28
The Lagrangian Evolution on Water Budget and Precipitation Efficiency of Squall-Line Systems as Interacting with Terrain Ming-Jen Yang 楊明仁, Yi-Chuan Chung 鍾宜娟, Mark Yin-Mao Wang 王尹懋 National Taiwan University Submitted to the JAS June 2006

The Lagrangian Evolution on Water Budget and Precipitation Efficiency of Squall-Line ...rain.as.ntu.edu.tw/powerpoint/20160628.pdf · 2020. 3. 20. · The Lagrangian Evolution on

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • The Lagrangian Evolution on Water Budget and Precipitation

    Efficiency of Squall-Line Systems as Interacting with Terrain

    Ming-Jen Yang 楊明仁, Yi-Chuan Chung 鍾宜娟, Mark Yin-Mao Wang 王尹懋

    National Taiwan University

    Submitted to the JAS

    June 2006

  • A Conceptual Model for the Water Budget of Tropical Cyclone

    CMPE (Cloud Microphysics Precipitation Efficiency; Huang et al. 2014):

    Rainband

    Water Budget

    LSPE (Large-Scale Precipitation Efficiency; Sui et al. 2007; Yang et al. 2011): PE = P/[HFC + VFC]

  • • Use the explicit high-resolution (1-km) WRF model to simulate an idealized squall-line system crossing a bell-shape mountain and investigate

    its evolution of water budget and PE.

    • Common knowledge:

    Motivation

    Water vapor

    convergence Condensation

    Precipitation

    efficiency

    Q1: How much of rainfall enhancement

    by terrain lifting?

    Q2: Function of Froude number ?

    When a convective system (squall line or TC) interacts with Taiwan terrain:

  • Three Microphysical-Process Ratios

    Condensation Ratio: Deposition Ratio: Evaporation Ratio: where is the total condensation and deposition; is the cloud water condensation; is the snow deposition; is the graupel deposition; is the cloud ice deposition; is the raindrop evaporation

  • Initial Environmental (Mei-Yu) Sounding & Vertical Wind Profile

    SL Mt.

    240 km

    Squall Line

    Initiation

  • Froude Number : Fr = U/NH

    H U 5 m/s 7.5m/s 10m/s 12.5m/s 15m/s

    1 km 0.77 1.16 1.54 1.93 2.32

    2 km 0.46 0.68 0.91 1.14 1.37

    3 km 0.38 0.57 0.76 0.95 1.14

    4 km 0.29 0.43 0.57 0.72 0.86

  • • Terrain Height (same Horizontal Wind)

    No Terrain-TeU=10m/s Terrain H=1km U=10m/s

    Terrain H=2km U=10m/s

    Terrain H=3km U=10m/s

    Terrain H=4km U=10m/s

    H U 5 m/s 7.5m/s 10m/s 12.5m/s 15m/s

    1km 1.54

    2km 0.91

    3km 0.38 0.57 0.76 0.95 1.14

    4km 0.57

  • -60 km

    -40 km

    -24 km

    Mature H=1km H=3km H=2km H=4km No terrain

  • -12 km

    0 km

    12 km

    Windward slope H=1km H=3km H=2km H=4km No terrain

  • Lee side

    24 km

    40 km

    60 km

    H=1km H=3km H=2km H=4km No terrain

  • H U 5 m/s 7.5m/s 10m/s 12.5m/s 15m/s

    1km 1.54

    2km 0.91

    3km 0.38 0.57 0.76 0.95 1.14

    4km 0.57

    • Horizontal Wind (same Terrain Height)

