15
Title AN INVITATION TO THE SIMILARITY PROBLEMS : AFTER PISIER(Operator Space Theory and its Applications) Author(s) OZAWA, NORUTAKA Citation 数理解析研究所講究録 (2006), 1486: 27-40 Issue Date 2006-04 URL http://hdl.handle.net/2433/58153 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

Title AN INVITATION TO THE SIMILARITY PROBLEMS :AFTER PISIER(Operator Space Theory and its Applications)

Author(s) OZAWA, NORUTAKA

Citation 数理解析研究所講究録 (2006), 1486: 27-40

Issue Date 2006-04

URL http://hdl.handle.net/2433/58153

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

Page 2: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

AN INVITATION TO THE SIMILARITY PROBLEMS(AFTER PISIER)

NARUTAKA OZAWA (小沢登高, 東大数理)

ABSTRACT. This note is intended as a handout for the minicourse given in RIMSworkshop $‘(\mathrm{O}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}$ Space Theory and its Applications” on January 31, 2006.

1. THE SIMILARITY PROBLEMS

1.1. The similarity problem for continuous homomorphisms. In this note,we mainly consider unital $\mathrm{C}^{*}$-algebras and unital (not necessarily $*$-preserving)homomorphisms for the sake of simplicity. Let $A$ be a unital C’-algebra and$\pi:Aarrow \mathrm{B}(\mathcal{H})$ be a unital homomorphism with $||\pi||<\infty$ . We say that $\pi$ issimilar to $\mathrm{a}*$-homomorphism if there exists $S\in \mathrm{G}\mathrm{L}(\mathcal{H})$ such that $\mathrm{A}\mathrm{d}(S)\circ\pi$ isa $*$-homomorphism. Here, $\mathrm{G}\mathrm{L}(\mathcal{H})$ is the set of invertible element in $\mathrm{B}(\mathcal{H})$ and$\mathrm{A}\mathrm{d}(S)(x)=SxS^{-1}$ .Similarity Problem A (Kadison 1955). Is every continuous homomorphismsimilar to $\mathrm{a}*$-homomorphism?

We note that a homomorphism $\pi$ is a $*$-homomorphism iff $||\pi||=1$ , since anelement $x\in \mathrm{B}(\mathcal{H})$ is unitary iff $||x||=||x^{-1}||=1$ . We say $A$ has the similarityproperty (abbreviated as $(\mathrm{S}\mathrm{P})$ ) if every unital continuous homomorphism from $A$

into $\mathrm{B}(\mathcal{H})$ is similar to a $*$-homomorphism. Do we really need the assumptionthat $\pi$ is continuous? That is another problem. Indeed, the subject of automaticcontinuity is extensively studied in Banach algebra theory, and it is known that theexistence of a discontinuous homomorphism from a $\mathrm{C}^{*}$-algebra into some Banachalgebra is independent of (ZFC). As far as the author knows, it is not knownwhether or not the automatic continuity of a homomorphism between $\mathrm{C}$“-algebras(say, with a dense image) is provable within (ZFC).

Similarity Problem A is equivalent to several long-standing problems in $\mathrm{C}^{*}$ , vonNeumann and operator theories. Among them is the Derivation Problem;Derivation Problem. Is every derivation 6: $Aarrow \mathrm{B}(\mathcal{H})$ inner?

Let $A\subset \mathrm{B}(\mathcal{H})$ be a (unital) C’-algebra. A derivation 6: $Aarrow \mathrm{B}(\mathcal{H})$ is a linearmap which satisfies the derivative identity $\delta(ab)=\delta(a)b+a\delta(b)$ . The celebratedtheorem of Kadison and Sakai is that every derivation into $A”$ is inner. We recall

Date: February 20, 2006.

数理解析研究所講究録1486巻 2006年 27-40 27

Page 3: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

NARUTAKA OZAWA

that $\delta:Aarrow \mathrm{B}(\mathcal{H})$ is said to be inner if there exists $T\in \mathrm{B}(\mathcal{H})$ such that$\forall a\in A$ $\delta(a)=\delta_{T}(a):=Ta-aT$ .

It is known that every derivation is automatically continuous (Ringrose). We say$A$ has the $(\mathrm{D}\mathrm{P})$ if any derivation $\delta:Aarrow \mathrm{B}(\mathcal{H})$ , for any faithful $*$-representation$A\subset \mathrm{B}(\mathcal{H})$ , is inner.

Theorem 1.1 (Kirchberg 1996). Let $A$ be a unital $\sigma$ -algebra. Then $A$ has the$(\mathrm{S}\mathrm{P})$ iff $A$ has the $(\mathrm{D}\mathrm{P})$ .

The easier implication $(\mathrm{S}\mathrm{P})\Rightarrow(\mathrm{D}\mathrm{P})$ (which precedes Kirchberg) follows fromthe following lemma.

Lemma 1.2. Let $A\subset \mathrm{B}(\mathcal{H})$ be a unital $\sigma$ -algebra and $\delta:Aarrow \mathrm{B}(\mathcal{H})$ be a deriva-tion. Then the homomorphism $\pi:Aarrow \mathrm{M}_{2}(\mathrm{B}(\mathcal{H}))$ defined by

$\pi(a)=(0a\delta(a)a)$

is similar to $a*$ -homomorphism iff $\delta$ is inner.

Proof. We first observe that $\pi$ is indeed a homomorphism since 6 is a derivation.If $\delta=\delta_{T}$ , then we have

$\pi(a)=$and $\pi$ is similar to a $*$-homomorphism $\mathrm{i}\mathrm{d}_{A}\oplus \mathrm{i}\mathrm{d}_{A}$ . We now suppose that $\sigma(a)=$

$S\pi(a)S^{-1}$ is $\mathrm{a}*$-homomorphism. Let $D=S’ S$ . Since

Il $S^{-1}||^{2}\langle D\xi,\xi\rangle=||S^{-1}||^{2}||S\xi||^{2}\geq||\xi||^{2}$,

we have $D\geq||S^{-1}||^{-2}$ . Since $\sigma \mathrm{i}\mathrm{s}*$-preserving, we have

$D\pi(a)=S^{*}\sigma(a)S=(S^{*}\mathrm{a}(a^{*})S)^{*}=\pi(a^{*})^{*}D$

for every $a\in A$ . Developing the equation, we get

$(a0\delta(a)a)=$$\mathrm{L}\mathrm{o}\mathrm{o}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}(1, 1)- \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{y},\mathrm{w}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}D_{11}a=aD_{11}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y}a\in A.\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}D_{11}\geq||S^{-1}||^{-2},\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}1\mathrm{i}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}D_{11}^{-1}\in A’\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}||D_{11}^{-1}||\leq||S^{-1}||^{2}.\mathrm{L}\mathrm{o}\mathrm{o}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}$

$(2,1)$-entry, we have$D_{11}\delta(a)+D_{12}a=aD_{12}$ .

It follows that $\delta=\delta_{T}$ for $T=-D_{11}^{-1}D_{12}$ with $||T||\leq||S||^{2}||S^{-1}||^{2}$ . $\square$

28

Page 4: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

SIMILARITY PROBLEMS AFTER PISIER

1.2. Known cases and open cases. The important result of Haagerup (1983)is that a continuous homomorphism $\pi:Aarrow \mathrm{B}(\mathcal{H})$ admitting a finite cyclic subset(i.e., there exists a finite subset $F\subset \mathcal{H}$ such that $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{\pi(a)\xi : a\in A, \xi\in F\}$ isdense in $\mathcal{H}$ ), is inner. This does not finish the similarity problem since we cannotdecompose a general ( $\mathrm{n}\mathrm{o}\mathrm{n}*$-preserving) representation into a direct sum of cyclicrepresentations.

