Tormidiagramm Laeva juhtimine tormis. Laineperioodide kõverad Laeva õõtseperiood ja ohtlik tsoon...
of 33/33
Tormidiagramm Laeva juhtimine tormis
Tormidiagramm Laeva juhtimine tormis. Laineperioodide kõverad Laeva õõtseperiood ja ohtlik tsoon Lainepikkuste skaala Laeva kiiruse skaala Laine jooksu
Text of Tormidiagramm Laeva juhtimine tormis. Laineperioodide kõverad Laeva õõtseperiood ja ohtlik tsoon...
Slide 1
Tormidiagramm Laeva juhtimine tormis
Slide 2
Laineperioodide kverad Laeva tseperiood ja ohtlik tsoon
Lainepikkuste skaala Laeva kiiruse skaala Laine jooksu
kursinurgad
Slide 3
tse ohtliku tsooni leidmiseks kasutame diagrammi laosa lhtudes
laeva oma-tseperioodist. Ohtlik on tsoon 0,77T kuni 1,43T. Laeva
tseperioodi korral 12 sekundit osutub resonantsiohtlikuks lainete
niv periood (lainelkide sagedus) vahemikus 9 17 sekundit
Slide 4
Leiame ohtliku tsooni laine pikkusel 120 meetrit. Fikseerime
puutepunktid ohtliku tsooni piirperioodide kveratega. 9 17
Slide 5
Lainete jooksu kursinurkade ja laeva kiiruste skaala. Siia
kantakse asukohamarker.
Slide 6
Laine krguste skaala, mis nitab, et teatud laine krgus vib
esineda erinevate laine pikkuste korral.
Slide 7
Laine pikkus 70 m 17 9 Resonantsiohtlik tsoon
Slide 8
Laine pikkus 70 m 17 9 Lainete jooksu kursinurk 125 kraadi
Laeva kiirus 14 slme Asukohamarker
Slide 9
Laine pikkus 70 m 17 9 Lahendus 1: Muuta kurssi 20 kraadi
Paremale, viies lainete Jooksu kursinurga 105 kraadile
Slide 10
Laine pikkus 70 m 17 9 Lahendus 2: Muuta kurssi vasakule 35
kraadi, viies lainete Kursinurga 160 kraadile
Slide 11
Laine pikkus 70 m 17 9 Lahendus 3: Vhendada kiirust kuni 8
slmeni
Slide 12
Laine pikkus 70 m 17 9 Lahendus 4: Muuta kurssi paremale 10
kraadi ja vhendada kiirust 19 slmeni
Slide 13
Laine krgus 8 m Resonantsiohtlik tsoon 9 917
Slide 14
Laine krgus 8 m
Slide 15
Lahendus 1: Muuta kurssi paremale 35 kraadi, viies lainete
kursinurga 90 kraadile
Slide 16
Laine krgus 8 m Lahendus 2: Muuta kurssi vasakule 45 kraadi,
viies lainete kursinurga 170 kraadile
Slide 17
Slide 18
Slide 19
Slide 20
The ARROW program is a software tool to estimate and display
the potential conditions of rolling resonances or high wave impacts
on ships due to specific wave encounter situations. Only some data
input from the user on ship and waves are needed to provide the
qualitative results in a way to identify potential problems and
tendencies to derive countermeasures. According to IMO Guidance to
the master for avoiding dangerous situations in following and
quartering seas, MSC circular 707, adopted on 19. October 1995 the
following phenomena can occur when a ship is affected by high sea
state: - Synchronous rolling motion - Parametric rolling motion -
Reduction of intact stability caused by riding on the wave crest
amidships - Surf-riding and broaching-to - Combination of phenomena
listed above
Slide 21
Over the last few years several vessels have experienced the
dangerous effects of rolling resonance. One result of these harmful
encounters is shown beside. The ARROW polar diagram for these ship
and wave conditions would have shown that the ship was in the area
of parametric rolling conditions. Brief Description / Overview of
ARROW The Ship Parameter Input Area allows entering the ships data
for stability and to use the pre-calculated or observed data of the
ships natural rolling periods as basis for the calculations. The
Wave Parameter Input gives the possibility to adjust up to two
different wave systems to encounter the ship from different
directions and with specific wave periods/length or heights. When
more than one wave systems exist, wave interference effects might
be taken into account. The Result Display Area is designed as polar
diagram where the ships' speed vector position indicates if the
ship is in potential dangerous conditions. Different colours and
line styles indicate areas for conditions of synchronous or
parametric rolling resonance, loss of stability because of
successive high wave groups attacks or due to danger of surfriding
and broaching-to. These effects can be shown all together when more
than one phenomenon appears in parallel or selected separately one
by one in the Specify Result Display. The Stability Data Input and
Display Window comprises a few data like metacentric height GM, up
righting levers GZ for roll angles up to 40 and the inertia
coefficient Cr for rolling motion.
Slide 22
Slide 23
Stability Data Input Window... the calculation of roll
resonance and wave impact on a ship is based on the ships natural
rolling period which is highly dependant upon the stability data of
the ship. The ARROW - Stability Data Window allows the input of the
actual stability data... Stability Data Input Window
Slide 24
Slide 25
Synchronous Roll Resonance... When selecting this result
display option in the ARROW - Display Area the result of the
calculation of synchronous rolling resonance effects on the vessel
are shown exclusively. Synchronous rolling resonance conditions
occur when the ships natural roll periods Tr coincides to the
encounter period TE of the wave. They will be shown as stripes in
the polar diagram representing the potential conditions for
resonance.
Slide 26
Slide 27
Parametric Roll Resonance... The display of the parametric roll
resonance effects is shown as a +/- 30 sector segment for head and
stern seas only. The colours have the same meaning as explained for
the synchronous resonance. When selecting this result display
option in the ARROW - Display Area the result of the calculation of
parametric rolling resonance effects on the vessel are shown
exclusively. Parametric rolling resonance conditions occur when the
ships natural roll periods Tr is equal to half of the encounter
period TE of the wave. They will be shown as sector segment in a
sector of +/- 30 for head and stern seas only, representing the
potential conditions for this type of resonance.
Slide 28
Slide 29
Surf-Riding / Broaching-to... Selecting this display option,
the results of surf-riding and broaching-to effects are shown
exclusively. When a ship is situated on a steep forefront of high
wave in following and quartering sea condition, the ship can be
accelerated to ride on the wave; this is known as surf-riding. When
a ship is surf-ridden, the so-called broaching-to phenomenon may
occur, which puts the ship in danger of capsizing as the result of
sudden change of ship's heading and unexpected large heeling.
Slide 30
Slide 31
High Wave Group Encounter... When the ship speed component in
the wave direction is nearly equal to the wave group velocity, that
is a half of the phase velocity of the dominant wave components,
the ship will be attacked successively by high waves. The expected
maximum wave height of the successive waves can reach almost twice
the height of the observed wave of the sea state concerned. In this
situation, the reduction of intact stability together with
synchronous rolling or parametric rolling motions or combination of
various dangerous phenomena may occur and create the danger of
capsize
Slide 32
Slide 33
All Types of Results... Selecting this option all types of
results of roll resonances and wave impacts are shown together in
the result display area. All effects are coloured as described in
the respective chapters above. This display mode allows for overall
information on all effects which are occurring at the same time and
environmental conditions.