222
Universit` a di Napoli Federico II Dottorato di Ricerca in Ingegneria delle Costruzioni Coordinatore prof. Luciano Rosati Giovanni Romano DIST – Dipartimento di Ingegneria STrutturale Seminari 27-29 Giugno - 2 Luglio 2012

to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

  • Upload
    vuminh

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Universita di Napoli Federico II

Dottorato di Ricerca inIngegneria delle Costruzioni

Coordinatore prof. Luciano Rosati

Giovanni Romano

DIST – Dipartimento di Ingegneria STrutturale

Seminari 27-29 Giugno - 2 Luglio 2012

Page 2: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

The Geometric Approach toNon-Linear Continuum Mechanics

Linearized Continuum Mechanics (LCM) can be modeled byLinear Algebra (LA) and Calculus on Linear Spaces (CoLS).

Non-Linear Continuum Mechanics (NLCM) calls instead forDifferential Geometry (DG) and Calculus on Manifolds (CoM)as natural tools to develop theoretical and computational models.

1

Page 3: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

The Geometric Approach toNon-Linear Continuum Mechanics

Linearized Continuum Mechanics (LCM) can be modeled byLinear Algebra (LA) and Calculus on Linear Spaces (CoLS).

Non-Linear Continuum Mechanics (NLCM) calls instead forDifferential Geometry (DG) and Calculus on Manifolds (CoM)as natural tools to develop theoretical and computational models.

1

Page 4: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

The Geometric Approach toNon-Linear Continuum Mechanics

Linearized Continuum Mechanics (LCM) can be modeled byLinear Algebra (LA) and Calculus on Linear Spaces (CoLS).

Non-Linear Continuum Mechanics (NLCM) calls instead forDifferential Geometry (DG) and Calculus on Manifolds (CoM)as natural tools to develop theoretical and computational models.

1

Page 5: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Prolegomena

Hermann Weyl (1885–1955)

In these days the angel of topology and the devil of abstractalgebra fight for the soul of each individual mathematicaldomain.

H. Weyl, ”Invariants”, Duke Mathematical Journal 5 (3): (1939) 489–502

Adapted to NLCMIn these days the angel of differential geometry and the devil of algebra

and calculus on linear spaces fight for the soul of each individual

continuum mechanics domain.

This lecture is in support of the angel.Differential Geometry provides the tools to fly higher and see what beforewas shadowed or completely hidden.

Page 6: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Prolegomena

Hermann Weyl (1885–1955)

In these days the angel of topology and the devil of abstractalgebra fight for the soul of each individual mathematicaldomain.

H. Weyl, ”Invariants”, Duke Mathematical Journal 5 (3): (1939) 489–502

Adapted to NLCMIn these days the angel of differential geometry and the devil of algebra

and calculus on linear spaces fight for the soul of each individual

continuum mechanics domain.

This lecture is in support of the angel.Differential Geometry provides the tools to fly higher and see what beforewas shadowed or completely hidden.

Page 7: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Prolegomena

Hermann Weyl (1885–1955)

In these days the angel of topology and the devil of abstractalgebra fight for the soul of each individual mathematicaldomain.

H. Weyl, ”Invariants”, Duke Mathematical Journal 5 (3): (1939) 489–502

Adapted to NLCMIn these days the angel of differential geometry and the devil of algebra

and calculus on linear spaces fight for the soul of each individual

continuum mechanics domain.

This lecture is in support of the angel.Differential Geometry provides the tools to fly higher and see what beforewas shadowed or completely hidden.

Page 8: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Prolegomena

Hermann Weyl (1885–1955)

In these days the angel of topology and the devil of abstractalgebra fight for the soul of each individual mathematicaldomain.

H. Weyl, ”Invariants”, Duke Mathematical Journal 5 (3): (1939) 489–502

Adapted to NLCMIn these days the angel of differential geometry and the devil of algebra

and calculus on linear spaces fight for the soul of each individual

continuum mechanics domain.

This lecture is in support of the angel.

Differential Geometry provides the tools to fly higher and see what beforewas shadowed or completely hidden.

Page 9: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Prolegomena

Hermann Weyl (1885–1955)

In these days the angel of topology and the devil of abstractalgebra fight for the soul of each individual mathematicaldomain.

H. Weyl, ”Invariants”, Duke Mathematical Journal 5 (3): (1939) 489–502

Adapted to NLCMIn these days the angel of differential geometry and the devil of algebra

and calculus on linear spaces fight for the soul of each individual

continuum mechanics domain.

This lecture is in support of the angel.Differential Geometry provides the tools to fly higher and see what beforewas shadowed or completely hidden.

Page 10: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

A basic question in NLCM

I How to compare material tensors at corresponding points in displacedconfigurations of a body?

I Devil’s temptation:

In 3D bodies it might seem as natural to compare by translation theinvolved material vectors.This is tacitly done in literature, when evaluating the materialtime-derivative of the stress tensor T :

T(p, t) := ∂τ=t T(p, τ)

or the material time-derivative of the director n of a nematic liquidcrystal:

n(p, t) := ∂τ=t n(p, τ)

These definitions are connection dependent and geometricallyuntenable when considering 1D and 2D models (wires andmembranes).

I Hint: Tangent vectors to a body placement are transformed into tangentvectors to another body placement by the tangent displacement map.This is the essence of the GEOMETRIC PARADIGM.

Page 11: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

A basic question in NLCM

I How to compare material tensors at corresponding points in displacedconfigurations of a body?

I Devil’s temptation:

In 3D bodies it might seem as natural to compare by translation theinvolved material vectors.This is tacitly done in literature, when evaluating the materialtime-derivative of the stress tensor T :

T(p, t) := ∂τ=t T(p, τ)

or the material time-derivative of the director n of a nematic liquidcrystal:

n(p, t) := ∂τ=t n(p, τ)

These definitions are connection dependent and geometricallyuntenable when considering 1D and 2D models (wires andmembranes).

I Hint: Tangent vectors to a body placement are transformed into tangentvectors to another body placement by the tangent displacement map.This is the essence of the GEOMETRIC PARADIGM.

Page 12: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

A basic question in NLCM

I How to compare material tensors at corresponding points in displacedconfigurations of a body?

I Devil’s temptation:

In 3D bodies it might seem as natural to compare by translation theinvolved material vectors.This is tacitly done in literature, when evaluating the materialtime-derivative of the stress tensor T :

T(p, t) := ∂τ=t T(p, τ)

or the material time-derivative of the director n of a nematic liquidcrystal:

n(p, t) := ∂τ=t n(p, τ)

These definitions are connection dependent and geometricallyuntenable when considering 1D and 2D models (wires andmembranes).

I Hint: Tangent vectors to a body placement are transformed into tangentvectors to another body placement by the tangent displacement map.This is the essence of the GEOMETRIC PARADIGM.

Page 13: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Basic requirements

DIMENSIONALITY INDEPENDENCE:A geometrically consistent theoretical framework should beequally applicable to body models of any dimension.

GEOMETRIC PARADIGM motivation1:

1G. Romano, R. Barretta, Covariant hypo-elasticity.Eur. J. Mech. A-Solids 30 (2011) 1012–1023DOI:10.1016/j.euromechsol.2011.05.005

Page 14: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Basic requirements

DIMENSIONALITY INDEPENDENCE:A geometrically consistent theoretical framework should beequally applicable to body models of any dimension.

GEOMETRIC PARADIGM motivation1:

1G. Romano, R. Barretta, Covariant hypo-elasticity.Eur. J. Mech. A-Solids 30 (2011) 1012–1023DOI:10.1016/j.euromechsol.2011.05.005

Page 15: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Basic requirements

DIMENSIONALITY INDEPENDENCE:A geometrically consistent theoretical framework should beequally applicable to body models of any dimension.

GEOMETRIC PARADIGM motivation1:

1G. Romano, R. Barretta, Covariant hypo-elasticity.Eur. J. Mech. A-Solids 30 (2011) 1012–1023DOI:10.1016/j.euromechsol.2011.05.005

Page 16: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Basic requirements

DIMENSIONALITY INDEPENDENCE:A geometrically consistent theoretical framework should beequally applicable to body models of any dimension.

GEOMETRIC PARADIGM motivation1:

1G. Romano, R. Barretta, Covariant hypo-elasticity.Eur. J. Mech. A-Solids 30 (2011) 1012–1023DOI:10.1016/j.euromechsol.2011.05.005

Page 17: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Basic requirements

DIMENSIONALITY INDEPENDENCE:A geometrically consistent theoretical framework should beequally applicable to body models of any dimension.

GEOMETRIC PARADIGM motivation1:

1G. Romano, R. Barretta, Covariant hypo-elasticity.Eur. J. Mech. A-Solids 30 (2011) 1012–1023DOI:10.1016/j.euromechsol.2011.05.005

Page 18: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math1

Tangent vector to a manifold:

velocity of a curve c ∈ C1([a, b] ; M) , λ ∈ [a, b] , x = c(λ) base point

v := ∂µ=λ c(µ) ∈ TxMCotangent vector:

v∗ ∈ L (TxM ;R) ∈ T∗x M

Tangent map:

I A map ζ ∈ C1(M ; N) sendsa curve c ∈ C1([a, b] ; M) intoa curve ζ c ∈ C1([a, b] ; N) .

I The tangent map Txζ ∈ C0(TxM ; Tζ(x)N)sends a tangent vector at x ∈ Mv ∈ Tx(M) := ∂µ=λ c(µ)into a tangent vector at ζ(x) ∈ NTxζ · v ∈ Tζ(x)(N) := ∂µ=λ (ζ c)(µ)

Page 19: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math1

Tangent vector to a manifold:velocity of a curve c ∈ C1([a, b] ; M) , λ ∈ [a, b] , x = c(λ) base point

v := ∂µ=λ c(µ) ∈ TxM

Cotangent vector:v∗ ∈ L (TxM ;R) ∈ T∗x M

Tangent map:

I A map ζ ∈ C1(M ; N) sendsa curve c ∈ C1([a, b] ; M) intoa curve ζ c ∈ C1([a, b] ; N) .

I The tangent map Txζ ∈ C0(TxM ; Tζ(x)N)sends a tangent vector at x ∈ Mv ∈ Tx(M) := ∂µ=λ c(µ)into a tangent vector at ζ(x) ∈ NTxζ · v ∈ Tζ(x)(N) := ∂µ=λ (ζ c)(µ)

Page 20: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math1

Tangent vector to a manifold:velocity of a curve c ∈ C1([a, b] ; M) , λ ∈ [a, b] , x = c(λ) base point

v := ∂µ=λ c(µ) ∈ TxMCotangent vector:

v∗ ∈ L (TxM ;R) ∈ T∗x M

Tangent map:

I A map ζ ∈ C1(M ; N) sendsa curve c ∈ C1([a, b] ; M) intoa curve ζ c ∈ C1([a, b] ; N) .

I The tangent map Txζ ∈ C0(TxM ; Tζ(x)N)sends a tangent vector at x ∈ Mv ∈ Tx(M) := ∂µ=λ c(µ)into a tangent vector at ζ(x) ∈ NTxζ · v ∈ Tζ(x)(N) := ∂µ=λ (ζ c)(µ)

Page 21: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math1

Tangent vector to a manifold:velocity of a curve c ∈ C1([a, b] ; M) , λ ∈ [a, b] , x = c(λ) base point

v := ∂µ=λ c(µ) ∈ TxMCotangent vector:

v∗ ∈ L (TxM ;R) ∈ T∗x M

Tangent map:

I A map ζ ∈ C1(M ; N) sendsa curve c ∈ C1([a, b] ; M) intoa curve ζ c ∈ C1([a, b] ; N) .

I The tangent map Txζ ∈ C0(TxM ; Tζ(x)N)sends a tangent vector at x ∈ Mv ∈ Tx(M) := ∂µ=λ c(µ)into a tangent vector at ζ(x) ∈ NTxζ · v ∈ Tζ(x)(N) := ∂µ=λ (ζ c)(µ)

Page 22: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math1

Tangent vector to a manifold:velocity of a curve c ∈ C1([a, b] ; M) , λ ∈ [a, b] , x = c(λ) base point

v := ∂µ=λ c(µ) ∈ TxMCotangent vector:

v∗ ∈ L (TxM ;R) ∈ T∗x M

Tangent map:

I A map ζ ∈ C1(M ; N) sendsa curve c ∈ C1([a, b] ; M) intoa curve ζ c ∈ C1([a, b] ; N) .

I The tangent map Txζ ∈ C0(TxM ; Tζ(x)N)sends a tangent vector at x ∈ Mv ∈ Tx(M) := ∂µ=λ c(µ)into a tangent vector at ζ(x) ∈ NTxζ · v ∈ Tζ(x)(N) := ∂µ=λ (ζ c)(µ)

Page 23: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math1

Tangent vector to a manifold:velocity of a curve c ∈ C1([a, b] ; M) , λ ∈ [a, b] , x = c(λ) base point

v := ∂µ=λ c(µ) ∈ TxMCotangent vector:

v∗ ∈ L (TxM ;R) ∈ T∗x M

Tangent map:

I A map ζ ∈ C1(M ; N) sendsa curve c ∈ C1([a, b] ; M) intoa curve ζ c ∈ C1([a, b] ; N) .

I The tangent map Txζ ∈ C0(TxM ; Tζ(x)N)sends a tangent vector at x ∈ Mv ∈ Tx(M) := ∂µ=λ c(µ)into a tangent vector at ζ(x) ∈ NTxζ · v ∈ Tζ(x)(N) := ∂µ=λ (ζ c)(µ)

Page 24: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math2

Tangent bundle

I disjoint union of tangent spaces:

TM := ∪x∈MTxM

I Projection: τM ∈ C1(TM ; M)

v ∈ TxM , τM(v) := x base point

I Surjective submersion:

TvτM ∈ C1(TvTM ; TxM) is surjective

I Tangent functor

ζ ∈ C1(M ; N) 7→ Tζ ∈ C0(TM ; TN)

Page 25: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math2

Tangent bundle

I disjoint union of tangent spaces:

TM := ∪x∈MTxM

I Projection: τM ∈ C1(TM ; M)

v ∈ TxM , τM(v) := x base point

I Surjective submersion:

TvτM ∈ C1(TvTM ; TxM) is surjective

I Tangent functor

ζ ∈ C1(M ; N) 7→ Tζ ∈ C0(TM ; TN)

Page 26: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math2

Tangent bundle

I disjoint union of tangent spaces:

TM := ∪x∈MTxM

I Projection: τM ∈ C1(TM ; M)

v ∈ TxM , τM(v) := x base point

I Surjective submersion:

TvτM ∈ C1(TvTM ; TxM) is surjective

I Tangent functor

ζ ∈ C1(M ; N) 7→ Tζ ∈ C0(TM ; TN)

Page 27: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math2

Tangent bundle

I disjoint union of tangent spaces:

TM := ∪x∈MTxM

I Projection: τM ∈ C1(TM ; M)

v ∈ TxM , τM(v) := x base point

I Surjective submersion:

TvτM ∈ C1(TvTM ; TxM) is surjective

I Tangent functor

ζ ∈ C1(M ; N) 7→ Tζ ∈ C0(TM ; TN)

Page 28: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math2

Tangent bundle

I disjoint union of tangent spaces:

TM := ∪x∈MTxM

I Projection: τM ∈ C1(TM ; M)

v ∈ TxM , τM(v) := x base point

I Surjective submersion:

TvτM ∈ C1(TvTM ; TxM) is surjective

I Tangent functor

ζ ∈ C1(M ; N) 7→ Tζ ∈ C0(TM ; TN)

Page 29: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math2

Tangent bundle

I disjoint union of tangent spaces:

TM := ∪x∈MTxM

I Projection: τM ∈ C1(TM ; M)

v ∈ TxM , τM(v) := x base point

I Surjective submersion:

TvτM ∈ C1(TvTM ; TxM) is surjective

I Tangent functor

ζ ∈ C1(M ; N) 7→ Tζ ∈ C0(TM ; TN)

Page 30: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math3

Fiber bundles

I E,M manifolds

I Fiber bundle projection:πM,E ∈ C1(E ; M) surjective submersion

I Total space: E

I Base space: MI Fiber manifold: (πM,E(x))−1 based at x ∈M

I Tangent bundle TπM,E ∈ C0(TE ; TM)

I Vertical tangent subbundle TπM,E ∈ C0(VE ; TM) with:

δe ∈ VE ⊂ TE =⇒ TeπM,E · δe = 0

Page 31: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math3

Fiber bundles

I E,M manifolds

I Fiber bundle projection:πM,E ∈ C1(E ; M) surjective submersion

I Total space: E

I Base space: MI Fiber manifold: (πM,E(x))−1 based at x ∈M

I Tangent bundle TπM,E ∈ C0(TE ; TM)

I Vertical tangent subbundle TπM,E ∈ C0(VE ; TM) with:

δe ∈ VE ⊂ TE =⇒ TeπM,E · δe = 0

Page 32: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math3

Fiber bundles

I E,M manifolds

I Fiber bundle projection:πM,E ∈ C1(E ; M) surjective submersion

I Total space: E

I Base space: MI Fiber manifold: (πM,E(x))−1 based at x ∈M

I Tangent bundle TπM,E ∈ C0(TE ; TM)

I Vertical tangent subbundle TπM,E ∈ C0(VE ; TM) with:

δe ∈ VE ⊂ TE =⇒ TeπM,E · δe = 0

Page 33: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math3

Fiber bundles

I E,M manifolds

I Fiber bundle projection:πM,E ∈ C1(E ; M) surjective submersion

I Total space: E

I Base space: MI Fiber manifold: (πM,E(x))−1 based at x ∈M

I Tangent bundle TπM,E ∈ C0(TE ; TM)

I Vertical tangent subbundle TπM,E ∈ C0(VE ; TM) with:

δe ∈ VE ⊂ TE =⇒ TeπM,E · δe = 0

Page 34: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math3

Fiber bundles

I E,M manifolds

I Fiber bundle projection:πM,E ∈ C1(E ; M) surjective submersion

I Total space: E

I Base space: MI Fiber manifold: (πM,E(x))−1 based at x ∈M

I Tangent bundle TπM,E ∈ C0(TE ; TM)

I Vertical tangent subbundle TπM,E ∈ C0(VE ; TM) with:

δe ∈ VE ⊂ TE =⇒ TeπM,E · δe = 0

Page 35: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math3

Fiber bundles

I E,M manifolds

I Fiber bundle projection:πM,E ∈ C1(E ; M) surjective submersion

I Total space: E

I Base space: MI Fiber manifold: (πM,E(x))−1 based at x ∈M

I Tangent bundle TπM,E ∈ C0(TE ; TM)

I Vertical tangent subbundle TπM,E ∈ C0(VE ; TM) with:

δe ∈ VE ⊂ TE =⇒ TeπM,E · δe = 0

Page 36: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math3

Fiber bundles

I E,M manifolds

I Fiber bundle projection:πM,E ∈ C1(E ; M) surjective submersion

I Total space: E

I Base space: MI Fiber manifold: (πM,E(x))−1 based at x ∈M

I Tangent bundle TπM,E ∈ C0(TE ; TM)

I Vertical tangent subbundle TπM,E ∈ C0(VE ; TM)

with:

δe ∈ VE ⊂ TE =⇒ TeπM,E · δe = 0

Page 37: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math3

Fiber bundles

I E,M manifolds

I Fiber bundle projection:πM,E ∈ C1(E ; M) surjective submersion

I Total space: E

I Base space: MI Fiber manifold: (πM,E(x))−1 based at x ∈M

I Tangent bundle TπM,E ∈ C0(TE ; TM)

I Vertical tangent subbundle TπM,E ∈ C0(VE ; TM) with:

δe ∈ VE ⊂ TE =⇒ TeπM,E · δe = 0

Page 38: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math4

Trivial andnon-trivialfiber bundles

Torus Listing-Mobius strip Klein Bottle

Page 39: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math4

Trivial andnon-trivialfiber bundles

Torus Listing-Mobius strip Klein Bottle

Page 40: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math4

Trivial andnon-trivialfiber bundles

Torus Listing-Mobius strip Klein Bottle

Page 41: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math4

Trivial andnon-trivialfiber bundles

Torus Listing-Mobius strip Klein Bottle

Page 42: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math5

Sections of fiber bundles

I Fiber bundle πM,E ∈ C1(E ; M)

I Sections sE,M ∈ C1(M ; E) , πM,E sE,M = idM

I Tangent v.f. vE ∈ C1(E ; TE) , τE vE = idE

I Vertical tangent sections TπM,E vE = 0

Sections of tangent and bi-tangent bundles

I Tangent vector fields:

v ∈ C1(M ; TM) : τM v = idM

I Bi-tangent vector fields:

X ∈ C1(TM ; TTM) : τTM X = idTM

I Vertical bi-tangent vectors X ∈ KerTvτM

Page 43: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math5

Sections of fiber bundlesI Fiber bundle πM,E ∈ C1(E ; M)

I Sections sE,M ∈ C1(M ; E) , πM,E sE,M = idM

I Tangent v.f. vE ∈ C1(E ; TE) , τE vE = idE

I Vertical tangent sections TπM,E vE = 0

Sections of tangent and bi-tangent bundles

I Tangent vector fields:

v ∈ C1(M ; TM) : τM v = idM

I Bi-tangent vector fields:

X ∈ C1(TM ; TTM) : τTM X = idTM

I Vertical bi-tangent vectors X ∈ KerTvτM

Page 44: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math5

Sections of fiber bundlesI Fiber bundle πM,E ∈ C1(E ; M)

I Sections sE,M ∈ C1(M ; E) , πM,E sE,M = idM

I Tangent v.f. vE ∈ C1(E ; TE) , τE vE = idE

I Vertical tangent sections TπM,E vE = 0

Sections of tangent and bi-tangent bundles

I Tangent vector fields:

v ∈ C1(M ; TM) : τM v = idM

I Bi-tangent vector fields:

X ∈ C1(TM ; TTM) : τTM X = idTM

I Vertical bi-tangent vectors X ∈ KerTvτM

Page 45: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math5

Sections of fiber bundlesI Fiber bundle πM,E ∈ C1(E ; M)

I Sections sE,M ∈ C1(M ; E) , πM,E sE,M = idM

I Tangent v.f. vE ∈ C1(E ; TE) , τE vE = idE

I Vertical tangent sections TπM,E vE = 0

Sections of tangent and bi-tangent bundles

I Tangent vector fields:

v ∈ C1(M ; TM) : τM v = idM

I Bi-tangent vector fields:

X ∈ C1(TM ; TTM) : τTM X = idTM

I Vertical bi-tangent vectors X ∈ KerTvτM

Page 46: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math5

Sections of fiber bundlesI Fiber bundle πM,E ∈ C1(E ; M)

I Sections sE,M ∈ C1(M ; E) , πM,E sE,M = idM

I Tangent v.f. vE ∈ C1(E ; TE) , τE vE = idE

I Vertical tangent sections TπM,E vE = 0

Sections of tangent and bi-tangent bundles

I Tangent vector fields:

v ∈ C1(M ; TM) : τM v = idM

I Bi-tangent vector fields:

X ∈ C1(TM ; TTM) : τTM X = idTM

I Vertical bi-tangent vectors X ∈ KerTvτM

Page 47: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math5

Sections of fiber bundlesI Fiber bundle πM,E ∈ C1(E ; M)

I Sections sE,M ∈ C1(M ; E) , πM,E sE,M = idM

I Tangent v.f. vE ∈ C1(E ; TE) , τE vE = idE

I Vertical tangent sections TπM,E vE = 0

Sections of tangent and bi-tangent bundles

I Tangent vector fields:

v ∈ C1(M ; TM) : τM v = idM

I Bi-tangent vector fields:

X ∈ C1(TM ; TTM) : τTM X = idTM

I Vertical bi-tangent vectors X ∈ KerTvτM

Page 48: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math5

Sections of fiber bundlesI Fiber bundle πM,E ∈ C1(E ; M)

I Sections sE,M ∈ C1(M ; E) , πM,E sE,M = idM

I Tangent v.f. vE ∈ C1(E ; TE) , τE vE = idE

I Vertical tangent sections TπM,E vE = 0

Sections of tangent and bi-tangent bundles

I Tangent vector fields:

v ∈ C1(M ; TM) : τM v = idM

I Bi-tangent vector fields:

X ∈ C1(TM ; TTM) : τTM X = idTM

I Vertical bi-tangent vectors X ∈ KerTvτM

Page 49: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math5

Sections of fiber bundlesI Fiber bundle πM,E ∈ C1(E ; M)

I Sections sE,M ∈ C1(M ; E) , πM,E sE,M = idM

I Tangent v.f. vE ∈ C1(E ; TE) , τE vE = idE

I Vertical tangent sections TπM,E vE = 0

Sections of tangent and bi-tangent bundles

I Tangent vector fields:

v ∈ C1(M ; TM) : τM v = idM

I Bi-tangent vector fields:

X ∈ C1(TM ; TTM) : τTM X = idTM

I Vertical bi-tangent vectors X ∈ KerTvτM

Page 50: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math5

Sections of fiber bundlesI Fiber bundle πM,E ∈ C1(E ; M)

I Sections sE,M ∈ C1(M ; E) , πM,E sE,M = idM

I Tangent v.f. vE ∈ C1(E ; TE) , τE vE = idE

I Vertical tangent sections TπM,E vE = 0

Sections of tangent and bi-tangent bundles

I Tangent vector fields:

v ∈ C1(M ; TM) : τM v = idM

I Bi-tangent vector fields:

X ∈ C1(TM ; TTM) : τTM X = idTM

I Vertical bi-tangent vectors X ∈ KerTvτM

Page 51: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math6

Tensor spaces

I Covariant sCovx ∈ Covx(TM) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sConx ∈ Conx(TM) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMixx ∈Mixx(TM) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I with the alteration rules:

sCovx = gx sMix

x , sConx = sMix

x g−1x

Tensor bundles and sectionsI Tensor bundle τTens

M ∈ C1(Tens(TM) ; M)

I Tensor field sTensM ∈ C1(M ; Tens(TM))

I with: τTensM sTens

M = idM

Page 52: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math6

Tensor spaces

I Covariant sCovx ∈ Covx(TM) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sConx ∈ Conx(TM) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMixx ∈Mixx(TM) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I with the alteration rules:

sCovx = gx sMix

x , sConx = sMix

x g−1x

Tensor bundles and sectionsI Tensor bundle τTens

M ∈ C1(Tens(TM) ; M)

I Tensor field sTensM ∈ C1(M ; Tens(TM))

I with: τTensM sTens

M = idM

Page 53: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math6

Tensor spaces

I Covariant sCovx ∈ Covx(TM) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sConx ∈ Conx(TM) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMixx ∈Mixx(TM) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I with the alteration rules:

sCovx = gx sMix

x , sConx = sMix

x g−1x

Tensor bundles and sectionsI Tensor bundle τTens

M ∈ C1(Tens(TM) ; M)

I Tensor field sTensM ∈ C1(M ; Tens(TM))

I with: τTensM sTens

M = idM

Page 54: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math6

Tensor spaces

I Covariant sCovx ∈ Covx(TM) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sConx ∈ Conx(TM) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMixx ∈Mixx(TM) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I with the alteration rules:

sCovx = gx sMix

x , sConx = sMix

x g−1x

Tensor bundles and sectionsI Tensor bundle τTens

M ∈ C1(Tens(TM) ; M)

I Tensor field sTensM ∈ C1(M ; Tens(TM))

I with: τTensM sTens

M = idM

Page 55: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math6

Tensor spaces

I Covariant sCovx ∈ Covx(TM) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sConx ∈ Conx(TM) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMixx ∈Mixx(TM) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I with the alteration rules:

sCovx = gx sMix

x , sConx = sMix

x g−1x

Tensor bundles and sectionsI Tensor bundle τTens

M ∈ C1(Tens(TM) ; M)

I Tensor field sTensM ∈ C1(M ; Tens(TM))

I with: τTensM sTens

M = idM

Page 56: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math6

Tensor spaces

I Covariant sCovx ∈ Covx(TM) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sConx ∈ Conx(TM) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMixx ∈Mixx(TM) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I with the alteration rules:

sCovx = gx sMix

x , sConx = sMix

x g−1x

Tensor bundles and sections

I Tensor bundle τTensM ∈ C1(Tens(TM) ; M)

I Tensor field sTensM ∈ C1(M ; Tens(TM))

I with: τTensM sTens

M = idM

Page 57: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math6

Tensor spaces

I Covariant sCovx ∈ Covx(TM) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sConx ∈ Conx(TM) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMixx ∈Mixx(TM) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I with the alteration rules:

sCovx = gx sMix

x , sConx = sMix

x g−1x

Tensor bundles and sectionsI Tensor bundle τTens

M ∈ C1(Tens(TM) ; M)

I Tensor field sTensM ∈ C1(M ; Tens(TM))

I with: τTensM sTens

M = idM

Page 58: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math6

Tensor spaces

I Covariant sCovx ∈ Covx(TM) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sConx ∈ Conx(TM) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMixx ∈Mixx(TM) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I with the alteration rules:

sCovx = gx sMix

x , sConx = sMix

x g−1x

Tensor bundles and sectionsI Tensor bundle τTens

M ∈ C1(Tens(TM) ; M)

I Tensor field sTensM ∈ C1(M ; Tens(TM))

I with: τTensM sTens

M = idM

Page 59: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math6

Tensor spaces

I Covariant sCovx ∈ Covx(TM) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sConx ∈ Conx(TM) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMixx ∈Mixx(TM) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I with the alteration rules:

sCovx = gx sMix

x , sConx = sMix

x g−1x

Tensor bundles and sectionsI Tensor bundle τTens

M ∈ C1(Tens(TM) ; M)

I Tensor field sTensM ∈ C1(M ; Tens(TM))

I with: τTensM sTens

M = idM

Page 60: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math7

Push and pull

Given a map ζ ∈ C1(M ; N)

I Pull-back of a scalar field

f : N 7→ Fun(N) 7→ ζ↓f : M 7→ Fun(M)

defined by:(ζ↓f )x := ζ↓fζ(x) := fζ(x) ∈ Funx(M) .

I Push-forward of a tangent vector field

v ∈ C1(M ; TM) 7→ ζ↑v : N 7→ TN

defined by:(ζ↑v)ζ(x) := ζ↑vx = Txζ · vx ∈ Tζ(x)N .

Page 61: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math7

Push and pullGiven a map ζ ∈ C1(M ; N)

I Pull-back of a scalar field

f : N 7→ Fun(N) 7→ ζ↓f : M 7→ Fun(M)

defined by:(ζ↓f )x := ζ↓fζ(x) := fζ(x) ∈ Funx(M) .

I Push-forward of a tangent vector field

v ∈ C1(M ; TM) 7→ ζ↑v : N 7→ TN

defined by:(ζ↑v)ζ(x) := ζ↑vx = Txζ · vx ∈ Tζ(x)N .

Page 62: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math7

Push and pullGiven a map ζ ∈ C1(M ; N)

I Pull-back of a scalar field

f : N 7→ Fun(N) 7→ ζ↓f : M 7→ Fun(M)

defined by:(ζ↓f )x := ζ↓fζ(x) := fζ(x) ∈ Funx(M) .

I Push-forward of a tangent vector field

v ∈ C1(M ; TM) 7→ ζ↑v : N 7→ TN

defined by:(ζ↑v)ζ(x) := ζ↑vx = Txζ · vx ∈ Tζ(x)N .