Theorem 1.3. The following $\sigma$ -algebras have the $(\mathrm{S}\mathrm{P})$ .(1) Nuclear O-algebras.(2) $\sigma$ -algebras $withov,t$ tracial states (Haagerup).(3) Type $\mathrm{I}\mathrm{I}_{1}$ factors with the property $(\Gamma)$ (Chnstensen).

We note that one may reduce Similarity problem A (or derivation problem) forC’-algebras to that for type $\mathrm{I}\mathrm{I}_{1}$ factors by considering the second dual, then con-sidering the type decomposition and direct integration. We do not know whetheror not the von Neumann algebras $\mathcal{L}\mathrm{F}_{2}$ and $\prod_{n=1}^{\infty}\mathrm{M}_{n}$ have the $(\mathrm{S}\mathrm{P})$ . We suspectthat $\prod_{n=1}^{\infty}\mathrm{M}_{n}$ should be a counterexample.

1.3. The similarity problem for group representations. We only considerdiscrete groups. Let $\Gamma$ be a discrete group and $C^{*}\Gamma$ be the full group C’-algebra.We regard $\Gamma$ as the corresponding subgroup of unitary elements in $C^{*}\Gamma$ . Everycontinuous homomorphism $\pi:C^{*}\Gammaarrow \mathrm{B}(\mathcal{H})$ gives rise to a uniforiy bounded(abbreviated as $\mathrm{u}.\mathrm{b}.$ ) representation of $\Gamma$ on $\mathcal{H};\pi:\Gammaarrow \mathrm{G}\mathrm{L}(\mathcal{H})$ is a group homo-morphism such that $|| \pi||:=\sup_{s\in\Gamma}||\pi(s)||<\infty^{1}$ . Obviously, the homomorphism$\pi:C^{*}\Gammaarrow \mathrm{B}(\mathcal{H})$ is similar to $\mathrm{a}*$ -homomorphism iff the representation $\pi_{|\Gamma}$ is uni-tarizable (i.e., $\exists S\in \mathrm{G}\mathrm{L}(\mathcal{H})$ such that Ad(S) $\circ\pi_{|\Gamma}$ is a unitary representation).

Theorem 1.4 (Diximier 1950). Let $\Gamma$ be an amenable group. Then, every $u.b$ .representation of $\Gamma$ is unitarizable. More precisely, if $\pi:\Gammaarrow \mathrm{G}\mathrm{L}(\mathcal{H})$ is a $u.b$ .representation, then there $e$ rists $S\in \mathrm{G}\mathrm{L}(\mathcal{H})\cap \mathrm{v}\mathrm{N}(\pi(\Gamma))$ with $||S||||S^{-1}||\leq||\pi||^{2}$

such that Ad(S) $\circ\pi$ is unitary.

Proof. Let $\Gamma$ be amenable and $\pi:\Gammaarrow \mathrm{G}\mathrm{L}(\mathcal{H})$ be a $\mathrm{u}.\mathrm{b}$ . representation. Let $F_{n}\subset\Gamma$

be a $\mathrm{F}\emptyset \mathrm{l}\mathrm{n}\mathrm{e}\mathrm{r}$ net. Since $\pi$ is $\mathrm{u}.\mathrm{b}.$ , the set $|F_{n}|^{-1} \sum_{s\in F_{n}}\pi(s)^{*}\pi(s)\in \mathrm{v}\mathrm{N}(\pi(\Gamma))$ has aweak’-accumulation point. Since the accumulation point is positive, we kt $S$ bethe the square root of it. Then, we have

$||S \xi||^{2}=\lim_{n}\frac{1}{|F_{n}|}\sum_{s\in F_{n}}||\pi(s)\xi||^{2}$ ,

and hence $||\pi||^{-1}\leq S\leq||\pi||$ and $||S\pi(s)\xi||=||S\xi$ II for every $s\in\Gamma$ and $\xi\in \mathcal{H}$ . Itfollows that $||\mathrm{A}\mathrm{d}(S)\circ\pi||=1$ and hence Ad(S) $\circ\pi$ is unitary. $\square$

1This notation may cause confusion since the value $||\pi||$ is not same as $||\pi:C^{*}\Gammaarrow \mathrm{B}(\mathcal{H})||$ .

29

Page 5: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

NARUTAKA OZAWA

If one employ the fact that a nuclear C’-algebra is amenable as a Banach algebra(Haagerup 1983), then we can adopt the above proof to the case of nuclear $\mathrm{C}^{*}-$

algebras. We say $\Gamma$ is unitarizable if every $\mathrm{u}.\mathrm{b}$ . representation of $\Gamma$ is unitarizable.Pisier $(2004, 2005)$ proved that if $\Gamma$ is unitarizable and in addition that the similar-ity $S$ can be chosen so that (i) $S\in \mathrm{G}\mathrm{L}(\mathcal{H})\cap \mathrm{v}\mathrm{N}(\pi(\Gamma))$ , or (ii) $||S||||S^{-1}$ Il $\leq||\pi||^{2}$ ,then $\Gamma$ is amenable. However, the following is still open.Similarity Problem B. Is every unitarizable group amenable?

Theorem 1.5. The free group $\mathrm{F}_{\infty}$ on countably many generators is not unitariz-able.

Proof. We denote by $|t|$ the word length of $t\in$ $\mathrm{F}_{\infty}$ , by $\mathbb{C}\mathrm{F}_{\infty}$ the space of all finitelysupported $\mathbb{C}- \mathrm{v}\mathrm{a}\mathrm{l}\iota \mathrm{l}\mathrm{e}\Lambda$ fimctions on $\mathrm{F}_{\infty}$ , and by $\lambda(,9)$ the left translation operator by$s$ on $\ell_{\infty}\Gamma$ (and its subspaces). Let $B:\mathbb{C}\mathrm{F}_{\infty}arrow\ell_{\infty}\mathrm{F}_{\infty}$ be the linear map defined by

$B \delta_{\mathrm{t}}=\sum\{\delta_{t’} : |t^{-1}t’|=1, |t’|=|t|+1\}$ ,

i.e., $B\delta_{t}$ is the characteristic function of those points which are just one-step aheadof $t$ (looking from $e$). Then, for every $s\in \mathrm{F}_{\infty}$ , we have

$(B\lambda(s)-\lambda(s)B)\delta_{t}=\{$$0$ if $|s|\neq|st|+|t^{-1}|$

$\delta_{s(|st|+1)}-\delta_{s(|st|-1)}$ if $|s|=|st|+|t^{-1}|$

where $s(k)$ is the unique element such that $|s(k)|=k$ and $|s|=|s(k)|+|s(k)^{-1}s|$ .Hopefully, the figures below explain the above equation. It follows that we may

FIGURE 1. $|s|\neq|st|+|t^{-1}|$ FIGURE 2. $|s|=|st|+|t^{-1}|$

view $D(s)=B\lambda(s)-\lambda(s)B$ as an element in $\mathrm{B}(\ell_{2}\mathrm{F}_{\infty})$ with $||D(s)||=2$ . Thus,$D:\mathrm{F}_{\infty}arrow \mathrm{B}(\ell_{2}\mathrm{F}_{\infty})$ is a $\mathrm{u}.\mathrm{b}$ . derivation; $D(st)=D(s)\lambda(t)+\lambda(s)D(t)$ . It is nothard to show that $D$ is not inner, i.e., there is no $B_{0}\in \mathrm{B}(\ell_{2}\mathrm{F}_{\infty})$ such that $B-B_{0}$

commutes with every $\lambda(s)$ (in $L(\mathbb{C}\mathrm{F}_{\infty},$ $P_{\infty}\mathrm{F}_{\infty})$). We define a $\mathrm{u}.\mathrm{b}$ . representation$\pi:\mathrm{F}_{\infty}arrow \mathrm{M}_{2}(\mathrm{B}(\ell_{2}\mathrm{F}_{\infty}))$ by

$\pi(s)=(\lambda(s)0$ $D(s)\lambda(s))$ .