    Terrain H=3km U = 2.5 m/sU=5m/s

    Terrain H=3km U=7.5m/s

    Terrain H=3km U=10m/s

    Terrain H=3km U=12.5m/s

    Terrain H=3km U=15m/s

    1.5 2 2.5 3

  • -60 km

    -40 km

    -24 km

    U=5m/s U=10m/s U=7.5m/s U=12.5m/s U=15m/s Mature

  • -12 km

    0 km

    U=5m/s

    12 km

    U=10m/s U=7.5m/s U=15m/s U=12.5m/s Windward slope

  • U=5m/s U=10m/s U=7.5m/s U=15m/s U=12.5m/s

    11hr

    Lee side

    24 km

    40 km

    60 km

  • H U 5 m/s 7.5m/s 10m/s 12.5m/s 15m/s

    1km 0.77 1.16 1.54 1.93 2.32

    2km 0.46 0.68 0.91 1.14 1.37

    3km 0.38 0.57 0.76 0.95 1.14

    4km 0.29 0.43 0.57 0.72 0.86

    • Same Froude Number with different combination of U and H Froude number~0.57 [ H=3km U= 7.5 m/s vs. H=4km U=10m/s ] Froude number~0.7 [ H=1km U= 5 m/s vs. H=3km U=10m/s ] Froude number~1.14 [ H=2km U=12.5m/s vs. H=3km U=15m/s ]

  • ∆ HFCv (109 kg/s) as a function of U and H

    %

    H vs. U 5 m s-1

    7.5 m s-1

    10 m s-1

    12.5 m s-1

    15 m s-1

    1 km 3.01 5.81 0.90 1.46 –3.66

    2 km 1.92 12.57 9.54 6.01 2.65

    3 km 6.05 10.41 11.53 7.54 6.31

    4 km 8.25 8.99 6.69 9.14 6.90

  • %

    H vs. U 5 m s-1

    7.5 m s-1

    10 m s-1

    12.5 m s-1

    15 m s-1

    1 km 4.25 7.76 0.81 3.59 –6.52

    2 km 1.64 11.64 6.27 5.00 3.09

    3 km 3.70 9.66 10.41 9.15 5.47

    4 km 5.58 9.60 7.02 8.58 3.59

    ∆ COND (109 kg/s) as a function of U and H

  • %

    H vs. U 5 m s-1

    7.5 m s-1

    10 m s-1

    12.5 m s-1

    15 m s-1

    1 km 5.19 4.77 –0.85 3.48 –3.87

    2 km 2.49 7.84 3.63 3.44 1.92

    3 km 3.30 6.80 7.82 6.67 4.05

    4 km 5.29 8.04 3.30 7.37 2.99

    ∆ P (109 kg/s) as a function of U and H

  • ∆ PE as a function of U and H

    %

    H vs. U 5 m s-1

    7.5 m s-1

    10 m s-1

    12.5 m s-1

    15 m s-1

    1 km 7.74 % 4.76 % 1.45 % 2.73 % –1.22 %

    2 km 5.77 % 10.64 % 10.41 % 6.09 % 4.31 %

    3 km 8.62 % 8.64 % 13.77 % 9.36 % 7.94 %

    4 km 8.33 % 13.22 % 6.97 % 10.58 % 8.15 %

  • A Conceptual Model for the PE and Water Budget Evolution of

    a Squall-Line MCS interacting with terrain

  • Conclusions • For a squall-line MCS moving across a bell-shape mountain, horizontal vapor

    flux convergence (HFC) first increases, then condensation and accretion

    increase, and then surface precipitation (and PE) increases on the windward

    side. The reverse trend is found on the lee side.

    • The Lagrangian evolution of major cells within the sqaull-line MCS shows

    that PE and CR are increased on the windward slope but decreased on the lee

    side; the opposite tendency is found for the DR and ER, similar to those

    within outer rainbands of Typhoon Morakot (Huang et al. 2014).

    • For orographic precipitation regime under the same Froude number, different

    combination of terrain height and mean flow speed has different response of

    rainfall enhancement (suppression) on windward (lee) side.

    • For the same terrain height, there is an optimal environmental flow speed to

    produce the maximum rainfall enhancement; similarly, for the same

    environmental flow speed, there is an optimal terrain height to produce the

    maximum rainfall enhancement.

  • Thank you for the attention!