Page 63: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math8

Push and pull of tensor fields

I Covectors

〈ζ↓v∗ζ(x), vx 〉 = 〈v∗ζ(x), ζ↑vx 〉 = 〈T ∗ζ(x)ζ v∗ζ(x), vx 〉

I Covariant tensors

ζ↓sCovζ(x) = T ∗ζ(x)ζ sCov

ζ(x) Txζ ∈ Cov(TM)x

I Contravariant tensors

ζ↑sConx = Txζ sCon

x T ∗ζ(x)ζ ∈ Con(TN)ζ(x)

I Mixed tensors

ζ↑sMixx = Txζ sMix

x Tζ(x)ζ−1 ∈Mix(TN)ζ(x)

Page 64: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math8

Push and pull of tensor fields

I Covectors

〈ζ↓v∗ζ(x), vx 〉 = 〈v∗ζ(x), ζ↑vx 〉 = 〈T ∗ζ(x)ζ v∗ζ(x), vx 〉

I Covariant tensors

ζ↓sCovζ(x) = T ∗ζ(x)ζ sCov

ζ(x) Txζ ∈ Cov(TM)x

I Contravariant tensors

ζ↑sConx = Txζ sCon

x T ∗ζ(x)ζ ∈ Con(TN)ζ(x)

I Mixed tensors

ζ↑sMixx = Txζ sMix

x Tζ(x)ζ−1 ∈Mix(TN)ζ(x)

Page 65: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math8

Push and pull of tensor fields

I Covectors

〈ζ↓v∗ζ(x), vx 〉 = 〈v∗ζ(x), ζ↑vx 〉 = 〈T ∗ζ(x)ζ v∗ζ(x), vx 〉

I Covariant tensors

ζ↓sCovζ(x) = T ∗ζ(x)ζ sCov

ζ(x) Txζ ∈ Cov(TM)x

I Contravariant tensors

ζ↑sConx = Txζ sCon

x T ∗ζ(x)ζ ∈ Con(TN)ζ(x)

I Mixed tensors

ζ↑sMixx = Txζ sMix

x Tζ(x)ζ−1 ∈Mix(TN)ζ(x)

Page 66: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math8

Push and pull of tensor fields

I Covectors

〈ζ↓v∗ζ(x), vx 〉 = 〈v∗ζ(x), ζ↑vx 〉 = 〈T ∗ζ(x)ζ v∗ζ(x), vx 〉

I Covariant tensors

ζ↓sCovζ(x) = T ∗ζ(x)ζ sCov

ζ(x) Txζ ∈ Cov(TM)x

I Contravariant tensors

ζ↑sConx = Txζ sCon

x T ∗ζ(x)ζ ∈ Con(TN)ζ(x)

I Mixed tensors

ζ↑sMixx = Txζ sMix

x Tζ(x)ζ−1 ∈Mix(TN)ζ(x)

Page 67: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math8

Push and pull of tensor fields

I Covectors

〈ζ↓v∗ζ(x), vx 〉 = 〈v∗ζ(x), ζ↑vx 〉 = 〈T ∗ζ(x)ζ v∗ζ(x), vx 〉

I Covariant tensors

ζ↓sCovζ(x) = T ∗ζ(x)ζ sCov

ζ(x) Txζ ∈ Cov(TM)x

I Contravariant tensors

ζ↑sConx = Txζ sCon

x T ∗ζ(x)ζ ∈ Con(TN)ζ(x)

I Mixed tensors

ζ↑sMixx = Txζ sMix

x Tζ(x)ζ−1 ∈Mix(TN)ζ(x)

Page 68: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math9Parallel transport along a curve c ∈ C1([a, b] ; M)

I Vector fields

x = c(µ) , vx ∈ TxM 7→ cλ,µ ⇑ vx ∈ Tc(λ)M

cµ,µ ⇑ vx = vx

cλ,µ ⇑ cµ,ν ⇑ = cλ,ν ⇑I Covector fields v∗x ∈ T∗xM (by naturality)

〈cλ,µ ⇑ v∗x , cλ,µ ⇑ vx 〉 = cλ,µ ⇑ 〈v∗x , vx 〉

I Tensor fields (by naturality)

Page 69: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math9Parallel transport along a curve c ∈ C1([a, b] ; M)

I Vector fields

x = c(µ) , vx ∈ TxM 7→ cλ,µ ⇑ vx ∈ Tc(λ)M

cµ,µ ⇑ vx = vx

cλ,µ ⇑ cµ,ν ⇑ = cλ,ν ⇑

I Covector fields v∗x ∈ T∗xM (by naturality)

〈cλ,µ ⇑ v∗x , cλ,µ ⇑ vx 〉 = cλ,µ ⇑ 〈v∗x , vx 〉

I Tensor fields (by naturality)

Page 70: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math9Parallel transport along a curve c ∈ C1([a, b] ; M)

I Vector fields

x = c(µ) , vx ∈ TxM 7→ cλ,µ ⇑ vx ∈ Tc(λ)M

cµ,µ ⇑ vx = vx

cλ,µ ⇑ cµ,ν ⇑ = cλ,ν ⇑I Covector fields v∗x ∈ T∗xM (by naturality)

〈cλ,µ ⇑ v∗x , cλ,µ ⇑ vx 〉 = cλ,µ ⇑ 〈v∗x , vx 〉

I Tensor fields (by naturality)

Page 71: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math9Parallel transport along a curve c ∈ C1([a, b] ; M)

I Vector fields

x = c(µ) , vx ∈ TxM 7→ cλ,µ ⇑ vx ∈ Tc(λ)M

cµ,µ ⇑ vx = vx

cλ,µ ⇑ cµ,ν ⇑ = cλ,ν ⇑I Covector fields v∗x ∈ T∗xM (by naturality)

〈cλ,µ ⇑ v∗x , cλ,µ ⇑ vx 〉 = cλ,µ ⇑ 〈v∗x , vx 〉

I Tensor fields (by naturality)

Gregorio Ricci-Curbastro (1853 - 1925)

Page 72: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math9Parallel transport along a curve c ∈ C1([a, b] ; M)

I Vector fields

x = c(µ) , vx ∈ TxM 7→ cλ,µ ⇑ vx ∈ Tc(λ)M

cµ,µ ⇑ vx = vx

cλ,µ ⇑ cµ,ν ⇑ = cλ,ν ⇑I Covector fields v∗x ∈ T∗xM (by naturality)

〈cλ,µ ⇑ v∗x , cλ,µ ⇑ vx 〉 = cλ,µ ⇑ 〈v∗x , vx 〉

I Tensor fields (by naturality)

Tullio Levi-Civita (1873 - 1941)

Page 73: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math10

Derivatives of a tensor fields ∈ C1(M ; Tens(TM))

along the flow of a tangent vector field

I Tangent vector fields and Flows

v ∈ C1(M ; TM) Flvλ ∈ C1(M ; M)

v := ∂λ=0 Flvλ

I Lie derivative - LD

Lv s := ∂λ=0 Flvλ↓ (s Flvλ)

I Parallel derivative - PD

∇v s := ∂λ=0 Flvλ ⇓ (s Flvλ)

Page 74: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math10

Derivatives of a tensor fields ∈ C1(M ; Tens(TM))

along the flow of a tangent vector field

I Tangent vector fields and Flows

v ∈ C1(M ; TM) Flvλ ∈ C1(M ; M)

v := ∂λ=0 Flvλ

I Lie derivative - LD

Lv s := ∂λ=0 Flvλ↓ (s Flvλ)

I Parallel derivative - PD

∇v s := ∂λ=0 Flvλ ⇓ (s Flvλ)

Page 75: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math10

Derivatives of a tensor fields ∈ C1(M ; Tens(TM))

along the flow of a tangent vector field

I Tangent vector fields and Flows

v ∈ C1(M ; TM) Flvλ ∈ C1(M ; M)

v := ∂λ=0 Flvλ

I Lie derivative - LD

Lv s := ∂λ=0 Flvλ↓ (s Flvλ)

I Parallel derivative - PD

∇v s := ∂λ=0 Flvλ ⇓ (s Flvλ)

Page 76: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math10

Derivatives of a tensor fields ∈ C1(M ; Tens(TM))

along the flow of a tangent vector field

I Tangent vector fields and Flows

v ∈ C1(M ; TM) Flvλ ∈ C1(M ; M)

v := ∂λ=0 Flvλ

I Lie derivative - LD

Lv s := ∂λ=0 Flvλ↓ (s Flvλ)

I Parallel derivative - PD

∇v s := ∂λ=0 Flvλ ⇓ (s Flvλ)

Page 77: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

Key contributions

C. Truesdell & W. Noll The non-linear field theories of mechanicsHandbuch der Physik, Springer (1965)

C. Truesdell A first Course in Rational Continuum MechanicsSecond Ed., Academic Press, New-York (1991). First Ed. (1977).

2) M.E. Gurtin An Introduction to Continuum MechanicsAcademic Press, San Diego (1981)

J.E. Marsden Lectures on Geometric Methods in Mathematical Physics, SIAM,Philadelphia, PA (1981), on line version July 22 (2009)

J.E. Marsden & T.J.R. Hughes Mathematical Foundations of ElasticityPrentice-Hall, Redwood City, Cal. (1983)

J.C. Simo A framework for finite strain elastoplasticity based on maximum plasticdissipation and the multiplicative decomposition: Continuum formulationComp. Meth. Appl. Mech. Eng. 66 (1988) 199–219.

G. Romano & R. Barretta Covariant hypo-elasticityEur. J. Mech. A-Solids 30 (2011) 1012–1023

G. Romano, R. Barretta, M. Diaco Basic Geometric Issues in Non-Linear ContinuumMechanics, preprint (2011).

Page 78: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

Key contributions

C. Truesdell & W. Noll The non-linear field theories of mechanicsHandbuch der Physik, Springer (1965)

C. Truesdell A first Course in Rational Continuum MechanicsSecond Ed., Academic Press, New-York (1991). First Ed. (1977).

2) M.E. Gurtin An Introduction to Continuum MechanicsAcademic Press, San Diego (1981)

J.E. Marsden Lectures on Geometric Methods in Mathematical Physics, SIAM,Philadelphia, PA (1981), on line version July 22 (2009)

J.E. Marsden & T.J.R. Hughes Mathematical Foundations of ElasticityPrentice-Hall, Redwood City, Cal. (1983)

J.C. Simo A framework for finite strain elastoplasticity based on maximum plasticdissipation and the multiplicative decomposition: Continuum formulationComp. Meth. Appl. Mech. Eng. 66 (1988) 199–219.

G. Romano & R. Barretta Covariant hypo-elasticityEur. J. Mech. A-Solids 30 (2011) 1012–1023

G. Romano, R. Barretta, M. Diaco Basic Geometric Issues in Non-Linear ContinuumMechanics, preprint (2011).

Page 79: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

Key contributions

C. Truesdell & W. Noll The non-linear field theories of mechanicsHandbuch der Physik, Springer (1965)

C. Truesdell A first Course in Rational Continuum MechanicsSecond Ed., Academic Press, New-York (1991). First Ed. (1977).

2) M.E. Gurtin An Introduction to Continuum MechanicsAcademic Press, San Diego (1981)

J.E. Marsden Lectures on Geometric Methods in Mathematical Physics, SIAM,Philadelphia, PA (1981), on line version July 22 (2009)

J.E. Marsden & T.J.R. Hughes Mathematical Foundations of ElasticityPrentice-Hall, Redwood City, Cal. (1983)

J.C. Simo A framework for finite strain elastoplasticity based on maximum plasticdissipation and the multiplicative decomposition: Continuum formulationComp. Meth. Appl. Mech. Eng. 66 (1988) 199–219.

G. Romano & R. Barretta Covariant hypo-elasticityEur. J. Mech. A-Solids 30 (2011) 1012–1023

G. Romano, R. Barretta, M. Diaco Basic Geometric Issues in Non-Linear ContinuumMechanics, preprint (2011).

Page 80: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

Key contributions

C. Truesdell & W. Noll The non-linear field theories of mechanicsHandbuch der Physik, Springer (1965)

C. Truesdell A first Course in Rational Continuum MechanicsSecond Ed., Academic Press, New-York (1991). First Ed. (1977).

2) M.E. Gurtin An Introduction to Continuum MechanicsAcademic Press, San Diego (1981)

J.E. Marsden Lectures on Geometric Methods in Mathematical Physics, SIAM,Philadelphia, PA (1981), on line version July 22 (2009)

J.E. Marsden & T.J.R. Hughes Mathematical Foundations of ElasticityPrentice-Hall, Redwood City, Cal. (1983)

J.C. Simo A framework for finite strain elastoplasticity based on maximum plasticdissipation and the multiplicative decomposition: Continuum formulationComp. Meth. Appl. Mech. Eng. 66 (1988) 199–219.

G. Romano & R. Barretta Covariant hypo-elasticityEur. J. Mech. A-Solids 30 (2011) 1012–1023

G. Romano, R. Barretta, M. Diaco Basic Geometric Issues in Non-Linear ContinuumMechanics, preprint (2011).

Page 81: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

Key contributions

C. Truesdell & W. Noll The non-linear field theories of mechanicsHandbuch der Physik, Springer (1965)

C. Truesdell A first Course in Rational Continuum MechanicsSecond Ed., Academic Press, New-York (1991). First Ed. (1977).

2) M.E. Gurtin An Introduction to Continuum MechanicsAcademic Press, San Diego (1981)

J.E. Marsden Lectures on Geometric Methods in Mathematical Physics, SIAM,Philadelphia, PA (1981), on line version July 22 (2009)

J.E. Marsden & T.J.R. Hughes Mathematical Foundations of ElasticityPrentice-Hall, Redwood City, Cal. (1983)

J.C. Simo A framework for finite strain elastoplasticity based on maximum plasticdissipation and the multiplicative decomposition: Continuum formulationComp. Meth. Appl. Mech. Eng. 66 (1988) 199–219.

G. Romano & R. Barretta Covariant hypo-elasticityEur. J. Mech. A-Solids 30 (2011) 1012–1023

G. Romano, R. Barretta, M. Diaco Basic Geometric Issues in Non-Linear ContinuumMechanics, preprint (2011).

Page 82: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

How to play the gameaccording to a full geometric approach

Kinematics

I Events manifold: E – four dimensional Riemann manifold

I Observer split into space-time: γ : E 7→ S × I

I time is absolute (Classical Mechanics)

I distance between simultaneous events 7→ space-metric

I distance between localized events 7→ time-metric

Page 83: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

How to play the gameaccording to a full geometric approach

Kinematics

I Events manifold: E – four dimensional Riemann manifold

I Observer split into space-time: γ : E 7→ S × I

I time is absolute (Classical Mechanics)

I distance between simultaneous events 7→ space-metric

I distance between localized events 7→ time-metric

Page 84: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

How to play the gameaccording to a full geometric approach

Kinematics

I Events manifold: E – four dimensional Riemann manifold

I Observer split into space-time: γ : E 7→ S × I

I time is absolute (Classical Mechanics)

I distance between simultaneous events 7→ space-metric

I distance between localized events 7→ time-metric

Page 85: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

How to play the gameaccording to a full geometric approach

Kinematics

I Events manifold: E – four dimensional Riemann manifold

I Observer split into space-time: γ : E 7→ S × I

I time is absolute (Classical Mechanics)

I distance between simultaneous events 7→ space-metric

I distance between localized events 7→ time-metric

Page 86: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

How to play the gameaccording to a full geometric approach

Kinematics

I Events manifold: E – four dimensional Riemann manifold

I Observer split into space-time: γ : E 7→ S × I

I time is absolute (Classical Mechanics)

I distance between simultaneous events 7→ space-metric

I distance between localized events 7→ time-metric

Page 87: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

How to play the gameaccording to a full geometric approach

Kinematics

I Events manifold: E – four dimensional Riemann manifold

I Observer split into space-time: γ : E 7→ S × I

I time is absolute (Classical Mechanics)

I distance between simultaneous events 7→ space-metric

I distance between localized events 7→ time-metric

Page 88: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

NLCM: Nonlinear Continuum Mechanics

How to play the gameaccording to a full geometric approach

Kinematics

I Events manifold: E – four dimensional Riemann manifold

I Observer split into space-time: γ : E 7→ S × I

I time is absolute (Classical Mechanics)

I distance between simultaneous events 7→ space-metric

I distance between localized events 7→ time-metric

Page 89: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math11

lenght of symplex’s edges

I Norm axioms

Ac

&&LLLLLLL

B

C

b

OO

a88rrrrrrr

‖a‖ ≥ 0 , ‖a‖ = 0 =⇒ a = 0

‖a‖+ ‖b‖ ≥ ‖c‖ triangle inequality,

‖α a‖ = |α| ‖a‖

I Parallelogram rule

Ba // C

A

b

FF a //

a+b

88qqqqqqqqqqqqqqD

b

EE

b−aYY3333333

‖a + b‖2 + ‖a− b‖2 = 2[‖a‖2 + ‖b‖2

]

Page 90: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math11

lenght of symplex’s edges

I Norm axioms

Ac

&&LLLLLLL

B

C

b

OO

a88rrrrrrr

‖a‖ ≥ 0 , ‖a‖ = 0 =⇒ a = 0

‖a‖+ ‖b‖ ≥ ‖c‖ triangle inequality,

‖α a‖ = |α| ‖a‖

I Parallelogram rule

Ba // C

A

b

FF a //

a+b

88qqqqqqqqqqqqqqD

b

EE

b−aYY3333333

‖a + b‖2 + ‖a− b‖2 = 2[‖a‖2 + ‖b‖2

]