We conclude the proof by using the fact, which is proved in the same way toLemma 1.2, that $\pi$ is similar $\mathrm{t}\mathrm{o}*$-homomorphism only if $D$ is inner. $\square$

30

Page 6: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

SIMILARITY PROBLEMS AFTER PISIER

We observe that a subgroup of a unitarizable group is again unitarizable thanksto the fact that the induction of a $\mathrm{u}.\mathrm{b}$ . representation is again $\mathrm{u}.\mathrm{b}$ . (and a littlemore effort). Hence a counterexample (if any) to Similarity Problem $\mathrm{B}$ has to be anon-amenable group which does not contain $\mathrm{F}_{2}$ as a subgroup. Do you think thismight be a good time to stop chasing the problem?

2. ISOMORPHIC CHARACTERIZATION OF INJECTIVITY2.1. A free Khinchine inequality. Let $\Gamma$ be a discrete group and LF be itsgroup von Neumann algebra. By definition, the map

$\mathcal{L}\Gamma\ni\lambda(f)rightarrow f=\lambda(f)\delta_{e}\in\ell_{2}\Gamma$

is contractive. For which operator space structure on $\ell_{2}\Gamma$ , does the above mapcompletely bounded? We briefly review the column and row Hilbert space struc-tures. Let $\mathcal{H}$ be a Hilbert space. When it is viewed as a column vector space, wesay it is a column Hilbert space and denote it by $\mathcal{H}_{C}$ , i.e., $\mathcal{H}_{C}=\mathrm{B}(\mathbb{C}, \mathcal{H})$ as anoperator space. For any finite sequence2 $(x_{i})_{i}$ in $\mathrm{B}(H)$ and orthonormal vectors$\xi_{1},$

$\ldots,$$\xi_{n}\in \mathcal{H}$ , we have

$||(x_{i})_{i}||_{c:}=|| \sum_{i}x:\otimes\xi_{i}||_{\mathrm{B}(H)\otimes \mathcal{H}_{O}}=||||=||\sum_{i}x:.x:||^{1/2}$ .

Likewise, we define the row Hilbert space as $\mathcal{H}_{R}=\mathrm{B}(\overline{\mathcal{H}}, \mathbb{C})$ , where $\overline{\mathcal{H}}$ is theconjugate Hilbert space of $\mathcal{H}$ . For any finite sequence $(x_{i})$ in $\mathrm{B}(H)$ and orthonormalvectors $\xi_{1},$

$\ldots,$$\xi_{n}\in \mathcal{H}$ , we have

$||(x_{i})_{i}||_{R}:=|| \sum_{i}x_{i}\otimes\xi_{i}||_{b(H)\otimes \mathcal{H}_{R}}=||(x_{1}$$x_{2}$ ...

$)||=|| \sum_{i}x_{i}x_{i}^{*}||^{1/2}$ .

We regard the following lemma trivial and use it without referring it.

Lemma 2.1. For any finite sequences $(a_{i})_{i}$ and $(b_{i})_{i}$ in $\mathrm{B}(\mathcal{H})$ , we have

$|| \sum_{i}a_{\}b_{i}||\leq||(a_{i})_{i}||_{R}||(b_{i})_{i}||_{C}$ .

In particular, $|| \sum a_{i}\otimes b_{i}||\leq\min\{||(a_{i})_{i}||_{R}||(b_{i})_{i}||_{C}, ||(a_{i})_{1}||_{C}||(b_{1})_{1}||_{R}\}$ .We define $\mathcal{H}_{C\cap R}=\{\xi\oplus\xi\in \mathcal{H}_{C}\oplus \mathcal{H}_{R} : \xi\in \mathcal{H}\}$ .

Proposition 2.2. The map$L\Gamma\ni\lambda(f)\mapsto f\in(p_{2}\Gamma)_{C\cap R}$

is completely contractive.

2A finite sequence is a sequence of vectors such that all but finitely many are zero

31

Page 7: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

NARUTAKA OZAWA

Proof. We view $\delta_{e}\in \mathrm{B}(\mathbb{C}, \ell_{2}\Gamma)$ and $\delta_{e}^{*}\in \mathrm{B}(\overline{l_{2}\Gamma}, \mathbb{C})$. Since $f=\lambda(f)\delta_{e}\in \mathrm{B}(\mathbb{C},l_{2}\Gamma)$ ,the above map is a complete contraction into $\mathcal{H}_{C}$ . Since $f=\delta_{e}^{*}\overline{\lambda}(f)\in \mathrm{B}(\overline{l_{2}\Gamma}, \mathbb{C})$ ,the above map is a complete contraction into $\mathcal{H}_{R}$ as well. $\square$

We simply write $C\cap R$ for $(\ell_{2})_{C\cap R}$ and $\{\theta_{i}\}$ for a fixed orthonormal basis for$C\cap R$ . For instance, we can take $\theta_{i}=e_{i1}\oplus e_{1i}\in \mathrm{B}(\ell_{2})\oplus \mathrm{B}(\ell_{2})$ . For a finitesequence $(x_{\mathfrak{i}})_{1}$ in $\mathrm{B}(\mathcal{H})$ , we set

$||(x_{i})_{i}||_{C\cap R}=|| \sum_{i}x_{\mathfrak{i}}\otimes\theta_{i}||_{u(\mathcal{H})\otimes(C\cap R)}\sim=\max\{||(x_{i})_{i}.||_{C}, ||(x_{i})_{i}||_{R}\}$ .

The following is the rudiment of hee Khinchine inequalities.

Theorem 2.3 (Haagerup and Pisier 1993). Let $\mathrm{F}_{\infty}$ be the free group on countablegenerators, $S=\{s_{i}\}\subset \mathrm{F}_{\infty}$ be the standard set of free generators and

$E_{\lambda}=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{I}1}\{s_{i}\}\subset \mathcal{L}\mathrm{F}_{\infty}$

be an operator subspace. Then, the map$\Phi:C\cap R\ni\theta_{\mathfrak{i}}\mapsto\lambda(s_{i})\in L\mathrm{F}_{\infty}$

is completely bounded with $||\Phi||_{\mathrm{c}\mathrm{b}}\leq 2$ . In particular, the projection $Q$ from $\mathcal{L}\mathrm{F}_{\infty}$

onto $E_{\lambda}$ , defined by

$Q:\mathcal{L}\mathrm{F}_{\infty}\ni\lambda(s)\mapsto\{$

$\lambda(s)$ if $s\in S$

$0$ if $s\not\in S$’

is completely bounded with $||Q||_{\mathrm{c}\mathrm{b}}\leq 2$ .

