igh r e ac t i v i t i e s o f XeFg , XeOF4, and

    K r F 2 p r o d u c e p r o b l e m s w h en a n a t t e m p t i s m a d e t o e x a m

    i n e t h e i r s o l id p h a s e s t r u c t u r e s . S a m p l e s t o b e e x a m i n e d

    by X- ray t echn iques a r e u sua l ly loaded in to long , th in g la ss

    c a p i l l a r i e s . F i g u r e 9 s h o w s a s c i e n t i s t p o s it i o n in g o n e

    s u c h c a p i l l a r y i n a n X - r a y c a m e r a . A s X e F g, X e O F 4 , a nd

    K r F 2 a r e i n c o m p a t i b l e w i t h g l a s s , a n d a l s o a r e m o s t e a s i l y

    h a n d le d b e lo w r o o m t e m p e r a t u r e , t he y r e q u i r e s p e c i a l

  • 7/23/2019 The Ch

    37/53

    Figure 9 Argon ne scientist Stanley Siegel positions a capillary

    containing XeF^ m an X-ray camera. The capillary is the needle-

    like object in the center of the picture.

    t e c h n i q u e s , a nd t h e i r s o l i d - p h a s e s t r u c t u r e s ha v e y e t t o b e

    d e t e r m i n e d .

    Gas Phase

    W h e r e a s in t h e s o l id p h a s e t h e m o l e c u l e s f o r m i n g t h e

    c r y s t a l a r e q u i t e c lo s e t o g e th e r an d can i n f lu en ce o n e

    an o t he r , in the g as ph as e they a r