Page 91: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math11

lenght of symplex’s edges

I Norm axioms

Ac

&&LLLLLLL

B

C

b

OO

a88rrrrrrr

‖a‖ ≥ 0 , ‖a‖ = 0 =⇒ a = 0

‖a‖+ ‖b‖ ≥ ‖c‖ triangle inequality,

‖α a‖ = |α| ‖a‖

I Parallelogram rule

Ba // C

A

b

FF a //

a+b

88qqqqqqqqqqqqqqD

b

EE

b−aYY3333333

‖a + b‖2 + ‖a− b‖2 = 2[‖a‖2 + ‖b‖2

]

Page 92: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math11

lenght of symplex’s edges

I Norm axioms

Ac

&&LLLLLLL

B

C

b

OO

a88rrrrrrr

‖a‖ ≥ 0 , ‖a‖ = 0 =⇒ a = 0

‖a‖+ ‖b‖ ≥ ‖c‖ triangle inequality,

‖α a‖ = |α| ‖a‖

I Parallelogram rule

Ba // C

A

b

FF a //

a+b

88qqqqqqqqqqqqqqD

b

EE

b−aYY3333333

‖a + b‖2 + ‖a− b‖2 = 2[‖a‖2 + ‖b‖2

]

Page 93: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math12

The metric tensor

I Theorem (Frechet – von Neumann – Jordan)

g(a ,b) :=1

4

[‖a + b‖2 − ‖a− b‖2

]

vol

( • // •

::ttttt // •

::ttttt

OO

// •

OO

• e1 //

e3

OO

e2::ttttt •

OO

::ttttt

)2

= det

g(e1 , e1) · · · g(e1 , e3)

· · · · · · · · ·g(e3 , e1) · · · g(e3 , e3)

Page 94: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math12The metric tensor

I Theorem (Frechet – von Neumann – Jordan)

g(a ,b) :=1

4

[‖a + b‖2 − ‖a− b‖2

]

vol

( • // •

::ttttt // •

::ttttt

OO

// •

OO

• e1 //

e3

OO

e2::ttttt •

OO

::ttttt

)2

= det

g(e1 , e1) · · · g(e1 , e3)

· · · · · · · · ·g(e3 , e1) · · · g(e3 , e3)

Page 95: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math12The metric tensor

I Theorem (Frechet – von Neumann – Jordan)

g(a ,b) :=1

4

[‖a + b‖2 − ‖a− b‖2

]

vol

( • // •

::ttttt // •

::ttttt

OO

// •

OO

• e1 //

e3

OO

e2::ttttt •

OO

::ttttt

)2

= det

g(e1 , e1) · · · g(e1 , e3)

· · · · · · · · ·g(e3 , e1) · · · g(e3 , e3)

Page 96: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math12The metric tensor

I Theorem (Frechet – von Neumann – Jordan)

g(a ,b) :=1

4

[‖a + b‖2 − ‖a− b‖2

]

vol

( • // •

::ttttt // •

::ttttt

OO

// •

OO

• e1 //

e3

OO

e2::ttttt •

OO

::ttttt

)2

= det

g(e1 , e1) · · · g(e1 , e3)

· · · · · · · · ·g(e3 , e1) · · · g(e3 , e3)

Maurice Rene Frechet (1878 - 1973)

Page 97: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math12The metric tensor

I Theorem (Frechet – von Neumann – Jordan)

g(a ,b) :=1

4

[‖a + b‖2 − ‖a− b‖2

]

vol

( • // •

::ttttt // •

::ttttt

OO

// •

OO

• e1 //

e3

OO

e2::ttttt •

OO

::ttttt

)2

= det

g(e1 , e1) · · · g(e1 , e3)

· · · · · · · · ·g(e3 , e1) · · · g(e3 , e3)

John von Neumann (1903 - 1957)

Page 98: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math12The metric tensor

I Theorem (Frechet – von Neumann – Jordan)

g(a ,b) :=1

4

[‖a + b‖2 − ‖a− b‖2

]

vol

( • // •

::ttttt // •

::ttttt

OO

// •

OO

• e1 //

e3

OO

e2::ttttt •

OO

::ttttt

)2

= det

g(e1 , e1) · · · g(e1 , e3)

· · · · · · · · ·g(e3 , e1) · · · g(e3 , e3)

Pascual Jordan (1902 - 1980)

Page 99: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Math12The metric tensor

I Theorem (Frechet – von Neumann – Jordan)

g(a ,b) :=1

4

[‖a + b‖2 − ‖a− b‖2

]

vol

( • // •

::ttttt // •

::ttttt

OO

// •

OO

• e1 //

e3

OO

e2::ttttt •

OO

::ttttt

)2

= det

g(e1 , e1) · · · g(e1 , e3)

· · · · · · · · ·g(e3 , e1) · · · g(e3 , e3)

Kosaku Yosida (1909 - 1990)

Page 100: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Events manifold fibrations

I Time and space fibrations: γ : E 7→ S × I (observer)

S oo idS // S

Eγ //

πI,E

πS,E

OO

S × IπI,(S×I )

πS,(S×I )

OO

I oo idI // I

⇐⇒πI ,E = πI ,(S×I ) γπS,E = πS,(S×I ) γ

I Space-time metric: gE := πS,E↓gS + πI ,E↓gI

I Time-vertical subbundle: spatial vectors

v ∈ VeE ⇐⇒ TeπI ,E · v = 0

I ve ∈ VeE ⇐⇒ γ↑ve = (vx,t , 0t) ∈ TxS × Tt I

Page 101: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Events manifold fibrations

I Time and space fibrations: γ : E 7→ S × I (observer)

S oo idS // S

Eγ //

πI,E

πS,E

OO

S × IπI,(S×I )

πS,(S×I )

OO

I oo idI // I

⇐⇒πI ,E = πI ,(S×I ) γπS,E = πS,(S×I ) γ

I Space-time metric: gE := πS,E↓gS + πI ,E↓gI

I Time-vertical subbundle: spatial vectors

v ∈ VeE ⇐⇒ TeπI ,E · v = 0

I ve ∈ VeE ⇐⇒ γ↑ve = (vx,t , 0t) ∈ TxS × Tt I

Page 102: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Events manifold fibrations

I Time and space fibrations: γ : E 7→ S × I (observer)

S oo idS // S

Eγ //

πI,E

πS,E

OO

S × IπI,(S×I )

πS,(S×I )

OO

I oo idI // I

⇐⇒πI ,E = πI ,(S×I ) γπS,E = πS,(S×I ) γ

I Space-time metric: gE := πS,E↓gS + πI ,E↓gI

I Time-vertical subbundle: spatial vectors

v ∈ VeE ⇐⇒ TeπI ,E · v = 0

I ve ∈ VeE ⇐⇒ γ↑ve = (vx,t , 0t) ∈ TxS × Tt I

Page 103: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Events manifold fibrations

I Time and space fibrations: γ : E 7→ S × I (observer)

S oo idS // S

Eγ //

πI,E

πS,E

OO

S × IπI,(S×I )

πS,(S×I )

OO

I oo idI // I

⇐⇒πI ,E = πI ,(S×I ) γπS,E = πS,(S×I ) γ

I Space-time metric: gE := πS,E↓gS + πI ,E↓gI

I Time-vertical subbundle: spatial vectors

v ∈ VeE ⇐⇒ TeπI ,E · v = 0

I ve ∈ VeE ⇐⇒ γ↑ve = (vx,t , 0t) ∈ TxS × Tt I

Page 104: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Events manifold fibrations

I Time and space fibrations: γ : E 7→ S × I (observer)

S oo idS // S

Eγ //

πI,E

πS,E

OO

S × IπI,(S×I )

πS,(S×I )

OO

I oo idI // I

⇐⇒πI ,E = πI ,(S×I ) γπS,E = πS,(S×I ) γ

I Space-time metric: gE := πS,E↓gS + πI ,E↓gI

I Time-vertical subbundle: spatial vectors

v ∈ VeE ⇐⇒ TeπI ,E · v = 0

I ve ∈ VeE ⇐⇒ γ↑ve = (vx,t , 0t) ∈ TxS × Tt I

Page 105: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Events manifold fibrations

I Time and space fibrations: γ : E 7→ S × I (observer)

S oo idS // S

Eγ //

πI,E

πS,E

OO

S × IπI,(S×I )

πS,(S×I )

OO

I oo idI // I

⇐⇒πI ,E = πI ,(S×I ) γπS,E = πS,(S×I ) γ

I Space-time metric: gE := πS,E↓gS + πI ,E↓gI

I Time-vertical subbundle: spatial vectors

v ∈ VeE ⇐⇒ TeπI ,E · v = 0

I ve ∈ VeE ⇐⇒ γ↑ve = (vx,t , 0t) ∈ TxS × Tt I

Page 106: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Trajectory

I Trajectory 7→ a manifold Tϕ with injective immersion in the eventstime-bundle: iE,Tϕ ∈ C1(Tϕ ; E)

I Trajectory metric: gTϕ := iTϕ,E↓gE

I Trajectory time-fibration πI ,Tϕ := πI ,E iE,TϕI time bundle 7→ fibers: body placements Ωt

I Trajectory space-fibration πS,Tϕ := πS,E iE,TϕI not a space bundle 7→ fibers: irregular subsets of the observation

time interval I

I Time-vertical subbundle: material vectors

v ∈ VeTϕ ⇐⇒ TeπI ,Tϕ · v = 0

Page 107: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Trajectory

I Trajectory 7→ a manifold Tϕ with injective immersion in the eventstime-bundle: iE,Tϕ ∈ C1(Tϕ ; E)

I Trajectory metric: gTϕ := iTϕ,E↓gE

I Trajectory time-fibration πI ,Tϕ := πI ,E iE,TϕI time bundle 7→ fibers: body placements Ωt

I Trajectory space-fibration πS,Tϕ := πS,E iE,TϕI not a space bundle 7→ fibers: irregular subsets of the observation

time interval I

I Time-vertical subbundle: material vectors

v ∈ VeTϕ ⇐⇒ TeπI ,Tϕ · v = 0

Page 108: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Trajectory

I Trajectory 7→ a manifold Tϕ with injective immersion in the eventstime-bundle: iE,Tϕ ∈ C1(Tϕ ; E)

I Trajectory metric: gTϕ := iTϕ,E↓gE

I Trajectory time-fibration πI ,Tϕ := πI ,E iE,TϕI time bundle 7→ fibers: body placements Ωt

I Trajectory space-fibration πS,Tϕ := πS,E iE,TϕI not a space bundle 7→ fibers: irregular subsets of the observation

time interval I

I Time-vertical subbundle: material vectors

v ∈ VeTϕ ⇐⇒ TeπI ,Tϕ · v = 0

Page 109: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Trajectory

I Trajectory 7→ a manifold Tϕ with injective immersion in the eventstime-bundle: iE,Tϕ ∈ C1(Tϕ ; E)

I Trajectory metric: gTϕ := iTϕ,E↓gE

I Trajectory time-fibration πI ,Tϕ := πI ,E iE,TϕI time bundle 7→ fibers: body placements Ωt

I Trajectory space-fibration πS,Tϕ := πS,E iE,TϕI not a space bundle 7→ fibers: irregular subsets of the observation

time interval I

I Time-vertical subbundle: material vectors

v ∈ VeTϕ ⇐⇒ TeπI ,Tϕ · v = 0

Page 110: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Trajectory

I Trajectory 7→ a manifold Tϕ with injective immersion in the eventstime-bundle: iE,Tϕ ∈ C1(Tϕ ; E)

I Trajectory metric: gTϕ := iTϕ,E↓gE

I Trajectory time-fibration πI ,Tϕ := πI ,E iE,TϕI time bundle 7→ fibers: body placements Ωt

I Trajectory space-fibration πS,Tϕ := πS,E iE,TϕI not a space bundle 7→ fibers: irregular subsets of the observation

time interval I

I Time-vertical subbundle: material vectors

v ∈ VeTϕ ⇐⇒ TeπI ,Tϕ · v = 0

Page 111: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Trajectory

I Trajectory 7→ a manifold Tϕ with injective immersion in the eventstime-bundle: iE,Tϕ ∈ C1(Tϕ ; E)

I Trajectory metric: gTϕ := iTϕ,E↓gE

I Trajectory time-fibration πI ,Tϕ := πI ,E iE,TϕI time bundle 7→ fibers: body placements Ωt

I Trajectory space-fibration πS,Tϕ := πS,E iE,TϕI not a space bundle 7→ fibers: irregular subsets of the observation

time interval I

I Time-vertical subbundle: material vectors

v ∈ VeTϕ ⇐⇒ TeπI ,Tϕ · v = 0

Page 112: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Evolution

I Evolution operator ϕTϕ

I Displacements: diffeomorphisms between placements

ϕTϕτ,t ∈ C1(Ωt ; Ωτ ) , τ, t ∈ I

I Law of determinism (Chapman-Kolmogorov):

ϕTϕτ,s = ϕ

Tϕτ,t ϕ

Tϕt,s

I Simultaneity of events is preserved:

πI ,Tϕ(ϕTϕτ,t (et)) = τ

I Trajectory speed:

vTϕ(et) := ∂τ=t ϕTϕτ,t (et) =⇒ TeπI ,Tϕ · vTϕ(et) = 1t

Page 113: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Evolution

I Evolution operator ϕTϕ

I Displacements: diffeomorphisms between placements

ϕTϕτ,t ∈ C1(Ωt ; Ωτ ) , τ, t ∈ I

I Law of determinism (Chapman-Kolmogorov):

ϕTϕτ,s = ϕ

Tϕτ,t ϕ

Tϕt,s

I Simultaneity of events is preserved:

πI ,Tϕ(ϕTϕτ,t (et)) = τ

I Trajectory speed:

vTϕ(et) := ∂τ=t ϕTϕτ,t (et) =⇒ TeπI ,Tϕ · vTϕ(et) = 1t

Page 114: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Evolution

I Evolution operator ϕTϕ

I Displacements: diffeomorphisms between placements

ϕTϕτ,t ∈ C1(Ωt ; Ωτ ) , τ, t ∈ I

I Law of determinism (Chapman-Kolmogorov):

ϕTϕτ,s = ϕ

Tϕτ,t ϕ

Tϕt,s

I Simultaneity of events is preserved:

πI ,Tϕ(ϕTϕτ,t (et)) = τ

I Trajectory speed:

vTϕ(et) := ∂τ=t ϕTϕτ,t (et) =⇒ TeπI ,Tϕ · vTϕ(et) = 1t

Page 115: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Evolution

I Evolution operator ϕTϕ

I Displacements: diffeomorphisms between placements

ϕTϕτ,t ∈ C1(Ωt ; Ωτ ) , τ, t ∈ I

I Law of determinism (Chapman-Kolmogorov):

ϕTϕτ,s = ϕ

Tϕτ,t ϕ

Tϕt,s

I Simultaneity of events is preserved:

πI ,Tϕ(ϕTϕτ,t (et)) = τ

I Trajectory speed:

vTϕ(et) := ∂τ=t ϕTϕτ,t (et) =⇒ TeπI ,Tϕ · vTϕ(et) = 1t

Page 116: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Evolution

I Evolution operator ϕTϕ

I Displacements: diffeomorphisms between placements

ϕTϕτ,t ∈ C1(Ωt ; Ωτ ) , τ, t ∈ I

I Law of determinism (Chapman-Kolmogorov):

ϕTϕτ,s = ϕ

Tϕτ,t ϕ

Tϕt,s

I Simultaneity of events is preserved:

πI ,Tϕ(ϕTϕτ,t (et)) = τ

I Trajectory speed:

vTϕ(et) := ∂τ=t ϕTϕτ,t (et) =⇒ TeπI ,Tϕ · vTϕ(et) = 1t

Page 117: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Evolution

I Evolution operator ϕTϕ

I Displacements: diffeomorphisms between placements

ϕTϕτ,t ∈ C1(Ωt ; Ωτ ) , τ, t ∈ I

I Law of determinism (Chapman-Kolmogorov):

ϕTϕτ,s = ϕ

Tϕτ,t ϕ

Tϕt,s

I Simultaneity of events is preserved:

πI ,Tϕ(ϕTϕτ,t (et)) = τ

I Trajectory speed:

vTϕ(et) := ∂τ=t ϕTϕτ,t (et) =⇒ TeπI ,Tϕ · vTϕ(et) = 1t

Page 118: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Body and particles

I Equivalence relation on the trajectory:

(e1 , e2) ∈ Tϕ × Tϕ : e2 = ϕTϕt2,t1

(e1) .

with ti = πI ,E(ei ) , i = 1, 2 .