Proof. For each $i$ , let $\Omega_{i}^{\pm}\subset \mathrm{F}_{\infty}$ be the subsets of all reduced words which beginswith respectively $s_{i}^{\pm 1}$ , and $P_{\mathfrak{i}}^{\pm}\in \mathrm{B}(\ell_{2}\mathrm{F}_{\infty})$ be the orthogonal projection onto $l_{2}\Omega_{i}^{\pm}$ .Then, for each $i$ , we have

$\lambda(s_{i})=\lambda(s_{i})P_{i}^{-}+\lambda(s_{i})(1-P_{1}^{-})=\lambda(s_{i})P_{i}^{-}+P_{i}^{+}\lambda(s_{t})$.Therefore for any finite sequence $(x_{i})_{i}\subset \mathrm{B}(H)$ , we have

$|| \sum_{i}x_{i}\otimes\lambda(s_{i})P_{t}^{-}||_{1\mathrm{B}(H\otimes\ell_{2}\mathrm{p}_{\infty})}\leq||(x_{\mathfrak{i}})_{i}||_{R}||(\lambda(s_{\mathfrak{i}})P_{i}^{-})_{i}||_{C}\leq||(x_{i})_{i}||_{R}$

since $||( \lambda(s_{i})P_{i}^{-})_{i}||_{C}=||\sum_{:}P_{i}^{-}||^{1/2}=1$ . Likewise, we have

$|| \sum_{i}x_{i}\otimes P_{\mathfrak{i}}^{+}\lambda(s_{\mathfrak{i}})||_{\mathrm{B}(H\otimes\ell_{2}\mathrm{F}_{\infty})}\leq||(x_{i})_{1}||_{C}||(P_{i}^{+}\lambda(s_{i})):||_{R}\leq||(x_{\mathfrak{i}})_{i}||c$.

It follows that

II $\sum_{:}x_{i}\otimes\lambda(s_{i})||_{\mathrm{I}\mathrm{B}(H\emptyset\ell_{2}\mathrm{F}_{\infty})}\leq 2||(x_{i})_{\mathfrak{i}}||_{C\cap R}=2||\sum_{i}x_{i}\otimes\theta_{\mathfrak{i}}||$.

This means that $||\Phi||_{\mathrm{c}\mathrm{b}}\leq 2$ . The second assertion follows from Proposition 2.2. $\square$

32

Page 8: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

SIMILARITY PROBLEMS AFTER PISIER

Remark 2.4. The above property of $\mathcal{L}\mathrm{F}_{\infty}$ is related to the fact that $\mathcal{L}\mathrm{F}_{\infty}$ is notinjective. We simply write $E_{n}$ for $(\ell_{2}^{n})_{c\mathrm{n}R}$ . Thus

$E_{n}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{e_{i1}\oplus e_{1i} : i=1, \ldots, n\}\subset \mathrm{M}_{n}\oplus \mathrm{N}\mathrm{I}_{n}$ .It is known that $E_{n}$ is far from injective, i.e., any projection from $\mathrm{M}_{n}\oplus \mathrm{M}_{n}$ onto $E_{n}$

has cb-norm $\geq\frac{1}{2}(\sqrt{n}+1)$ . It follows that if $M$ is an injective von Neumann algebra,then any maps $\alpha$ : $E_{n}arrow M$ and 5: $Marrow E_{n}$ with $\beta 0\alpha=\mathrm{i}\mathrm{d}_{E_{\hslash}}$ satisfy $||\alpha||_{\mathrm{c}\mathrm{b}}||\beta||_{cb}\geq$

I $(\sqrt{n}+1)$ . It is conjectured by Pisier(?) that for any non-injective von Neumannalgebra $M$ , there exist sequences of maps $\alpha_{n}$ : $E_{n}arrow M$ and $\beta_{n}$ : $Marrow E_{n}$ suchthat $\beta_{n}\circ\alpha_{n}=\mathrm{i}\mathrm{d}_{E_{n}}$ and $\sup||\alpha_{n}||_{\mathrm{c}\mathrm{b}}||\beta_{n}||_{cb}<\infty$ . An affirmative answer would solveseveral problems around operator spaces (e.g., whether existence of a boundedlinear projection from $\mathrm{B}(\mathcal{H})$ onto $M$ implies injectivity of $M.$ ) A negative answerwould lead to a non-injective type $\mathrm{I}\mathrm{I}_{1}$ factor which does not contain $\mathcal{L}\mathrm{F}_{2}$ .2.2. Isomorphic characterization of injective von Neumann algebras. Fora finite sequence $(x_{i})_{i}$ in $\mathrm{B}(\mathcal{H})$ , we set

$||(x_{i})_{i}||_{C+R}=||\Phi:C\cap R\ni\theta_{i}\mapsto x_{i}\in \mathrm{B}(\mathcal{H})||_{\mathrm{c}\mathrm{b}}$.We say that a von Neumann algebra $M$ has the property $(\mathrm{P})^{3}$ if there exists aconstant $C_{M}>0$ with the following property; For any finite sequence $(x_{i})_{i}$ in $M$

with $||(x_{i})_{i}||c+R\leq 1$ , there exist finite sequences $(a_{i})_{i}$ and $(b_{i})_{i}$ in $M$ such that$||(a_{i})_{i}||_{C}\leq C_{M},$ $||(b_{i})_{1}||_{R}\leq C_{M}$ and $x_{i}=a_{1}+b_{:}$ for every $i$ .

Theorem 2.5 (Pisier 1994). A von Neumann algebra $M$ is injective iff it has theproperty (P).

The “if” part requires several lemmas, and we first prove the “only if” part.Let $M$ be an injective von Neumann algebra and consider a complete contraction$\Phi:C\cap R\ni\theta_{i}$ ト\rightarrow xi $\in M$ . Since $M$ is injective, this map extends to a completecontraction $\tilde{\Phi}$ : $C\oplus Rarrow M$ , where $C=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}}\{e_{\mathrm{t}1}\}$ and $R=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}}\{e_{1i}\}$ . Then$a:=\tilde{\Phi}(0\oplus e_{1i})$ and $b_{i}=\tilde{\Phi}(e_{i1}\oplus 0)$ satisfies the required condition with $C_{M}=1$ .We note that $||(\varphi(a_{i}))_{i}||_{C}\leq||\varphi||_{\mathrm{c}\mathrm{b}}||(a_{i})_{i}||_{C}$ for any $\mathrm{c}\mathrm{b}$-map $\varphi$ and any finite sequence$(a_{\mathfrak{i}})_{\mathfrak{i}}$ . Hence the following is trivial.

Lemma 2.6. The property (P) inherits to a von Neumann subalgebra which is therange of a completely bounded projection.

As a corollary to Theorem 2.5, we see that a von Neumann subalgebra $M\subset \mathrm{B}(\mathcal{H})$

which is the range of a completely bounded projection is in fact injective. Weobserve that by the type decomposition and the Takesaki duality, it suffices toshow Theorem 2.5 for a von Neumann algebra of type $\mathrm{I}\mathrm{I}_{1}$ .

Let $M\subset \mathrm{B}(\mathcal{H})$ be a von Neumann algebra. An $M$ -central state is a state $\varphi$

on $\mathrm{B}(\mathcal{H})$ such that $\varphi(uxu^{*})=\varphi(x)$ for $u\in M$ and $x\in \mathrm{B}(\mathcal{H})$ (or equivalently$\overline{3\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}}$nomenclature is nonstandard.

33

Page 9: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

NARUTAKA OZAWA

$\varphi(ax)=\varphi(xa)$ for $a$ $\in M$ and $x\in \mathrm{B}(\mathcal{H}))$ . Recall that the celebrated theorem ofConnes states that a finite von Neumann algebra $M$ is injective iff there exists an$M$-central state $\varphi$ such that $\varphi_{|M}$ is a faithful normal tracial state.

Lemma 2.7. Let $M\subset \mathrm{B}(\mathcal{H})$ . Then, there exists an $M$ -central state if

$|| \sum_{i=1}^{n}u_{1}\otimes\overline{u_{i}}||_{\Re(\mathcal{H}\otimes\overline{\mathcal{H}})}=n$

for every $n$ and unitary elements $\mathrm{u}_{1},$ $\ldots$ , $u_{n}\in M$ .Proof. We first recall that $\overline{\mathcal{H}}$ is the complex conjugate Hilbert space of $\mathcal{H}$ and

$\overline{x}\in \mathrm{B}(\overline{\mathcal{H}})$ means the element associated with $x\in \mathrm{B}(\mathcal{H})$ . We have the canonicalidentification between the Hilbert space $\mathcal{H}\otimes\overline{\mathcal{H}}$ and the space $S_{2}(\mathcal{H})$ of the Hilbert-Schmidt class operators on $\mathcal{H}$ , given by $\xi\otimes\overline{\eta}rightarrow\langle\cdot,$

$\eta$) $\xi\in S_{2}(\mathcal{H})$ . Under thisidentification, $\sum a_{i}\otimes\overline{b_{i}}$ acts on $S_{2}(\mathcal{H})$ as $S_{2}( \mathcal{H})\ni hrightarrow\sum a_{i}hb_{i}^{*}\in S_{2}(\mathcal{H})$ .

Let $u_{1},$ $\ldots,$$u_{n}\in M$ be unitary elements such that $u_{1}=1$ . If 11 $\sum_{i=1}^{n}u_{i}\otimes\overline{u_{i}}||=n$ ,

then there exists a unit vector $h\in S_{2}(\mathcal{H})$ such that $|| \sum_{i=1}^{n}u_{i}hu^{*}\dot{.}||_{2}\approx n$ . Byuniform convexity, we must have $||u_{\mathfrak{i}}hu_{i}^{*}-h||_{2}\approx 0$ for every $i$ . This implies thatI $|u_{i}h^{*}hu_{i}-h^{*}h||_{1}\approx 0$ for every $i$ . It follows that $\varphi(x)=^{r}\mathrm{R}(h^{*}hx)$ defines a state on

$\mathrm{B}(\mathcal{H})$ such that $||\varphi\circ \mathrm{A}\mathrm{d}(u_{1})-\varphi||_{\hslash(?\{)}$ . $\approx 0$ for every $i$ . Therefore, taking appropriatelimit, we can obtain an $M$-central state. $\square$

Lemma 2.8 (Haagerup 1985). Let $M$ be a von Neumann algebra. Assume thatthere evists a constant $c>0$ with the following property; For every $n$ , unitaryelements $u_{1},$ $\ldots,$

$u_{n}\in M$ and every non-zero central projection $p\in M$ , we have

$|| \sum_{i=1}^{n}pu_{i}\otimes\overline{pw}||_{\mathrm{B}\mathrm{C}p\mathcal{H}\otimes\overline{p\mathcal{H}})}$ lii en.

Then, $M$ is injective.

Proof. Let $u_{1},$ $\ldots,$$u_{n}\in M$ be unitary elements and $p\in M$ be a non-zero central

projection. By assumption, we have

$||( \sum_{i=1}^{n}pu_{i}\otimes\overline{pu_{i}})^{k}||_{\mathbb{R}(p\otimes p\mathrm{i})}\mathcal{H}\urcorner\geq cn^{k}$

for every positive integer $k$ . Therefore, we actually have that

$|| \sum_{i=1}^{n}pu_{\mathfrak{i}}\otimes\overline{pu_{i}}||_{\dot{\mathrm{A}}}.\}(p\mathcal{H}\otimes p\neg \mathcal{H}\geq\lim_{karrow\infty}c^{1/k}n=n$ .

By Lemma 2.7, there exists a $pM$-central state $\varphi_{p}$ on $\mathrm{B}(\mathrm{p}M)$ for every non-zerocentral projection $p\in M$ . Fix a normal faithful tracial state $\tau$ on $M$ . For any finite

34

Page 10: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

SIMILARITY PROBLEMS AFTER PISIER

partition $\mathcal{P}=\{p_{i}\}_{\mathrm{i}}$ of unity by central projections in $M$ , we define the M-centralstate $\varphi_{P}$ on $\mathrm{B}(\mathcal{H})$ by

$\varphi_{P}(x)=\sum_{i}\tau(p_{i})\varphi_{p_{i}}(p_{i}xp_{i})$.

Taking appropriate limit of $\varphi_{P}$ , we obtain an $M$-central state $\varphi$ on $\mathrm{B}(\mathcal{H})$ such that$\varphi_{|M}=\tau$ . We conclude that $M$ is injective by Connes’s theorem. $\square$

For a finite sequence $(x_{i})_{i}$ in $\mathrm{B}(\mathcal{H})$ , we set

II $(x_{i})_{1}||_{oH}=|| \sum_{i}x_{i}\otimes\overline{x_{i}}||_{\mathrm{B}(\mathcal{H}\otimes\overline{\mathcal{H}})}^{1/2}$ .

We note that $||(x_{i})_{i}||_{oH}\leq||(x_{i})_{\mathfrak{i}}||_{R}^{1/2}||(x_{i})_{i}||_{C}^{1/2}\leq||(x_{i})_{i}||_{C\cap R}$ . Besides those appear-ing in Lemma 2.1, we have the following mysterious inequality (which manifeststhe self-dual property of the operator Hilbert spaces).

Lemma 2.9. For every finite sequences $(a_{i})_{i}$ in $\mathrm{B}(\mathcal{H})$ and $(b_{i})_{i}$ in $\mathrm{B}(\mathcal{K})$ , we have

$|| \sum_{i}a_{i}\otimes b_{i}||_{\mathcal{H}\otimes \mathcal{K}\rangle}\leq||(a_{i})_{i}||_{oH}||(b_{\mathfrak{i}}):||_{oH}$

Proof. We may assume that $\mathcal{K}=\overline{\mathcal{H}}$ and use $\overline{b_{i}}$ in the place of $b_{i}$ . Identifying $\mathcal{H}\otimes\overline{\mathcal{H}}$

with $S_{2}(\mathcal{H})$ as in the proof of Lemma 2.7, we see

$|| \sum_{:}a_{i}\otimes\overline{b_{i}}||_{\mathrm{B}(\mathcal{H}\otimes\overline{\mathcal{H}}\rangle}=\sup$ { $| \sum_{i}\mathrm{R}(ha_{i}kb^{*}.\cdot)|$: $h,$ $k\in S_{2}(\mathcal{H})$ with norm 1}.