Body = quotient manifold (foliation)Particles = equivalence classes (folia)

I mass conservation∫Ωt1

mTϕ,t1 =

∫Ωt2

mTϕ,t2 ⇐⇒ LvTϕmTϕ = 0

mTϕ ∈ C1(Tϕ ; Vol(TTϕ)) mass form

Page 119: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Body and particles

I Equivalence relation on the trajectory:

(e1 , e2) ∈ Tϕ × Tϕ : e2 = ϕTϕt2,t1

(e1) .

with ti = πI ,E(ei ) , i = 1, 2 .

Body = quotient manifold (foliation)Particles = equivalence classes (folia)

I mass conservation∫Ωt1

mTϕ,t1 =

∫Ωt2

mTϕ,t2 ⇐⇒ LvTϕmTϕ = 0

mTϕ ∈ C1(Tϕ ; Vol(TTϕ)) mass form

Page 120: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Body and particles

I Equivalence relation on the trajectory:

(e1 , e2) ∈ Tϕ × Tϕ : e2 = ϕTϕt2,t1

(e1) .

with ti = πI ,E(ei ) , i = 1, 2 .

Body = quotient manifold (foliation)

Particles = equivalence classes (folia)

I mass conservation∫Ωt1

mTϕ,t1 =

∫Ωt2

mTϕ,t2 ⇐⇒ LvTϕmTϕ = 0

mTϕ ∈ C1(Tϕ ; Vol(TTϕ)) mass form

Page 121: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Body and particles

I Equivalence relation on the trajectory:

(e1 , e2) ∈ Tϕ × Tϕ : e2 = ϕTϕt2,t1

(e1) .

with ti = πI ,E(ei ) , i = 1, 2 .

Body = quotient manifold (foliation)Particles = equivalence classes (folia)

I mass conservation∫Ωt1

mTϕ,t1 =

∫Ωt2

mTϕ,t2 ⇐⇒ LvTϕmTϕ = 0

mTϕ ∈ C1(Tϕ ; Vol(TTϕ)) mass form

Page 122: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Body and particles

I Equivalence relation on the trajectory:

(e1 , e2) ∈ Tϕ × Tϕ : e2 = ϕTϕt2,t1

(e1) .

with ti = πI ,E(ei ) , i = 1, 2 .

Body = quotient manifold (foliation)Particles = equivalence classes (folia)

I mass conservation∫Ωt1

mTϕ,t1 =

∫Ωt2

mTϕ,t2 ⇐⇒ LvTϕmTϕ = 0

mTϕ ∈ C1(Tϕ ; Vol(TTϕ)) mass form

Page 123: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Tensor fields in NLCM

Space-time fields sE ∈ C1(E ; Tens(TE)) Space-timemetric tensor

Spatial fields sE ∈ C1(E ; Tens(VE)) Spatialmetric tensor

Trajectory fields sTϕ ∈ C1(Tϕ ; Tens(TTϕ)) Trajectory metric,trajectory speed

Material fields sTϕ ∈ C1(Tϕ ; Tens(VTϕ)) Stress, stressing,material metric,stretching.

Trajectory-basedspace-time fields

sE,Tϕ ∈ C1(Tϕ ; Tens(TE)) Trajectory speed(immersed)

Trajectory-basedspatial fields

sE,Tϕ ∈ C1(Tϕ ; Tens(VE)) Virtual velocity,acceleration,momentum, force

Page 124: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Tensor fields in NLCM

Space-time fields sE ∈ C1(E ; Tens(TE)) Space-timemetric tensor

Spatial fields sE ∈ C1(E ; Tens(VE)) Spatialmetric tensor

Trajectory fields sTϕ ∈ C1(Tϕ ; Tens(TTϕ)) Trajectory metric,trajectory speed

Material fields sTϕ ∈ C1(Tϕ ; Tens(VTϕ)) Stress, stressing,material metric,stretching.

Trajectory-basedspace-time fields

sE,Tϕ ∈ C1(Tϕ ; Tens(TE)) Trajectory speed(immersed)

Trajectory-basedspatial fields

sE,Tϕ ∈ C1(Tϕ ; Tens(VE)) Virtual velocity,acceleration,momentum, force

Page 125: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Tensor fields in NLCM

Space-time fields sE ∈ C1(E ; Tens(TE)) Space-timemetric tensor

Spatial fields sE ∈ C1(E ; Tens(VE)) Spatialmetric tensor

Trajectory fields sTϕ ∈ C1(Tϕ ; Tens(TTϕ)) Trajectory metric,trajectory speed

Material fields sTϕ ∈ C1(Tϕ ; Tens(VTϕ)) Stress, stressing,material metric,stretching.

Trajectory-basedspace-time fields

sE,Tϕ ∈ C1(Tϕ ; Tens(TE)) Trajectory speed(immersed)

Trajectory-basedspatial fields

sE,Tϕ ∈ C1(Tϕ ; Tens(VE)) Virtual velocity,acceleration,momentum, force

Page 126: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Tensor fields in NLCM

Space-time fields sE ∈ C1(E ; Tens(TE)) Space-timemetric tensor

Spatial fields sE ∈ C1(E ; Tens(VE)) Spatialmetric tensor

Trajectory fields sTϕ ∈ C1(Tϕ ; Tens(TTϕ)) Trajectory metric,trajectory speed

Material fields sTϕ ∈ C1(Tϕ ; Tens(VTϕ)) Stress, stressing,material metric,stretching.

Trajectory-basedspace-time fields

sE,Tϕ ∈ C1(Tϕ ; Tens(TE)) Trajectory speed(immersed)

Trajectory-basedspatial fields

sE,Tϕ ∈ C1(Tϕ ; Tens(VE)) Virtual velocity,acceleration,momentum, force

Page 127: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Covariance Paradigm

Material fields at different times along the trajectory must be comparedby push along the material displacement.Material fields on push-related trajectories must be compared by pushalong the relative motion.

Push and parallel transport along the motion

Parallel transport does not preserve time-verticality

Page 128: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Covariance Paradigm

Material fields at different times along the trajectory must be comparedby push along the material displacement.Material fields on push-related trajectories must be compared by pushalong the relative motion.

Push and parallel transport along the motion

Parallel transport does not preserve time-verticality

Page 129: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Covariance Paradigm

Material fields at different times along the trajectory must be comparedby push along the material displacement.Material fields on push-related trajectories must be compared by pushalong the relative motion.

Push and parallel transport along the motion

Parallel transport does not preserve time-verticality

Page 130: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Covariance Paradigm

Material fields at different times along the trajectory must be comparedby push along the material displacement.Material fields on push-related trajectories must be compared by pushalong the relative motion.

Push and parallel transport along the motion

Parallel transport does not preserve time-verticality

Page 131: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Covariance Paradigm

Material fields at different times along the trajectory must be comparedby push along the material displacement.Material fields on push-related trajectories must be compared by pushalong the relative motion.

Push and parallel transport along the motion

Parallel transport does not preserve time-verticality

Page 132: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Time derivatives =derivatives along the flow of the trajectory speed

Lie time derivative - LTD

I Trajectory and material tensor field

sTϕ := LvTϕ sTϕ = ∂λ=0 FlvTϕλ ↓ (sTϕ Fl

vTϕλ ) ,

Material time-derivative - MTD

I Trajectory-based space-time and spatial fields

sE,Tϕ := ∇EvTϕ

sE,Tϕ = ∂λ=0 FlvE,Tϕλ ⇓E (sE,Tϕ Fl

vTϕλ ) ,

with vE,Tϕ := iE,Tϕ↑vTϕ .

Page 133: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Time derivatives =derivatives along the flow of the trajectory speed

Lie time derivative - LTD

I Trajectory and material tensor field

sTϕ := LvTϕ sTϕ = ∂λ=0 FlvTϕλ ↓ (sTϕ Fl

vTϕλ ) ,

Material time-derivative - MTD

I Trajectory-based space-time and spatial fields

sE,Tϕ := ∇EvTϕ

sE,Tϕ = ∂λ=0 FlvE,Tϕλ ⇓E (sE,Tϕ Fl

vTϕλ ) ,

with vE,Tϕ := iE,Tϕ↑vTϕ .

Page 134: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Time derivatives =derivatives along the flow of the trajectory speed

Lie time derivative - LTD

I Trajectory and material tensor field

sTϕ := LvTϕ sTϕ = ∂λ=0 FlvTϕλ ↓ (sTϕ Fl

vTϕλ ) ,

Material time-derivative - MTD

I Trajectory-based space-time and spatial fields

sE,Tϕ := ∇EvTϕ

sE,Tϕ = ∂λ=0 FlvE,Tϕλ ⇓E (sE,Tϕ Fl

vTϕλ ) ,

with vE,Tϕ := iE,Tϕ↑vTϕ .

Page 135: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Rivers and Cogwheels

(LvTϕ sTϕ)t := ∂τ=t ϕτ,t↓(sTϕ,τ ϕτ,t) = ∂τ=t sTϕ,τ + LπS,Tϕ↓vTϕ sTϕ,t

(∇EvTϕ

sE,Tϕ)t := ∂τ=t ϕEτ,t ⇓

E(sE,Tϕ,τ ϕτ,t) = ∂τ=t sE,Tϕ,τ +∇πS,Tϕ↓vTϕ sE,Tϕ,t

Gottfried Wilhelm von Leibniz (1646 - 1716)

rule cannot be applied unlessthe following special properties of the trajectory hold true:

(x , t) ∈ Tϕ =⇒ (x , τ) ∈ Tϕ ∀ τ ∈ It

(x , t) ∈ Tϕ =⇒ (ϕτ,t (x) , t) ∈ Tϕ

Both conditions are not fulfilled in solid mechanics, in general.

Page 136: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Rivers and Cogwheels

(LvTϕ sTϕ)t := ∂τ=t ϕτ,t↓(sTϕ,τ ϕτ,t) = ∂τ=t sTϕ,τ + LπS,Tϕ↓vTϕ sTϕ,t

(∇EvTϕ

sE,Tϕ)t := ∂τ=t ϕEτ,t ⇓

E(sE,Tϕ,τ ϕτ,t) = ∂τ=t sE,Tϕ,τ +∇πS,Tϕ↓vTϕ sE,Tϕ,t

Gottfried Wilhelm von Leibniz (1646 - 1716)

rule cannot be applied unlessthe following special properties of the trajectory hold true:

(x , t) ∈ Tϕ =⇒ (x , τ) ∈ Tϕ ∀ τ ∈ It

(x , t) ∈ Tϕ =⇒ (ϕτ,t (x) , t) ∈ Tϕ

Both conditions are not fulfilled in solid mechanics, in general.

Page 137: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Rivers and Cogwheels

(LvTϕ sTϕ)t := ∂τ=t ϕτ,t↓(sTϕ,τ ϕτ,t) = ∂τ=t sTϕ,τ + LπS,Tϕ↓vTϕ sTϕ,t

(∇EvTϕ

sE,Tϕ)t := ∂τ=t ϕEτ,t ⇓

E(sE,Tϕ,τ ϕτ,t) = ∂τ=t sE,Tϕ,τ +∇πS,Tϕ↓vTϕ sE,Tϕ,t

Gottfried Wilhelm von Leibniz (1646 - 1716)

rule cannot be applied unlessthe following special properties of the trajectory hold true:

(x , t) ∈ Tϕ =⇒ (x , τ) ∈ Tϕ ∀ τ ∈ It

(x , t) ∈ Tϕ =⇒ (ϕτ,t (x) , t) ∈ Tϕ

Both conditions are not fulfilled in solid mechanics, in general.

Page 138: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Rivers and Cogwheels

(LvTϕ sTϕ)t := ∂τ=t ϕτ,t↓(sTϕ,τ ϕτ,t) = ∂τ=t sTϕ,τ + LπS,Tϕ↓vTϕ sTϕ,t

(∇EvTϕ

sE,Tϕ)t := ∂τ=t ϕEτ,t ⇓

E(sE,Tϕ,τ ϕτ,t) = ∂τ=t sE,Tϕ,τ +∇πS,Tϕ↓vTϕ sE,Tϕ,t

Gottfried Wilhelm von Leibniz (1646 - 1716)

rule cannot be applied unlessthe following special properties of the trajectory hold true:

(x , t) ∈ Tϕ =⇒ (x , τ) ∈ Tϕ ∀ τ ∈ It

(x , t) ∈ Tϕ =⇒ (ϕτ,t (x) , t) ∈ Tϕ

Both conditions are not fulfilled in solid mechanics, in general.

Page 139: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Rivers and Cogwheels

(LvTϕ sTϕ)t := ∂τ=t ϕτ,t↓(sTϕ,τ ϕτ,t) = ∂τ=t sTϕ,τ + LπS,Tϕ↓vTϕ sTϕ,t

(∇EvTϕ

sE,Tϕ)t := ∂τ=t ϕEτ,t ⇓

E(sE,Tϕ,τ ϕτ,t) = ∂τ=t sE,Tϕ,τ +∇πS,Tϕ↓vTϕ sE,Tϕ,t

Gottfried Wilhelm von Leibniz (1646 - 1716)

rule cannot be applied unlessthe following special properties of the trajectory hold true:

(x , t) ∈ Tϕ =⇒ (x , τ) ∈ Tϕ ∀ τ ∈ It

(x , t) ∈ Tϕ =⇒ (ϕτ,t (x) , t) ∈ Tϕ

Both conditions are not fulfilled in solid mechanics, in general.

Page 140: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Rivers and Cogwheels

(LvTϕ sTϕ)t := ∂τ=t ϕτ,t↓(sTϕ,τ ϕτ,t) = ∂τ=t sTϕ,τ + LπS,Tϕ↓vTϕ sTϕ,t

(∇EvTϕ

sE,Tϕ)t := ∂τ=t ϕEτ,t ⇓

E(sE,Tϕ,τ ϕτ,t) = ∂τ=t sE,Tϕ,τ +∇πS,Tϕ↓vTϕ sE,Tϕ,t

Gottfried Wilhelm von Leibniz (1646 - 1716)

rule cannot be applied unlessthe following special properties of the trajectory hold true:

(x , t) ∈ Tϕ =⇒ (x , τ) ∈ Tϕ ∀ τ ∈ It

(x , t) ∈ Tϕ =⇒ (ϕτ,t (x) , t) ∈ Tϕ

Both conditions are not fulfilled in solid mechanics, in general.

Page 141: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Rivers and Cogwheels

(LvTϕ sTϕ)t := ∂τ=t ϕτ,t↓(sTϕ,τ ϕτ,t) = ∂τ=t sTϕ,τ + LπS,Tϕ↓vTϕ sTϕ,t

(∇EvTϕ

sE,Tϕ)t := ∂τ=t ϕEτ,t ⇓

E(sE,Tϕ,τ ϕτ,t) = ∂τ=t sE,Tϕ,τ +∇πS,Tϕ↓vTϕ sE,Tϕ,t

Gottfried Wilhelm von Leibniz (1646 - 1716)

rule cannot be applied unlessthe following special properties of the trajectory hold true:

(x , t) ∈ Tϕ =⇒ (x , τ) ∈ Tϕ ∀ τ ∈ It

(x , t) ∈ Tϕ =⇒ (ϕτ,t (x) , t) ∈ Tϕ

Both conditions are not fulfilled in solid mechanics, in general.

Page 142: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Rivers and Cogwheels

(LvTϕ sTϕ)t := ∂τ=t ϕτ,t↓(sTϕ,τ ϕτ,t) = ∂τ=t sTϕ,τ + LπS,Tϕ↓vTϕ sTϕ,t

(∇EvTϕ

sE,Tϕ)t := ∂τ=t ϕEτ,t ⇓

E(sE,Tϕ,τ ϕτ,t) = ∂τ=t sE,Tϕ,τ +∇πS,Tϕ↓vTϕ sE,Tϕ,t

Gottfried Wilhelm von Leibniz (1646 - 1716)

rule cannot be applied unlessthe following special properties of the trajectory hold true:

(x , t) ∈ Tϕ =⇒ (x , τ) ∈ Tϕ ∀ τ ∈ It

(x , t) ∈ Tϕ =⇒ (ϕτ,t (x) , t) ∈ Tϕ

Both conditions are not fulfilled in solid mechanics, in general.

Page 143: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Acceleration

MTD of the velocity field

(aE,Tϕ)t := (∇EvTϕ

vE,Tϕ)t := ∂τ=t ϕEτ,t ⇓ (vE,Tϕ,τ ϕτ,t)

= ∂τ=t vE,Tϕ,τ +∇πS,Tϕ↓vTϕ vE,Tϕ,t

This is the celebrated Euler split formula, applicable only in special problems ofhydrodynamics, where it was originally conceived.This eventually led to the Navier-Stokes-St.Venant differential equation of motionin fluid-dynamics.

Notwithstanding its limitations, Euler split formula has been improperly adopted toprovide the very definition of acceleration in mechanics 2

2 See e.g.1) C. Truesdell, A first Course in Rational Continuum MechanicsSecond Ed. Academic Press, New-York (1991). First Ed. 19772) M.E. Gurtin, An Introduction to Continuum MechanicsAcademic Press, San Diego (1981)3) J.E. Marsden & T.J.R. Hughes, Mathematical Foundations of ElasticityPrentice-Hall, Redwood City, Cal. (1983)

Page 144: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Acceleration

MTD of the velocity field

(aE,Tϕ)t := (∇EvTϕ

vE,Tϕ)t := ∂τ=t ϕEτ,t ⇓ (vE,Tϕ,τ ϕτ,t)

= ∂τ=t vE,Tϕ,τ +∇πS,Tϕ↓vTϕ vE,Tϕ,t

This is the celebrated Euler split formula, applicable only in special problems ofhydrodynamics, where it was originally conceived.This eventually led to the Navier-Stokes-St.Venant differential equation of motionin fluid-dynamics.

Notwithstanding its limitations, Euler split formula has been improperly adopted toprovide the very definition of acceleration in mechanics 2

2 See e.g.1) C. Truesdell, A first Course in Rational Continuum MechanicsSecond Ed. Academic Press, New-York (1991). First Ed. 19772) M.E. Gurtin, An Introduction to Continuum MechanicsAcademic Press, San Diego (1981)3) J.E. Marsden & T.J.R. Hughes, Mathematical Foundations of ElasticityPrentice-Hall, Redwood City, Cal. (1983)

Page 145: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Acceleration

MTD of the velocity field

(aE,Tϕ)t := (∇EvTϕ

vE,Tϕ)t := ∂τ=t ϕEτ,t ⇓ (vE,Tϕ,τ ϕτ,t)

= ∂τ=t vE,Tϕ,τ +∇πS,Tϕ↓vTϕ vE,Tϕ,t

This is the celebrated Euler split formula, applicable only in special problems ofhydrodynamics, where it was originally conceived.This eventually led to the Navier-Stokes-St.Venant differential equation of motionin fluid-dynamics.

Notwithstanding its limitations, Euler split formula has been improperly adopted toprovide the very definition of acceleration in mechanics 2

2 See e.g.1) C. Truesdell, A first Course in Rational Continuum MechanicsSecond Ed. Academic Press, New-York (1991). First Ed. 19772) M.E. Gurtin, An Introduction to Continuum MechanicsAcademic Press, San Diego (1981)3) J.E. Marsden & T.J.R. Hughes, Mathematical Foundations of ElasticityPrentice-Hall, Redwood City, Cal. (1983)

Page 146: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Acceleration

MTD of the velocity field

(aE,Tϕ)t := (∇EvTϕ

vE,Tϕ)t := ∂τ=t ϕEτ,t ⇓ (vE,Tϕ,τ ϕτ,t)

= ∂τ=t vE,Tϕ,τ +∇πS,Tϕ↓vTϕ vE,Tϕ,t

This is the celebrated Euler split formula, applicable only in special problems ofhydrodynamics, where it was originally conceived.This eventually led to the Navier-Stokes-St.Venant differential equation of motionin fluid-dynamics.

Notwithstanding its limitations, Euler split formula has been improperly adopted toprovide the very definition of acceleration in mechanics 2

2 See e.g.1) C. Truesdell, A first Course in Rational Continuum MechanicsSecond Ed. Academic Press, New-York (1991). First Ed. 19772) M.E. Gurtin, An Introduction to Continuum MechanicsAcademic Press, San Diego (1981)3) J.E. Marsden & T.J.R. Hughes, Mathematical Foundations of ElasticityPrentice-Hall, Redwood City, Cal. (1983)

Page 147: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Acceleration

MTD of the velocity field

(aE,Tϕ)t := (∇EvTϕ

vE,Tϕ)t := ∂τ=t ϕEτ,t ⇓ (vE,Tϕ,τ ϕτ,t)

= ∂τ=t vE,Tϕ,τ +∇πS,Tϕ↓vTϕ vE,Tϕ,t

This is the celebrated Euler split formula, applicable only in special problems ofhydrodynamics, where it was originally conceived.This eventually led to the Navier-Stokes-St.Venant differential equation of motionin fluid-dynamics.

Notwithstanding its limitations, Euler split formula has been improperly adopted toprovide the very definition of acceleration in mechanics 2

2 See e.g.1) C. Truesdell, A first Course in Rational Continuum MechanicsSecond Ed. Academic Press, New-York (1991). First Ed. 19772) M.E. Gurtin, An Introduction to Continuum MechanicsAcademic Press, San Diego (1981)3) J.E. Marsden & T.J.R. Hughes, Mathematical Foundations of ElasticityPrentice-Hall, Redwood City, Cal. (1983)

Page 148: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stretching = Lie time derivativeof the material metric

Leonhard Euler (1707 - 1783)

I Stretching:εTϕ,t := 1

2 (LvTϕ gTϕ)t = 12∂τ=t (ϕτ,t↓gTϕ,τ )

I Euler’s formula (generalized)

12LvTϕ gTϕ = 1

2∇TϕvTϕ gTϕ + sym (gTϕ (TorsTϕ +∇Tϕ)vTϕ)

I Trajectory connection defined by:

gTϕ ∇TϕuTϕ := iE,Tϕ↓(gE ∇EuE,Tϕ)

I with ∇TϕvTϕgTϕ = iE,Tϕ↓(∇EvE,Tϕ

gE)

gTϕ TorsTϕ(aTϕ) = iE,Tϕ↓(gE TorsE(iE,Tϕ↑aTϕ))

I Mixed form of the stretching tensor (standard):

DTϕ := g−1Tϕ 1

2LvTϕ gTϕ = sym (∇TϕvTϕ)

Page 149: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stretching = Lie time derivativeof the material metric

Leonhard Euler (1707 - 1783)

I Stretching:εTϕ,t := 1

2 (LvTϕ gTϕ)t = 12∂τ=t (ϕτ,t↓gTϕ,τ )

I Euler’s formula (generalized)

12LvTϕ gTϕ = 1

2∇TϕvTϕ gTϕ + sym (gTϕ (TorsTϕ +∇Tϕ)vTϕ)

I Trajectory connection defined by:

gTϕ ∇TϕuTϕ := iE,Tϕ↓(gE ∇EuE,Tϕ)

I with ∇TϕvTϕgTϕ = iE,Tϕ↓(∇EvE,Tϕ

gE)

gTϕ TorsTϕ(aTϕ) = iE,Tϕ↓(gE TorsE(iE,Tϕ↑aTϕ))

I Mixed form of the stretching tensor (standard):

DTϕ := g−1Tϕ 1

2LvTϕ gTϕ = sym (∇TϕvTϕ)

Page 150: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stretching = Lie time derivativeof the material metric

Leonhard Euler (1707 - 1783)

I Stretching:εTϕ,t := 1

2 (LvTϕ gTϕ)t = 12∂τ=t (ϕτ,t↓gTϕ,τ )

I Euler’s formula (generalized)

12LvTϕ gTϕ = 1

2∇TϕvTϕ gTϕ + sym (gTϕ (TorsTϕ +∇Tϕ)vTϕ)

I Trajectory connection defined by:

gTϕ ∇TϕuTϕ := iE,Tϕ↓(gE ∇EuE,Tϕ)

I with ∇TϕvTϕgTϕ = iE,Tϕ↓(∇EvE,Tϕ

gE)

gTϕ TorsTϕ(aTϕ) = iE,Tϕ↓(gE TorsE(iE,Tϕ↑aTϕ))

I Mixed form of the stretching tensor (standard):

DTϕ := g−1Tϕ 1

2LvTϕ gTϕ = sym (∇TϕvTϕ)

Page 151: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stretching = Lie time derivativeof the material metric

Leonhard Euler (1707 - 1783)

I Stretching:εTϕ,t := 1

2 (LvTϕ gTϕ)t = 12∂τ=t (ϕτ,t↓gTϕ,τ )

I Euler’s formula (generalized)

12LvTϕ gTϕ = 1

2∇TϕvTϕ gTϕ + sym (gTϕ (TorsTϕ +∇Tϕ)vTϕ)

I Trajectory connection defined by:

gTϕ ∇TϕuTϕ := iE,Tϕ↓(gE ∇EuE,Tϕ)

I with ∇TϕvTϕgTϕ = iE,Tϕ↓(∇EvE,Tϕ

gE)

gTϕ TorsTϕ(aTϕ) = iE,Tϕ↓(gE TorsE(iE,Tϕ↑aTϕ))

I Mixed form of the stretching tensor (standard):

DTϕ := g−1Tϕ 1

2LvTϕ gTϕ = sym (∇TϕvTϕ)

Page 152: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stretching = Lie time derivativeof the material metric

Leonhard Euler (1707 - 1783)

I Stretching:εTϕ,t := 1

2 (LvTϕ gTϕ)t = 12∂τ=t (ϕτ,t↓gTϕ,τ )

I Euler’s formula (generalized)

12LvTϕ gTϕ = 1

2∇TϕvTϕ gTϕ + sym (gTϕ (TorsTϕ +∇Tϕ)vTϕ)

I Trajectory connection defined by:

gTϕ ∇TϕuTϕ := iE,Tϕ↓(gE ∇EuE,Tϕ)

I with ∇TϕvTϕgTϕ = iE,Tϕ↓(∇EvE,Tϕ

gE)

gTϕ TorsTϕ(aTϕ) = iE,Tϕ↓(gE TorsE(iE,Tϕ↑aTϕ))

I Mixed form of the stretching tensor (standard):

DTϕ := g−1Tϕ 1

2LvTϕ gTϕ = sym (∇TϕvTϕ)

Page 153: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stretching = Lie time derivativeof the material metric

Leonhard Euler (1707 - 1783)

I Stretching:εTϕ,t := 1

2 (LvTϕ gTϕ)t = 12∂τ=t (ϕτ,t↓gTϕ,τ )

I Euler’s formula (generalized)

12LvTϕ gTϕ = 1

2∇TϕvTϕ gTϕ + sym (gTϕ (TorsTϕ +∇Tϕ)vTϕ)

I Trajectory connection defined by:

gTϕ ∇TϕuTϕ := iE,Tϕ↓(gE ∇EuE,Tϕ)

I with ∇TϕvTϕgTϕ = iE,Tϕ↓(∇EvE,Tϕ

gE)

gTϕ TorsTϕ(aTϕ) = iE,Tϕ↓(gE TorsE(iE,Tϕ↑aTϕ))

I Mixed form of the stretching tensor (standard):

DTϕ := g−1Tϕ 1

2LvTϕ gTϕ = sym (∇TϕvTϕ)

Page 154: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stress and stressing

I Stress: σTϕ ∈ C1(Tϕ ; Con(VTϕ)) in duality with the

I Stretching: εTϕ := 12gTϕ = 1

2LvTϕ gTϕ ∈ C1(Tϕ ; Cov(VTϕ))

I Stressing: Lie time derivative

σTϕ,t := (LvTϕ σTϕ )t = ∂τ=t (ϕτ,t↓σTϕ,τ )

The expression in terms of parallel derivative:

LvTϕσTϕ = ∇TϕvTϕσTϕ − sym (∇TϕvTϕ σTϕ )

is not performable on the time-vertical subbundle of material tensor fields

because the parallel derivative ∇TϕvTϕon the trajectory does not preserve

time-verticality.

I Treatments which do not adopt a full geometric approach do not even perceivethe difficulties revealed by the previous investigation.

Page 155: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stress and stressing

I Stress: σTϕ ∈ C1(Tϕ ; Con(VTϕ)) in duality with the

I Stretching: εTϕ := 12gTϕ = 1

2LvTϕ gTϕ ∈ C1(Tϕ ; Cov(VTϕ))

I Stressing: Lie time derivative

σTϕ,t := (LvTϕ σTϕ )t = ∂τ=t (ϕτ,t↓σTϕ,τ )

The expression in terms of parallel derivative:

LvTϕσTϕ = ∇TϕvTϕσTϕ − sym (∇TϕvTϕ σTϕ )

is not performable on the time-vertical subbundle of material tensor fields

because the parallel derivative ∇TϕvTϕon the trajectory does not preserve

time-verticality.

I Treatments which do not adopt a full geometric approach do not even perceivethe difficulties revealed by the previous investigation.

Page 156: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stress and stressing

I Stress: σTϕ ∈ C1(Tϕ ; Con(VTϕ)) in duality with the

I Stretching: εTϕ := 12gTϕ = 1

2LvTϕ gTϕ ∈ C1(Tϕ ; Cov(VTϕ))

I Stressing: Lie time derivative

σTϕ,t := (LvTϕ σTϕ )t = ∂τ=t (ϕτ,t↓σTϕ,τ )

The expression in terms of parallel derivative:

LvTϕσTϕ = ∇TϕvTϕσTϕ − sym (∇TϕvTϕ σTϕ )

is not performable on the time-vertical subbundle of material tensor fields

because the parallel derivative ∇TϕvTϕon the trajectory does not preserve

time-verticality.

I Treatments which do not adopt a full geometric approach do not even perceivethe difficulties revealed by the previous investigation.

Page 157: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stress and stressing

I Stress: σTϕ ∈ C1(Tϕ ; Con(VTϕ)) in duality with the

I Stretching: εTϕ := 12gTϕ = 1

2LvTϕ gTϕ ∈ C1(Tϕ ; Cov(VTϕ))

I Stressing: Lie time derivative

σTϕ,t := (LvTϕ σTϕ )t = ∂τ=t (ϕτ,t↓σTϕ,τ )

The expression in terms of parallel derivative:

LvTϕσTϕ = ∇TϕvTϕσTϕ − sym (∇TϕvTϕ σTϕ )

is not performable on the time-vertical subbundle of material tensor fields

because the parallel derivative ∇TϕvTϕon the trajectory does not preserve

time-verticality.

I Treatments which do not adopt a full geometric approach do not even perceivethe difficulties revealed by the previous investigation.

Page 158: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stress and stressing

I Stress: σTϕ ∈ C1(Tϕ ; Con(VTϕ)) in duality with the

I Stretching: εTϕ := 12gTϕ = 1

2LvTϕ gTϕ ∈ C1(Tϕ ; Cov(VTϕ))

I Stressing: Lie time derivative

σTϕ,t := (LvTϕ σTϕ )t = ∂τ=t (ϕτ,t↓σTϕ,τ )

The expression in terms of parallel derivative:

LvTϕσTϕ = ∇TϕvTϕσTϕ − sym (∇TϕvTϕ σTϕ )

is not performable on the time-vertical subbundle of material tensor fields

because the parallel derivative ∇TϕvTϕon the trajectory does not preserve

time-verticality.

I Treatments which do not adopt a full geometric approach do not even perceivethe difficulties revealed by the previous investigation.

Page 159: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Stress and stressing

I Stress: σTϕ ∈ C1(Tϕ ; Con(VTϕ)) in duality with the

I Stretching: εTϕ := 12gTϕ = 1

2LvTϕ gTϕ ∈ C1(Tϕ ; Cov(VTϕ))

I Stressing: Lie time derivative

σTϕ,t := (LvTϕ σTϕ )t = ∂τ=t (ϕτ,t↓σTϕ,τ )

The expression in terms of parallel derivative:

LvTϕσTϕ = ∇TϕvTϕσTϕ − sym (∇TϕvTϕ σTϕ )

is not performable on the time-vertical subbundle of material tensor fields

because the parallel derivative ∇TϕvTϕon the trajectory does not preserve

time-verticality.

I Treatments which do not adopt a full geometric approach do not even perceivethe difficulties revealed by the previous investigation.

Page 160: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Objective stress rate tensors

A sample of objective stress rate tensors

Co-rotational stress rate tensor, Zaremba (1903), Jaumann (1906,1911), Prager(1960):

T= T−WT + TW

with T material time derivative.

Convective stress tensor rate, Zaremba (1903), Oldroyd (1950), Truesdell(1955), Sedov (1960), Truesdell & Noll (1965):

MT= T + LT T + TL

These formulas, and similar ones in literature, rely on the application of Leibniz ruleand on taking the parallel derivative of the materialstress tensor field according to the trajectory connection.