Let $h,$ $k\in S_{2}(\mathcal{H})$ with norm 1 be given. Then, we can find decompositions $h=h_{1}h_{2}$

and $k=k_{1}k_{2}$ such that $h_{j},$ $k_{j}\in S_{4}(\mathcal{H})$ witf norm 1. It follows that

$| \sum_{:}\ulcorner \mathrm{R}(ha:kb_{i}^{*})|=|\sum_{i}\prime \mathrm{R}((h_{2}a_{i}k_{1})(k_{2}b_{i}^{*}h_{1}))|$

$\leq^{r}\mathrm{b}(\sum_{:}h_{2}a_{i}k_{1}k_{1}^{*}a_{\mathfrak{i}}^{*}h_{2}^{*})^{1/2r}\mathrm{R}(\sum_{i}h_{1}^{*}b_{i}k_{2}^{*}k_{2}b_{i}^{*}h_{1})^{1/2}$

$\leq||\sum_{i}a_{\mathfrak{i}}\otimes\overline{a_{i}}||_{i\mathrm{f}(H\emptyset\overline{\mathcal{H}})}^{1/2}||\sum_{i}b_{i}\otimes\overline{b_{i}}||_{\mathrm{B}(\mathcal{H}\otimes}^{1/2}\pi)$.

This proves the assertion. $\square$

Lemma 2.10. For every finite sequence ($x_{i}\rangle_{i}$ in $\mathrm{B}(\mathcal{H})$ , we have

11 $(x_{i})_{1}||_{C+R}\leq||(x_{i})_{i}||_{oH}$ .Proof. Let $\Phi:C\cap R\ni\theta_{i}->x_{i}\in \mathrm{B}(\mathcal{H})$ and take $z= \sum_{i}a_{i}\otimes\theta_{i}\in \mathrm{B}(\mathcal{H})\otimes(C\cap R)$ .We note that $||z||=||(a_{\mathfrak{i}})_{i}||_{C\cap R}\geq||(a_{i})_{i}||_{oH}$ . Hence, by Lemma 2.9, we have

$||( \mathrm{i}\mathrm{d}\otimes\Phi.)(z)||=||\sum a_{1}$. $\otimes x_{\mathfrak{i}}||\leq||(a_{i})_{\mathfrak{i}}||_{oH}||(x_{i}):||_{oH}\leq||(x_{\mathfrak{i}})_{i}||_{oH}||z||$ .This implies that $||(x_{i})_{i}||c+R=||\Phi||_{\mathrm{c}\mathrm{b}}\leq||(x_{i})_{\mathfrak{i}}||_{oH}$ . $\square$

35

Page 11: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

NARUTAKA OZAWA

We have prepared enough lemmas for the proof of Theorem 2.5.

Proof of Theorem 2.5. It is left to show that a finite von Neumann algebra $M$

with the property (P) is injective. To verify the assumption of Lemma 2.8, we giveourselves unitary elements $u_{1},$

$\ldots,$$u_{n}\in M$ , a non-zero central projection $p\in M$

and a constant $c>0$ such that$|1$ $(pu_{1})_{i}||_{oH}^{2}\leq cn$ .

Then, by Lemma 2.10 and the property (P), there exist $(a_{i})_{i}$ and $(b_{1})$ : in $M$ suchthat II $(a_{1})_{i}||c\leq C_{M}\sqrt{cn}$ , I $(b_{\iota’})_{i}||_{R}\leq C_{M}\sqrt{cn}$ and $pu_{i}=a_{i}+b_{i}$ for every $i$ . We fixa tracial state on $pM$ and denote by $||$ $||_{2}$ the corresponding 2-norm. It followsthat

$n= \sum_{i=1}^{n}||pu_{\mathfrak{i}}||_{2}^{2}\leq 2\sum_{i=1}^{n}(||a_{i},||_{2}^{2}+||b_{\mathfrak{i}}||_{2}^{2}\rangle\leq 2(||(a_{i},)_{1}||_{C}^{2}+||(b_{i})_{i}||_{R}^{2})\leq 2C_{M}^{2}rin,$ .

Therefore, we have $c\geq(2C_{M}^{2})^{-1}$ and we are done. $\square$

2.3. A characterization of nuclearity. Let $A$ be a (unital) C’-algebra. Wesay $A$ has the strong similarity property (abbreviated as (SSP)) if for every unitalcontinuous homomorphism $\pi:Aarrow \mathrm{B}(\mathcal{H})$ , there exists $S\in \mathrm{G}\mathrm{L}(\mathcal{H})\cap \mathrm{v}\mathrm{N}(\pi(A))$

such that $\mathrm{A}\mathrm{d}(S)\circ\pi$ is $\mathrm{a}*$-homomorphism.

Theorem 2.11 (Pisier 2005). A $O$ -algebra $A$ is nuclear iff it has the (SSP).

Proof. As we remarked, the ($‘ \mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}$ if” part follows from Diximier’s $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}+\mathrm{t}\mathrm{h}\mathrm{e}$

amenability of nuclear $\mathrm{C}^{*}$-algebra. To prove the “if” part, let $A$ be a C’-algebrawith the (SSP). By a standard direct sum argument, it is not hard to see thatthere exists a constant $C>0$ with the following property; Every unital continuoushomomorphism $\pi:Aarrow \mathrm{B}(\mathcal{H})$ with $||\pi||\leq 5^{4}$ , there exists $S\in \mathrm{G}\mathrm{L}(\mathcal{H})\cap \mathrm{v}\mathrm{N}(\pi(A))$

with $||S||||S^{-1}||$ $\leq C$ such that Ad(S) $\circ\pi$ is $\mathrm{a}*$-homomorphism. Let $A\subset \mathrm{B}(\mathcal{H})$ bea $\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{a}\mathrm{l}*$-representation. It suffices to show that $A’$ is injective. Let $(x_{\mathfrak{i}})_{i}$ be afinite sequence in $A’$ with $||(x_{i},)_{i}||_{C+R}\leq 1$ . Since $\mathrm{B}(\mathcal{H})$ is injective, there exist $(c_{i},)_{i}$

and $(d_{t}’)_{i}$ in $\mathrm{B}(\mathcal{H})$ such that $||(\mathrm{G})_{i}||_{C}\leq 1$ , II $(d_{i})_{i}||_{R}\leq 1$ and $x_{\mathfrak{i}}=c_{i}+d_{i}$ for every$i$ . We define a derivation $\delta:Aarrow \mathrm{B}(\mathcal{H})-\otimes \mathcal{L}\mathrm{F}_{\infty}$ by

$\delta(a)=\delta_{\Sigma c_{\ell\otimes\lambda(s)(a\otimes 1)=\sum_{i}\otimes \mathcal{L}\mathrm{F}_{\infty}}}‘\delta_{c_{i}}(a)\otimes\lambda(s_{i})\in \mathrm{B}(\mathcal{H})\otimes E_{\lambda}\subset \mathrm{B}(\mathcal{H})^{-}$ .

We recall from the proof of Theorem 2.3 that $\lambda(s_{i})=u_{i}+v_{i}$ with $||(u_{i})||_{C}\leq 1$ and$||(v_{i})||_{R}\leq 1$ . Since $\delta_{c_{i}}=\delta_{-d}$

‘ on $A$, we have $\delta=\delta_{B}$ , where $B= \sum(c_{i}\otimes v_{i}-d_{i}\otimes u_{i})$

4We can choose any other number that is strictly greater than 1 by scaling the 6 later.

36

Page 12: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

SIMILARITY PROBLEMS AFTER PISIER

with $||B||\leq||(c_{i})_{i}||c||(v_{i})||_{R}+||(d_{i})_{i}||_{R}||(u_{i})||_{C}\leq 2$. Hence, we have $||\delta||_{\mathrm{c}\mathrm{b}}\leq 4$. Wedefine a homomorphism $\pi:Aarrow \mathrm{M}_{2}(\mathrm{B}(\mathcal{H})^{-}\otimes \mathcal{L}\mathrm{F}_{\infty})$ by

$\pi(a)=(a\otimes 10$ $a\otimes 1\delta(a))$ .

By the assumption on the (SSP), there exists an invertible element $S\in \mathrm{v}\mathrm{N}(\pi(A))$

with $||S||||S^{-1}||\leq C$ such that Ad(S) $0\pi$ is a $*$-homomorphism. By the proofof Lemma 1.2, there exists $T\in \mathrm{B}(\mathcal{H})-\otimes L\mathrm{F}_{\infty}$ with $||T||\leq C^{2}$ such that $\delta(a)=$

$\delta_{\mathit{1}’},(a\otimes 1)$ . Let $Q:\mathcal{L}\mathrm{F}_{\infty}arrow E_{\lambda}$ be the projection appearing in Theorem 2.3. Since$\delta(A)\subset \mathrm{B}(\mathcal{H})\otimes E_{\lambda}$ and $\mathrm{i}\mathrm{d}\otimes Q$ is $A$-linear, we have

$\delta(a)=(\mathrm{i}\mathrm{d}\otimes Q)(\delta(a))=\delta_{(\mathrm{i}\mathrm{d}\otimes Q)(’\mathit{1}’)}(a\otimes 1)$

for every $a$ $\in A$ . We write $( \mathrm{i}\mathrm{d}\otimes Q)(T)=\sum z_{i}\otimes\lambda(s_{i})$ . Then, by Lemma 2.1 andTheorem 2.3, we have

$||(z_{i})_{i}||_{C\cap R}\leq||(\mathrm{i}\mathrm{d}\otimes Q)(T)||\leq||Q||_{\mathrm{c}\mathrm{b}}||T||\leq 2C^{2}$.Since $\lambda(s_{1})’ \mathrm{s}$ are linearly independent, we have $\delta_{c_{i}}=\delta_{z_{i}}$ , or equivalently $\mathrm{q}-z_{i}\in A’$ .Therefore, we have $a_{i}=\mathrm{q}-z_{i}\in A’$ with

$|\mathrm{I}$ $(a:)_{i}||_{C}\leq$ I $(c_{i})_{\mathfrak{i}}||_{C}+||(z_{i})_{i}||_{C}\leq 1+2C^{2}$ ,

and likewise $b_{i}=x:-a_{1}=d_{i}+z_{i}\in A’$ with $||(b_{\mathfrak{i}})_{i}||_{R}\leq 1+2C^{2}$ . We conclude theinjectivity of $A’$ by Theorem 2.5. $\square$

We say a group $\Gamma$ has the (SSP) if for every $\mathrm{u}.\mathrm{b}$ . representation $\pi:\Gammaarrow \mathrm{G}\mathrm{L}(\mathcal{H})$ ,there exists $S\in \mathrm{G}\mathrm{L}(\mathcal{H})\cap \mathrm{v}\mathrm{N}(\pi(\Gamma))$ such that Ad(S) $\circ\pi$ is a unitary representation.

Corollary 2.12. A discrete group $\Gamma$ is amenable iff it has the (SSP).

Proof. This follows from the fact that $\Gamma$ is amenable iff $C^{*}\Gamma$ is nuclear. $\square$

3. SIMILARITY LENGTH OF $\mathrm{C}^{*}$-ALGEBRAS

The following is the fundamental characterization of a homomorphism which issimilar to $\mathrm{a}*$-homomorphism. This has several applications to dilation theory.

Theorem 3.1 (Haagerup, Paulsen). Let $A$ be a unital C’-algebra (or just a unitaloperator algebra), $\pi:Aarrow \mathrm{B}(\mathcal{H})$ be a unital homomorphism and $C>0$ be aconstant. Then, $||\pi||_{\mathrm{c}\mathrm{b}}\leq C$ iff there exists $S\in \mathrm{G}\mathrm{L}(\mathcal{H})$ with $||S||||S^{-1}||\leq C$ suchthat $||\mathrm{A}\mathrm{d}(S)\circ\pi||_{\mathrm{c}\mathrm{b}}=1$ .Proof. The $‘(\mathrm{i}\mathrm{f}$

” part is obvious. To prove the “only if” part, let $A\subset \mathrm{B}(H)$ and$\pi:Aarrow \mathrm{B}(\mathcal{H})$ be a homomorphism with $||\pi||_{\mathrm{c}\mathrm{b}}\leq C$ . By a Stinespring typetheorem, there exist a Hilbert space $\hat{\mathcal{H}},$

$\mathrm{a}*$-homomorphism $\sigma:\mathrm{B}(H)arrow \mathrm{B}(\hat{\mathcal{H}})$ , andoperators $V\in \mathrm{B}(\mathcal{H},\hat{\mathcal{H}}),$ $W\in \mathrm{B}(\hat{\mathcal{H}}, \mathcal{H})$ with $||V||||W||\leq||\pi||_{\mathrm{c}\mathrm{b}}$ such that

$\forall a\in A$ $\pi(a)=V\sigma(a)W$.

37

Page 13: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

NARUTAKA OZAWA

Let $\mathcal{K}_{1}=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}}(\sigma(A)W\mathcal{H})$ . The subspace $\mathcal{K}_{1}$ is $\sigma(A)$-invariant and we may assumethat $V=VP_{\mathcal{K}_{1}}$ . Since

$V\sigma(a)(\sigma(x)W\xi)=\pi(ax)\xi=\pi(a)V\sigma(x)W\xi$,

we have $V\sigma(a)P_{\mathcal{K}_{1}}=\pi(a)V$ for every $a$ $\in A$ . It follows that $\mathcal{K}_{2}=\mathrm{k}\mathrm{e}\mathrm{r}V\subset \mathcal{K}_{1}$ isalso $\sigma(A)$-invariant. Hence $\mathcal{L}=\mathcal{K}_{1}\ominus \mathcal{K}_{2}$ is $‘(\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}$-invariant” under $\sigma(A)$ , i.e.,

$\forall a\in A$ $P_{\mathcal{L}}\sigma(a)=P_{c\sigma}(a)P_{L}$ .Consequently, we have

$\forall a\in A$ $\pi(a)=VP_{c\sigma}(a)W=VP_{\mathcal{L}}\sigma(a)P_{\mathcal{L}}W$.Since $VP_{\mathcal{L}}$ is injective on $\mathcal{L}$ and $VP_{L}W=\pi(1)=1$ , the operator $S=VP_{L}$ is alinear isomorphism from $\mathcal{L}$ onto $\mathcal{H}$ with $S^{-1}=P_{\mathcal{L}}W$ . We have $\pi=\mathrm{A}\mathrm{d}(S)\circ\sigma$ with$||S||$ Il $S^{-1}$ Il $\leq C$ and, since $\mathcal{L}\cong \mathcal{H}$ , we are done. $\square$

Corollary 3.2. A derivation $\delta$ is inner iff it $\dot{u}$ completdy bounded.

By a standard direct sum argument, we obtain the following.