The lack of regularity that may prevent to take partial time derivatives and

the lack of conservation of time-verticality by parallel transport, are not taken into

account.

Page 161: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Objective stress rate tensors

A sample of objective stress rate tensors

Co-rotational stress rate tensor, Zaremba (1903), Jaumann (1906,1911), Prager(1960):

T= T−WT + TW

with T material time derivative.

Convective stress tensor rate, Zaremba (1903), Oldroyd (1950), Truesdell(1955), Sedov (1960), Truesdell & Noll (1965):

MT= T + LT T + TL

These formulas, and similar ones in literature, rely on the application of Leibniz ruleand on taking the parallel derivative of the materialstress tensor field according to the trajectory connection.

The lack of regularity that may prevent to take partial time derivatives and

the lack of conservation of time-verticality by parallel transport, are not taken into

account.

Page 162: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Deformation gradient

The equivalence class of all material displacements whose tangent map have thecommon value:

Txϕτ,t ∈ L (TxΩt ; Tϕτ,t (x)Ωτ )

I is called the first jet of ϕτ,t at x ∈ Ωt in differential geometry

I and the relative deformation gradient in continuum mechanics.

The chain rule between tangent maps:

Tϕτ,s (x)ϕτ,s = Tϕt,s (x)ϕτ,t Txϕt,s ,

implies the corresponding one between material deformation gradients:

Fτ,s = Fτ,t Ft,s .

Time rate of deformation gradient, Truesdell & Noll (1965)

Ft,s = Lt Ft,s

with Ft,s := ∂τ=t Fτ,s and Lt := ∂τ=t Fτ,t time derivatives.

Lt (x) · hx := ∂τ=t Fτ,t (x) · hx ∈ TxΩt , ∀ hx ∈ TxΩt

with Fτ,t (x) · hx ∈ TxΩτ . The Lie time derivative gives:

∂τ=t (Txϕτ,t )−1 · (Txϕτ,t · hx) = ∂τ=t hx = 0

Page 163: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Change of observer

I Change of observer ζE ∈ C1(E ; E) ,time-bundle automorphism

I Relative motion ζ ∈ C1(Tϕ ; Tζ↑ϕ) ,time-bundle diffeomorphism

E

ζE

##

πI,E

TϕiE,Tϕoo

ζ

$$ζ //

πI,Tϕ

Tζ↑ϕζ−1

oo

ζ−1

πI,Tζ↑ϕ

iE,Tζ↑ϕ // EπI,E

I oo idI // I oo idI // I oo idI // I

I Pushed motion

ζt(Ωt)(ζ↑ϕ)τ,t // ζτ (Ωτ )

Ωt

ϕτ,t //

ζt

OO

Ωτ

ζτ

OO⇐⇒ (ζ↑ϕ)τ,t = ζτ ϕτ,t ζ

−1t

Page 164: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Change of observer

I Change of observer ζE ∈ C1(E ; E) ,time-bundle automorphism

I Relative motion ζ ∈ C1(Tϕ ; Tζ↑ϕ) ,time-bundle diffeomorphism

E

ζE

##

πI,E

TϕiE,Tϕoo

ζ

$$ζ //

πI,Tϕ

Tζ↑ϕζ−1

oo

ζ−1

πI,Tζ↑ϕ

iE,Tζ↑ϕ // EπI,E

I oo idI // I oo idI // I oo idI // I

I Pushed motion

ζt(Ωt)(ζ↑ϕ)τ,t // ζτ (Ωτ )

Ωt

ϕτ,t //

ζt

OO

Ωτ

ζτ

OO⇐⇒ (ζ↑ϕ)τ,t = ζτ ϕτ,t ζ

−1t

Page 165: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Change of observer

I Change of observer ζE ∈ C1(E ; E) ,time-bundle automorphism

I Relative motion ζ ∈ C1(Tϕ ; Tζ↑ϕ) ,time-bundle diffeomorphism

E

ζE

##

πI,E

TϕiE,Tϕoo

ζ

$$ζ //

πI,Tϕ

Tζ↑ϕζ−1

oo

ζ−1

πI,Tζ↑ϕ

iE,Tζ↑ϕ // EπI,E

I oo idI // I oo idI // I oo idI // I

I Pushed motion

ζt(Ωt)(ζ↑ϕ)τ,t // ζτ (Ωτ )

Ωt

ϕτ,t //

ζt

OO

Ωτ

ζτ

OO⇐⇒ (ζ↑ϕ)τ,t = ζτ ϕτ,t ζ

−1t

Page 166: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Change of observer

I Change of observer ζE ∈ C1(E ; E) ,time-bundle automorphism

I Relative motion ζ ∈ C1(Tϕ ; Tζ↑ϕ) ,time-bundle diffeomorphism

E

ζE

##

πI,E

TϕiE,Tϕoo

ζ

$$ζ //

πI,Tϕ

Tζ↑ϕζ−1

oo

ζ−1

πI,Tζ↑ϕ

iE,Tζ↑ϕ // EπI,E

I oo idI // I oo idI // I oo idI // I

I Pushed motion

ζt(Ωt)(ζ↑ϕ)τ,t // ζτ (Ωτ )

Ωt

ϕτ,t //

ζt

OO

Ωτ

ζτ

OO⇐⇒ (ζ↑ϕ)τ,t = ζτ ϕτ,t ζ

−1t

Page 167: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Consequences of the Geometric Paradigm

Time Invariance and Frame Invarianceof material fields

I Time Invariance sTϕ,τ = ϕτ,t↑sTϕ,t

I Frame Invariance sTζ↑ϕ = ζ↑sTϕ

with: ζ ∈ C1(Tϕ ; Tζ↑ϕ) relative motion

Properties of Lie derivative

I Push of Lie time derivative to a fixed configuration

ϕt,fix↓(LvTϕ sTϕ)t = ∂τ=t ϕτ,fix↓sTϕ,τ

I Lie time derivative along pushed motions

LvTζ↑ϕ(ζ↑sϕ) = ζ↑(LvTϕ sTϕ)

Page 168: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Consequences of the Geometric Paradigm

Time Invariance and Frame Invarianceof material fields

I Time Invariance sTϕ,τ = ϕτ,t↑sTϕ,t

I Frame Invariance sTζ↑ϕ = ζ↑sTϕ

with: ζ ∈ C1(Tϕ ; Tζ↑ϕ) relative motion

Properties of Lie derivative

I Push of Lie time derivative to a fixed configuration

ϕt,fix↓(LvTϕ sTϕ)t = ∂τ=t ϕτ,fix↓sTϕ,τ

I Lie time derivative along pushed motions

LvTζ↑ϕ(ζ↑sϕ) = ζ↑(LvTϕ sTϕ)

Page 169: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Consequences of the Geometric Paradigm

Time Invariance and Frame Invarianceof material fields

I Time Invariance sTϕ,τ = ϕτ,t↑sTϕ,t

I Frame Invariance sTζ↑ϕ = ζ↑sTϕ

with: ζ ∈ C1(Tϕ ; Tζ↑ϕ) relative motion

Properties of Lie derivative

I Push of Lie time derivative to a fixed configuration

ϕt,fix↓(LvTϕ sTϕ)t = ∂τ=t ϕτ,fix↓sTϕ,τ

I Lie time derivative along pushed motions

LvTζ↑ϕ(ζ↑sϕ) = ζ↑(LvTϕ sTϕ)

Page 170: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Consequences of the Geometric Paradigm

Time Invariance and Frame Invarianceof material fields

I Time Invariance sTϕ,τ = ϕτ,t↑sTϕ,t

I Frame Invariance sTζ↑ϕ = ζ↑sTϕ

with: ζ ∈ C1(Tϕ ; Tζ↑ϕ) relative motion

Properties of Lie derivative

I Push of Lie time derivative to a fixed configuration

ϕt,fix↓(LvTϕ sTϕ)t = ∂τ=t ϕτ,fix↓sTϕ,τ

I Lie time derivative along pushed motions

LvTζ↑ϕ(ζ↑sϕ) = ζ↑(LvTϕ sTϕ)

Page 171: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Consequences of the Geometric Paradigm

Time Invariance and Frame Invarianceof material fields

I Time Invariance sTϕ,τ = ϕτ,t↑sTϕ,t

I Frame Invariance sTζ↑ϕ = ζ↑sTϕ

with: ζ ∈ C1(Tϕ ; Tζ↑ϕ) relative motion

Properties of Lie derivative

I Push of Lie time derivative to a fixed configuration

ϕt,fix↓(LvTϕ sTϕ)t = ∂τ=t ϕτ,fix↓sTϕ,τ

I Lie time derivative along pushed motions

LvTζ↑ϕ(ζ↑sϕ) = ζ↑(LvTϕ sTϕ)

Page 172: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Constitutive laws

I Constitutive operator HTϕ

A material bundle morphism whose domain and codomain are Whitneyproducts of material tensor bundles

I Constitutive time invariance

HTϕ,τ = ϕτ,t↑HTϕ,t

(ϕτ,t↑HTϕ,t)(ϕτ,t↑sTϕ,t) = ϕτ,t↑(HTϕ,t(sTϕ,t))

I Constitutive invariance under relative motions

HTζ↑ϕ = ζ↑HTϕ

(ζ↑HTϕ)(ζ↑sTϕ) = ζ↑(HTϕ(sTϕ))

Page 173: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Constitutive laws

I Constitutive operator HTϕ

A material bundle morphism whose domain and codomain are Whitneyproducts of material tensor bundles

I Constitutive time invariance

HTϕ,τ = ϕτ,t↑HTϕ,t

(ϕτ,t↑HTϕ,t)(ϕτ,t↑sTϕ,t) = ϕτ,t↑(HTϕ,t(sTϕ,t))

I Constitutive invariance under relative motions

HTζ↑ϕ = ζ↑HTϕ

(ζ↑HTϕ)(ζ↑sTϕ) = ζ↑(HTϕ(sTϕ))

Page 174: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Constitutive laws

I Constitutive operator HTϕ

A material bundle morphism whose domain and codomain are Whitneyproducts of material tensor bundles

I Constitutive time invariance

HTϕ,τ = ϕτ,t↑HTϕ,t

(ϕτ,t↑HTϕ,t)(ϕτ,t↑sTϕ,t) = ϕτ,t↑(HTϕ,t(sTϕ,t))

I Constitutive invariance under relative motions

HTζ↑ϕ = ζ↑HTϕ

(ζ↑HTϕ)(ζ↑sTϕ) = ζ↑(HTϕ(sTϕ))

Page 175: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Constitutive laws

I Constitutive operator HTϕ

A material bundle morphism whose domain and codomain are Whitneyproducts of material tensor bundles

I Constitutive time invariance

HTϕ,τ = ϕτ,t↑HTϕ,t

(ϕτ,t↑HTϕ,t)(ϕτ,t↑sTϕ,t) = ϕτ,t↑(HTϕ,t(sTϕ,t))

I Constitutive invariance under relative motions

HTζ↑ϕ = ζ↑HTϕ

(ζ↑HTϕ)(ζ↑sTϕ) = ζ↑(HTϕ(sTϕ))

Page 176: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Constitutive laws

I Constitutive operator HTϕ

A material bundle morphism whose domain and codomain are Whitneyproducts of material tensor bundles

I Constitutive time invariance

HTϕ,τ = ϕτ,t↑HTϕ,t

(ϕτ,t↑HTϕ,t)(ϕτ,t↑sTϕ,t) = ϕτ,t↑(HTϕ,t(sTϕ,t))

I Constitutive invariance under relative motions

HTζ↑ϕ = ζ↑HTϕ

(ζ↑HTϕ)(ζ↑sTϕ) = ζ↑(HTϕ(sTϕ))

Page 177: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Hypo-elasticity

I Constitutive hypo-elastic lawelTϕ elastic stretching

εTϕ = elTϕelTϕ = Hhypo

Tϕ (σTϕ) · σTϕ

I Cauchy integrability

〈dF HhypoTϕ (σTϕ) · δσTϕ · δ1σTϕ , δ2σTϕ 〉 = symmetric

=⇒ HhypoTϕ (σTϕ) = dF ΦTϕ(σTϕ)

I Green integrability

〈HhypoTϕ (σTϕ) · δ1σTϕ , δ2σTϕ 〉 = symmetric

=⇒ ΦTϕ(σTϕ) = dF E∗Tϕ(σTϕ)

Page 178: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Hypo-elasticity

I Constitutive hypo-elastic lawelTϕ elastic stretching

εTϕ = elTϕelTϕ = Hhypo

Tϕ (σTϕ) · σTϕ

I Cauchy integrability

〈dF HhypoTϕ (σTϕ) · δσTϕ · δ1σTϕ , δ2σTϕ 〉 = symmetric

=⇒ HhypoTϕ (σTϕ) = dF ΦTϕ(σTϕ)

I Green integrability

〈HhypoTϕ (σTϕ) · δ1σTϕ , δ2σTϕ 〉 = symmetric

=⇒ ΦTϕ(σTϕ) = dF E∗Tϕ(σTϕ)

Page 179: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Hypo-elasticity

I Constitutive hypo-elastic lawelTϕ elastic stretching

εTϕ = elTϕelTϕ = Hhypo

Tϕ (σTϕ) · σTϕ

I Cauchy integrability

〈dF HhypoTϕ (σTϕ) · δσTϕ · δ1σTϕ , δ2σTϕ 〉 = symmetric

=⇒ HhypoTϕ (σTϕ) = dF ΦTϕ(σTϕ)

I Green integrability

〈HhypoTϕ (σTϕ) · δ1σTϕ , δ2σTϕ 〉 = symmetric

=⇒ ΦTϕ(σTϕ) = dF E∗Tϕ(σTϕ)

Page 180: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Hypo-elasticity

I Constitutive hypo-elastic lawelTϕ elastic stretching

εTϕ = elTϕelTϕ = Hhypo

Tϕ (σTϕ) · σTϕ

I Cauchy integrability

〈dF HhypoTϕ (σTϕ) · δσTϕ · δ1σTϕ , δ2σTϕ 〉 = symmetric

=⇒ HhypoTϕ (σTϕ) = dF ΦTϕ(σTϕ)

I Green integrability

〈HhypoTϕ (σTϕ) · δ1σTϕ , δ2σTϕ 〉 = symmetric

=⇒ ΦTϕ(σTϕ) = dF E∗Tϕ(σTϕ)

Page 181: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Elasticity

I Elastic constitutive operator:hypo-elastic constitutive operator which is integrable and timeinvariant

I Constitutive elastic law:elTϕ elastic stretching

εTϕ = elTϕ

elTϕ = d2F E∗Tϕ(σTϕ) · σTϕ

I pull-back to reference:

ϕt,fix↓elTϕ,t = d2F E∗fix(ϕt,fix↓σTϕ,t) · ∂τ=t ϕτ,fix↓σϕ,τ

= ∂τ=t dF E∗fix(ϕτ,fix↓σϕ,τ )

ϕτ,fix :=ϕτ,t ϕt,fix

E∗fix :=ϕt,fix↓E∗Tϕ,t time invariant

Page 182: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Elasticity

I Elastic constitutive operator:hypo-elastic constitutive operator which is integrable and timeinvariant

I Constitutive elastic law:elTϕ elastic stretching

εTϕ = elTϕ

elTϕ = d2F E∗Tϕ(σTϕ) · σTϕ

I pull-back to reference:

ϕt,fix↓elTϕ,t = d2F E∗fix(ϕt,fix↓σTϕ,t) · ∂τ=t ϕτ,fix↓σϕ,τ

= ∂τ=t dF E∗fix(ϕτ,fix↓σϕ,τ )

ϕτ,fix :=ϕτ,t ϕt,fix

E∗fix :=ϕt,fix↓E∗Tϕ,t time invariant

Page 183: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Elasticity

I Elastic constitutive operator:hypo-elastic constitutive operator which is integrable and timeinvariant

I Constitutive elastic law:elTϕ elastic stretching

εTϕ = elTϕ

elTϕ = d2F E∗Tϕ(σTϕ) · σTϕ

I pull-back to reference:

ϕt,fix↓elTϕ,t = d2F E∗fix(ϕt,fix↓σTϕ,t) · ∂τ=t ϕτ,fix↓σϕ,τ

= ∂τ=t dF E∗fix(ϕτ,fix↓σϕ,τ )

ϕτ,fix :=ϕτ,t ϕt,fix

E∗fix :=ϕt,fix↓E∗Tϕ,t time invariant

Page 184: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Elasticity

I Elastic constitutive operator:hypo-elastic constitutive operator which is integrable and timeinvariant