Corollary 3.3. Let $A$ be a unital $O$ -algebra with the $(\mathrm{S}\mathrm{P})$ . Then, there eansts afunction $f$ on $[1, \infty)$ such that

$||\pi||_{\mathrm{c}\mathrm{b}}\leq f(||\pi||)$

for every unital continuous homomorphism $\pi:Aarrow \mathrm{B}(\mathcal{H})$ .Deflnition 3.4. Let $A$ be a unital C’-algebra (or a unital operator algebra). Thesimilarity length of $A$ , denoted by $l(A)$ , is the smallest integer $l$ with the followingproperty; There exists a constant $C>0$ such that for any $x\in \mathrm{M}_{\infty}(A)$ , there exist$\alpha_{0},$ $\alpha_{1},$

$\ldots\alpha\iota\in \mathrm{M}_{\infty}(\mathbb{C})$ and $D_{1},$$\ldots,$

$D_{i}\in \mathrm{D}\mathrm{i}\mathrm{a}\mathrm{g}_{\infty}(A)$ satisfying$x=\alpha_{0}D_{1}\alpha_{1}\cdots D\iota\alpha_{i}$

and

$\prod_{m=0}^{i}||\alpha_{m}||\prod_{m=1}^{l}||D_{m}||\leq C||x||$ .

Here, $\mathrm{M}_{\infty}(A)=\bigcup_{n=1}^{\infty}\mathrm{M}_{n}(A)$ and $\mathrm{D}\mathrm{i}\mathrm{a}\mathrm{g}_{\infty}(A)\subset \mathrm{M}_{\infty}(A)$ is the vet of diagonalmatrices with entries in $A$ . If there is no $l$ satisfying the above condition, then weset $l(A)=\infty$ by convention.

Theorem 3.5 (Pisier 1999). Let $A$ be a unital $\theta$ -algebra (or a unital operatoralgebra) with $\dim(A)>1$ . The following are equivalent.

(1) $A$ has the $(\mathrm{S}\mathrm{P})$ .(2) There erist $d>0$ and $C>0$ such that $||\pi||_{\mathrm{c}\mathrm{b}}\leq C||\pi||^{d}$ for every unital

continuous homomorphism $\pi:Aarrow \mathrm{B}(\mathcal{H})$ .(3) $l(A)\leq d$ .

38

Page 14: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

SIMILARITY PROBLEMS AFTER PISIER

The constant $d$ appearing in the conditions (2) and (3) are taken to be sameand are possibly non-integer. It follows that the “optimal” function $f$ appearingin Corollary 3.3 is a polynomial of degree $l(A)$ . The implication (2) $\Rightarrow(1)$ followsfrom Theorem 3.1. We do not prove the hard implication (1) $\Rightarrow(3)$ , but explain(3) $\Rightarrow(2)$ ;

$|| \pi(x)||=||\alpha_{0}\pi(D_{1})\alpha_{1}\cdots\pi(D_{i})\alpha_{l}||\leq||\pi||^{l}\prod_{m=0}^{l}||\alpha_{m}||\prod_{m=1}^{l}||D_{m}||\leq C||\pi||^{l}||x||$

for $x=\alpha_{0}D_{1}\alpha_{1}\cdots D\iota\alpha_{1}\in \mathrm{M}_{\infty}(A)$ .For a unital $\mathrm{C}^{*}$-algebra $A$ with $\dim(A)>1$ , it is known that(1) $l(A)=1\Leftrightarrow\dim(A)<\infty$ (Exercise),(2) $l(A)=2\Leftrightarrow A$ is nuclear with $\dim(A)=\infty$ (Pisier 2004),(3) $l(A)\leq 3$ if $A$ has no tracial state,(4) $l(M)=3$ if $M$ is a type $\mathrm{I}\mathrm{I}_{1}$ factor with the property $(\Gamma)$ (Christensen 2002),(5) $l(A)= \max\{l(I), l(A/I)\}$ for every closed 2-sided ideal $I\triangleleft A$ (Exercise).

It is not known whether there exists a unital C’-algebra with $l(A)>3$ . Wenote that an affirmative answer to Similarity Problem A would imply that thereexists $l_{0}$ such that $l(A)\leq l_{0}$ for every C’-algebra $A$ . We close this note by showing$l(A)\leq 3$ for any C’-algebra $A$ which contains a unital copy of the Cuntz algebra$O_{\infty}$ . (The case where $A$ has no tracial state is then dealt by passing to the seconddual.)

Let $x\in \mathrm{M}_{n}(A)$ be given. We choose unitary matrices $W_{1},$ $W_{2}\in \mathrm{M}_{n}(\mathbb{C})$ with$|W_{1}(i,j)|=|W_{2}(i,j)|=n^{-1/2}$ for all $i,j$ (e.g., $W_{k}(i,j)=n^{-1/2}\exp(2\pi\sqrt{-1}ij/n)$ ).Let $D_{1}(i)=S_{i}^{*}$ and $D_{3}(j)=S_{j}$ for every $i,j$ , where $s_{:}’ \mathrm{s}$ are isometries satisfying$S_{i}^{*}S_{j}=\delta_{i,j}I$ . For every $k$ , we set

$D_{2}(k)=n \sum_{i,j}\overline{W_{1}(i,k)}S_{i}x_{i,j}S_{j}^{*}\overline{W_{2}(k,j)}$

$=n$ $(\overline{W_{1}(1,k)}S_{1} \overline{W_{1}(n,k)}S_{n})(^{W_{2}}W_{2}(=_{:}^{(k,1)S_{1}}k, n)S_{n}^{*}’)$

Fhrom the latter expression, we see that $||D_{2}(k)||\leq||x||$ . We obtained $W_{1},$ $W_{2}\in$

$\mathrm{M}_{n}(\mathbb{C})$ and $D_{1},$ $D_{2},$ $D_{3}\in \mathrm{D}\mathrm{i}\mathrm{a}\mathrm{g}_{n}(A)\subset \mathrm{M}_{n}(A)$ such that

$||D_{1}||||W_{1}||||D_{2}||||W_{2}||||D_{3}||\leq||x||$

and$x=D_{1}W_{1}D_{2}W_{2}D_{\mathrm{S}}$ .

39

Page 15: Title AN INVITATION TO THE SIMILARITY PROBLEMS : …$\mathrm{C}^{*}$-algebrainto some Banach algebra is independent (ZFC).of As far as the author knows, it is not known whetheror not

NARUTAKA OZAWA

Indeed, we have

$(D_{1}W_{1}D_{2}W_{2}D_{3})_{i,j}= \sum_{k=1}^{n}S_{i}^{*}W_{1}(i, k)D_{2}(k)W_{2}(k,j)S_{j}$

$=n \sum_{k=1}^{n}|W_{1}(i, k)|^{2}|W_{2}(k,j)|^{2}x_{i,j}=x_{i,j}$ .

REFERENCES[1] G. Pisier, Introduction to operator space theory. London Mathematical Society Lecture Note

Series, 294. Cambridge University Press, Cambridge, 203.[2] –, Simdarity problems and completely bounded maps. Second, expanded edition. In-

cludes the solution to “The Halmos problem”. Lecture Notes in Mathematics, 1618. Springer-Verlag, Berlin, 2001.

[3] –, A similanty degree characterization of nudear $\sigma$ -algebras. $\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\dot{\mathrm{o}}\mathrm{t}$ .math. $\mathrm{O}\mathrm{A}/0409091$

[4] –, Simultaneous similarity, bounded generation and amenability. Preprint.math. $\mathrm{O}\mathrm{A}/0508223$

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY op TOKYO, KOMABA, 153-8914$E$-mail address: narutakaQms. $\mathrm{u}$-tokyo. $\mathrm{a}\mathrm{c}$ . jp

40