I Constitutive elastic law:elTϕ elastic stretching

εTϕ = elTϕ

elTϕ = d2F E∗Tϕ(σTϕ) · σTϕ

I pull-back to reference:

ϕt,fix↓elTϕ,t = d2F E∗fix(ϕt,fix↓σTϕ,t) · ∂τ=t ϕτ,fix↓σϕ,τ

= ∂τ=t dF E∗fix(ϕτ,fix↓σϕ,τ )

ϕτ,fix :=ϕτ,t ϕt,fix

E∗fix :=ϕt,fix↓E∗Tϕ,t time invariant

Page 185: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Conservativeness of hyper-elasticity

Green integrability of the elastic operator HTϕas a function of the Kirchhoff stress tensor fieldimplies conservativeness:∮

I

∫Ωt

〈σTϕ,t , elTϕ,t 〉mTϕ,t dt = 0

for any cycle in the stress time-bundle,i.e. for any stress path σTϕ ∈ C1(I ; Con(VTϕ))

such that:σTϕ,t2 = ϕt2,t1

↑σTϕ,t1 , I = [t1, t2]

Page 186: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Conservativeness of hyper-elasticity

Green integrability of the elastic operator HTϕas a function of the Kirchhoff stress tensor fieldimplies conservativeness:∮

I

∫Ωt

〈σTϕ,t , elTϕ,t 〉mTϕ,t dt = 0

for any cycle in the stress time-bundle,i.e. for any stress path σTϕ ∈ C1(I ; Con(VTϕ))

such that:σTϕ,t2 = ϕt2,t1

↑σTϕ,t1 , I = [t1, t2]

Page 187: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Elasto-visco-plasticity

I Constitutive law

elTϕ elastic stretchingplTϕ visco-plastic stretching

εTϕ = elTϕ + plTϕ stretching additivity

elTϕ = d2F E∗Tϕ(σTϕ) · σTϕ hyper-elastic law

plTϕ ∈ ∂FFTϕ(σϕ) visco-plastic flow rule

Page 188: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Elasto-visco-plasticity

I Constitutive law

elTϕ elastic stretchingplTϕ visco-plastic stretching

εTϕ = elTϕ + plTϕ stretching additivity

elTϕ = d2F E∗Tϕ(σTϕ) · σTϕ hyper-elastic law

plTϕ ∈ ∂FFTϕ(σϕ) visco-plastic flow rule

Page 189: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Reference strains

I total strain in the time interval I = [s, t] :

εTϕ,t,s := ϕt,s↓gTϕ,t − gTϕ,s

I reference total strain:

εfixTϕ,I := 1

2

∫I

∂τ=t ϕτ,fix↓gTϕ,τ dt

= 12ϕt,fix↓gTϕ,t − 1

2ϕs,fix↓gTϕ,s= 1

2ϕs,fix↓(ϕt,s↓gTϕ,t − gTϕ,s) = 12ϕs,fix↓εTϕ,t,s

I reference elastic and visco-plastic strain:

elfixTϕ,I :=

∫I

ϕt,fix↓elTϕ,t dt , plfixTϕ,I :=

∫I

ϕt,fix↓plTϕ,t dt

I additivity of reference strains:

εfixTϕ,I = elfixTϕ,I + plfixTϕ,I

Page 190: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Reference strains

I total strain in the time interval I = [s, t] :

εTϕ,t,s := ϕt,s↓gTϕ,t − gTϕ,s

I reference total strain:

εfixTϕ,I := 1

2

∫I

∂τ=t ϕτ,fix↓gTϕ,τ dt

= 12ϕt,fix↓gTϕ,t − 1

2ϕs,fix↓gTϕ,s= 1

2ϕs,fix↓(ϕt,s↓gTϕ,t − gTϕ,s) = 12ϕs,fix↓εTϕ,t,s

I reference elastic and visco-plastic strain:

elfixTϕ,I :=

∫I

ϕt,fix↓elTϕ,t dt , plfixTϕ,I :=

∫I

ϕt,fix↓plTϕ,t dt

I additivity of reference strains:

εfixTϕ,I = elfixTϕ,I + plfixTϕ,I

Page 191: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Reference strains

I total strain in the time interval I = [s, t] :

εTϕ,t,s := ϕt,s↓gTϕ,t − gTϕ,s

I reference total strain:

εfixTϕ,I := 1

2

∫I

∂τ=t ϕτ,fix↓gTϕ,τ dt

= 12ϕt,fix↓gTϕ,t − 1

2ϕs,fix↓gTϕ,s= 1

2ϕs,fix↓(ϕt,s↓gTϕ,t − gTϕ,s) = 12ϕs,fix↓εTϕ,t,s

I reference elastic and visco-plastic strain:

elfixTϕ,I :=

∫I

ϕt,fix↓elTϕ,t dt , plfixTϕ,I :=

∫I

ϕt,fix↓plTϕ,t dt

I additivity of reference strains:

εfixTϕ,I = elfixTϕ,I + plfixTϕ,I

Page 192: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Reference strains

I total strain in the time interval I = [s, t] :

εTϕ,t,s := ϕt,s↓gTϕ,t − gTϕ,s

I reference total strain:

εfixTϕ,I := 1

2

∫I

∂τ=t ϕτ,fix↓gTϕ,τ dt

= 12ϕt,fix↓gTϕ,t − 1

2ϕs,fix↓gTϕ,s= 1

2ϕs,fix↓(ϕt,s↓gTϕ,t − gTϕ,s) = 12ϕs,fix↓εTϕ,t,s

I reference elastic and visco-plastic strain:

elfixTϕ,I :=

∫I

ϕt,fix↓elTϕ,t dt , plfixTϕ,I :=

∫I

ϕt,fix↓plTϕ,t dt

I additivity of reference strains:

εfixTϕ,I = elfixTϕ,I + plfixTϕ,I

Page 193: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Reference strains

I total strain in the time interval I = [s, t] :

εTϕ,t,s := ϕt,s↓gTϕ,t − gTϕ,s

I reference total strain:

εfixTϕ,I := 1

2

∫I

∂τ=t ϕτ,fix↓gTϕ,τ dt

= 12ϕt,fix↓gTϕ,t − 1

2ϕs,fix↓gTϕ,s= 1

2ϕs,fix↓(ϕt,s↓gTϕ,t − gTϕ,s) = 12ϕs,fix↓εTϕ,t,s

I reference elastic and visco-plastic strain:

elfixTϕ,I :=

∫I

ϕt,fix↓elTϕ,t dt , plfixTϕ,I :=

∫I

ϕt,fix↓plTϕ,t dt

I additivity of reference strains:

εfixTϕ,I = elfixTϕ,I + plfixTϕ,I

Page 194: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Material Frame Indifference (MFI)

Ansatz

I Material fields are frame invariant

Principle of MFI

I Any constitutive law must conform to the principle of MFI whichrequires that material fields, fulfilling the law, will still fulfill it whenevaluated by another Euclid observer

HTζiso↑ϕ

(ζiso↑sTϕ ) = ζiso↑HTϕ (sTϕ ) ,

for any isometric relative motion ζiso ∈ C1(Tϕ ; Tζiso↑ϕ) induced by a change

of Euclid observer ζisoE ∈ C1(E ; E) .

Equivalent condition

I Constitutive operators must be frame invariant

Page 195: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Material Frame Indifference (MFI)

Ansatz

I Material fields are frame invariant

Principle of MFI

I Any constitutive law must conform to the principle of MFI whichrequires that material fields, fulfilling the law, will still fulfill it whenevaluated by another Euclid observer

HTζiso↑ϕ

(ζiso↑sTϕ ) = ζiso↑HTϕ (sTϕ ) ,

for any isometric relative motion ζiso ∈ C1(Tϕ ; Tζiso↑ϕ) induced by a change

of Euclid observer ζisoE ∈ C1(E ; E) .

Equivalent condition

I Constitutive operators must be frame invariant

Page 196: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Material Frame Indifference (MFI)

Ansatz

I Material fields are frame invariant

Principle of MFI

I Any constitutive law must conform to the principle of MFI whichrequires that material fields, fulfilling the law, will still fulfill it whenevaluated by another Euclid observer

HTζiso↑ϕ

(ζiso↑sTϕ ) = ζiso↑HTϕ (sTϕ ) ,

for any isometric relative motion ζiso ∈ C1(Tϕ ; Tζiso↑ϕ) induced by a change

of Euclid observer ζisoE ∈ C1(E ; E) .

Equivalent condition

I Constitutive operators must be frame invariant

Page 197: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Material Frame Indifference (MFI)

Ansatz

I Material fields are frame invariant

Principle of MFI

I Any constitutive law must conform to the principle of MFI whichrequires that material fields, fulfilling the law, will still fulfill it whenevaluated by another Euclid observer

HTζiso↑ϕ

(ζiso↑sTϕ ) = ζiso↑HTϕ (sTϕ ) ,

for any isometric relative motion ζiso ∈ C1(Tϕ ; Tζiso↑ϕ) induced by a change

of Euclid observer ζisoE ∈ C1(E ; E) .

Equivalent condition

I Constitutive operators must be frame invariant

Page 198: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Material Frame Indifference (MFI)

Ansatz

I Material fields are frame invariant

Principle of MFI

I Any constitutive law must conform to the principle of MFI whichrequires that material fields, fulfilling the law, will still fulfill it whenevaluated by another Euclid observer

HTζiso↑ϕ

(ζiso↑sTϕ ) = ζiso↑HTϕ (sTϕ ) ,

for any isometric relative motion ζiso ∈ C1(Tϕ ; Tζiso↑ϕ) induced by a change

of Euclid observer ζisoE ∈ C1(E ; E) .

Equivalent condition

I Constitutive operators must be frame invariant

Page 199: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Material Frame Indifference (MFI)

Ansatz

I Material fields are frame invariant

Principle of MFI

I Any constitutive law must conform to the principle of MFI whichrequires that material fields, fulfilling the law, will still fulfill it whenevaluated by another Euclid observer

HTζiso↑ϕ

(ζiso↑sTϕ ) = ζiso↑HTϕ (sTϕ ) ,

for any isometric relative motion ζiso ∈ C1(Tϕ ; Tζiso↑ϕ) induced by a change

of Euclid observer ζisoE ∈ C1(E ; E) .

Equivalent condition

I Constitutive operators must be frame invariant

Page 200: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Material Frame Indifference (MFI)

Ansatz

I Material fields are frame invariant

Principle of MFI

I Any constitutive law must conform to the principle of MFI whichrequires that material fields, fulfilling the law, will still fulfill it whenevaluated by another Euclid observer

HTζiso↑ϕ

(ζiso↑sTϕ ) = ζiso↑HTϕ (sTϕ ) ,

for any isometric relative motion ζiso ∈ C1(Tϕ ; Tζiso↑ϕ) induced by a change

of Euclid observer ζisoE ∈ C1(E ; E) .

Equivalent condition

I Constitutive operators must be frame invariant

Page 201: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

MFI in elasto-visco-plasticity

I Frame invariance of the hypo-elastic operator

HhypoTζiso↑ϕ

= ζiso↑HhypoTϕ

Pushed operator

(ζiso↑HhypoTϕ )(ζiso↑σTϕ ) · ζiso↑σTϕ = ζiso↑(Hhypo

Tϕ (σTϕ ) · σTϕ )

Examples:

I the simplest hypo-elastic operator is Green integrable and frame invariant:

HhypoTϕ,t (TTϕ,t ) :=

1

2µITϕ,t −

ν

EITϕ,t ⊗ ITϕ,t

I the visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:

J.C. Simo & K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp.Meth. Appl. Mech. Eng. 46 (1984) 201–215.J. C. Simo & M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutiveequations, Comp. Meth. Appl. Mech. Eng. 49 (1985) 221–245.

Page 202: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

MFI in elasto-visco-plasticity

I Frame invariance of the hypo-elastic operator

HhypoTζiso↑ϕ

= ζiso↑HhypoTϕ

Pushed operator

(ζiso↑HhypoTϕ )(ζiso↑σTϕ ) · ζiso↑σTϕ = ζiso↑(Hhypo

Tϕ (σTϕ ) · σTϕ )

Examples:

I the simplest hypo-elastic operator is Green integrable and frame invariant:

HhypoTϕ,t (TTϕ,t ) :=

1

2µITϕ,t −

ν

EITϕ,t ⊗ ITϕ,t

I the visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:

J.C. Simo & K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp.Meth. Appl. Mech. Eng. 46 (1984) 201–215.J. C. Simo & M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutiveequations, Comp. Meth. Appl. Mech. Eng. 49 (1985) 221–245.

Page 203: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

MFI in elasto-visco-plasticity

I Frame invariance of the hypo-elastic operator

HhypoTζiso↑ϕ

= ζiso↑HhypoTϕ

Pushed operator

(ζiso↑HhypoTϕ )(ζiso↑σTϕ ) · ζiso↑σTϕ = ζiso↑(Hhypo

Tϕ (σTϕ ) · σTϕ )

Examples:

I the simplest hypo-elastic operator is Green integrable and frame invariant:

HhypoTϕ,t (TTϕ,t ) :=

1

2µITϕ,t −

ν

EITϕ,t ⊗ ITϕ,t

I the visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:

J.C. Simo & K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp.Meth. Appl. Mech. Eng. 46 (1984) 201–215.J. C. Simo & M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutiveequations, Comp. Meth. Appl. Mech. Eng. 49 (1985) 221–245.

Page 204: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

MFI in elasto-visco-plasticity

I Frame invariance of the hypo-elastic operator

HhypoTζiso↑ϕ

= ζiso↑HhypoTϕ

Pushed operator

(ζiso↑HhypoTϕ )(ζiso↑σTϕ ) · ζiso↑σTϕ = ζiso↑(Hhypo

Tϕ (σTϕ ) · σTϕ )

Examples:

I the simplest hypo-elastic operator is Green integrable and frame invariant:

HhypoTϕ,t (TTϕ,t ) :=

1

2µITϕ,t −

ν

EITϕ,t ⊗ ITϕ,t

I the visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:

J.C. Simo & K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp.Meth. Appl. Mech. Eng. 46 (1984) 201–215.J. C. Simo & M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutiveequations, Comp. Meth. Appl. Mech. Eng. 49 (1985) 221–245.

Page 205: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

MFI in elasto-visco-plasticity

I Frame invariance of the hypo-elastic operator

HhypoTζiso↑ϕ

= ζiso↑HhypoTϕ

Pushed operator

(ζiso↑HhypoTϕ )(ζiso↑σTϕ ) · ζiso↑σTϕ = ζiso↑(Hhypo

Tϕ (σTϕ ) · σTϕ )

Examples:

I the simplest hypo-elastic operator is Green integrable and frame invariant:

HhypoTϕ,t (TTϕ,t ) :=

1

2µITϕ,t −

ν

EITϕ,t ⊗ ITϕ,t

I the visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:

J.C. Simo & K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp.Meth. Appl. Mech. Eng. 46 (1984) 201–215.J. C. Simo & M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutiveequations, Comp. Meth. Appl. Mech. Eng. 49 (1985) 221–245.

Page 206: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

MFI in elasto-visco-plasticity

I Frame invariance of the hypo-elastic operator

HhypoTζiso↑ϕ

= ζiso↑HhypoTϕ

Pushed operator

(ζiso↑HhypoTϕ )(ζiso↑σTϕ ) · ζiso↑σTϕ = ζiso↑(Hhypo

Tϕ (σTϕ ) · σTϕ )

Examples:

I the simplest hypo-elastic operator is Green integrable and frame invariant:

HhypoTϕ,t (TTϕ,t ) :=

1

2µITϕ,t −

ν

EITϕ,t ⊗ ITϕ,t

I the visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:

J.C. Simo & K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp.Meth. Appl. Mech. Eng. 46 (1984) 201–215.J. C. Simo & M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutiveequations, Comp. Meth. Appl. Mech. Eng. 49 (1985) 221–245.

Page 207: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 208: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 209: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 210: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 211: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 212: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 213: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 214: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 215: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 216: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 217: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 218: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 219: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 220: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 221: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent

Page 222: to to Università di Napoli Federico II to Dottorato di ...wpage.unina.it/romano/lecture-slides/beamer_unina.pdf · Universit a di Napoli Federico II Dottorato di Ricerca in Ingegneria

Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivativesby pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should berevised and reformulated

I Algorithms for numerical computations must be modified to comply with thecovariant theory; multiplicative decomposition of the deformation gradientshould be deemed as geometrically inconsistent