50
CHUYÊN ĐỀ: Chương X TÖØ VI MOÂ ÑEÁN VÓ MOÂ Phaàn 1: CAÙC HAÏT SÔ CAÁP Hạt sơ cấp (còn được gọi là hạt cơ bản) là những thực thể vi mô tồn tại như một hạt nguyên vẹn, đồng nhất, không thể tách thành các phần nhỏ hơn; ví dụ như các hạt photon, electron, positron, neutrino ... I. TÍNH CHẤT CỦA CÁC HẠT SƠ CẤP . 1. Khối lương nghỉ: Khối lượng nghỉ hay khối lượng tĩnh của một vật là khối lượng của vật xét trong một hệ quy chiếu mà theo hệ đó, vật là đứng yên. Đại đa số vật chất, trừ phôtôn và nơtrinô, đều có khối lượng nghỉ khác không. Các hạt sơ cấp đều có khối lượng nghỉ khác không. Phôtôn ( g) và nơtrinô (n) khối lượng nghỉ xem như rất bé. Khối lượng nghỉ tính ra đơn vị khối lượng nghỉ của electron (me) hay tính ra MeV/c2. 2. Thời gian tồn tại: Các hạt cơ bản đa số có thể phân rã thành các hạt khác. Thời gian sống của chúng giao động từ 10 -6 đến 10 -24 giây. Một số ít hạt cơ bản được gọi là bền, có thời gian sống rất lớn, có thể coi là bền như electron

TỪ VI MÔ ĐẾN VĨ MÔ · Web viewVùng này, thực tế bắt đầu bên trong quỹ đạo Sao Hải Vương, là một vành đai gồm những mảnh vỡ, giống với

Embed Size (px)

Citation preview

CHUYÊN ĐỀ: Chương X TÖØ VI MOÂ ÑEÁN VÓ MOÂ Phaàn 1:

CAÙC HAÏT SÔ CAÁP

Hạt sơ cấp (còn được gọi là hạt cơ bản) là những thực thể vi mô tồn tại như một hạt nguyên vẹn, đồng nhất, không thể tách thành các phần nhỏ hơn; ví dụ như các hạt photon, electron, positron, neutrino ...

I. TÍNH CHẤT CỦA CÁC HẠT SƠ CẤP .1. Khối lương nghỉ:Khối lượng nghỉ hay khối lượng tĩnh của một vật là khối lượng của vật xét trong một hệ quy chiếu

mà theo hệ đó, vật là đứng yên. Đại đa số vật chất, trừ phôtôn và nơtrinô, đều có khối lượng nghỉ khác không.

Các hạt sơ cấp đều có khối lượng nghỉ khác không. Phôtôn (g) và nơtrinô (n) khối lượng nghỉ xem như rất bé. Khối lượng nghỉ tính ra đơn vị khối lượng nghỉ của electron (me) hay tính ra MeV/c2.

2. Thời gian tồn tại:Các hạt cơ bản đa số có thể phân rã thành các hạt khác. Thời gian sống của chúng giao động từ 10 -6

đến 10-24 giây. Một số ít hạt cơ bản được gọi là bền, có thời gian sống rất lớn, có thể coi là bền như electron 1022 năm, prôtôn 1030 năm. Người ta nghiên cứu thời gian sống của hạt cơ bản thông qua lý thuyết xác suất, dựa trên thời gian để một số lượng n hạt sơ cấp phân rã chỉ còn lại 0.5n hạt

3. Điện tích và Spin:Một số hạt trung hòa về điện có điện tích bằng không như phôtôn γ và nơtrinô ν. Một số hạt khác

mang điện tích âm hoặc dương, với trị số tuyệt đối đều bằng điện tích nguyên tố của electron 1.602 x 10-19 CSpin là một khái niệm trong vật lý, là bản chất của mô men xung lượng và là một hiện tượng của cơ

học lượng tử thuần túy, không cùng với những sự tương đồng trong cơ học cổ điển. Trong cơ học cổ điển, mô men xung lượng được phát triển từ xung lượng cho sự quay của một vật có khối lượng, và được biểu diễn bằng công thức L = r × p, nhưng spin trong cơ học lượng tử vẫn tồn tại ở một hạt với khối lượng bằng 0, bởi vì spin là bản chất nội tại của hạt đó. Các hạt cơ bản như electron có thể có spin khác 0, ngay cả khi

nó được coi là chất điểm và không có cấu trúc nội tại. Khái niệm spin được đưa ra lần đầu vào năm 1925 bởi Ralph Kronig và, đồng thời, bởi George Unlenbeck và Samuel Goudsmit một cách độc lập.

4. Số lạ:Số lạ là đại lượng đặc trưng lượng tử của các hạt cơ bản, được đưa ra khi nghiên cứu quá trình phân

rã của các hạt mêzôn K: K+, K0, và hyperon Υ: Λ0, Σ+, Σ0, Σ- tuân theo định luật bảo toàn số lạ1947, tìm ra loại HSC mới - hạt mêzôn K: K+, Ko (KLT khoảng 965me) và các hạt hyperôn Y có

KLT lớn hơn nuclôn là: Lămđa (Lo), Zigma (å+,åo, å-), Ksi (Xo, X-), Omêga (W-). Gọi là các hạt lạ vì có 2 đặc điểm sau đây:- Sinh ra ở quá trình rất nhanh (» 10-23s) và rã trong những quá trình chậm (» 10-8s).- Luôn sinh ra đồng thời 2, 3 hạt lạ không cùng loại nhưng không sinh ra 1 hạt lạ hay vài hạt lạ

cùngloại. II. PHÂN LOẠI CÁC HẠT SƠ CẤP .

1. Hạt Fermion:Trong vật lý hạt, fermion là các hạt có spin nửa nguyên. Các hạt này đặt theo tên của Enrico Fermi.

Trong Mô hình chuẩn, có hai kiểu fermion cơ bản: quark và lepton. Vì các số fermion thường được bảo toàn xấp xỉ nên đôi khi chúng còn được gọi là các cấu tạo của vật chất. Nói nôm na, fermion là các hạt vật chất và boson là các hạt truyền lực.

Vì có spin nửa nguyên, khi một fermion quay 360°, hàm sóng của fermion sẽ đổi dấu. Đó được gọi là dáng điệu hàm sóng phản đối xứng của fermion. Điều này dẫn đến các fermion tuân theo thống kê Fermi-Dirac, hệ quả của nó là nguyên lý loại trừ Pauli - không có hai fermion nào có thể cùng chiếm một trạng thái cơ lượng tử vào cùng một thời điểm.

2. Các quark:Quark là một trong hai thành phần cơ bản cấu

thành nên vật chất trong Mô hình chuẩn của vật lý hạt. Các phản hạt của quark được gọi là các phản quark. Quark và phản quark là những hạt duy nhất tương tác trong cả 4 lực cơ bản của vũ trụ.

Một tính chất quan trọng bậc nhất của các quark chính là tính chế ngự. Tính chất này đã giải thích tại sao việc đơn quark không được phát hiện trong các thí nghiệm - chúng luôn luôn ở trong các hadron, hạt hạ

nguyên tử như các quang tử, neutron và meson. Tính chất cơ bản này đã được rút ra từ trong lý thuyết hiện đại của các tương tác mạnh, gọi là Thuyết sắc động lực học lượng tử (QCD). Mặc dù không có nguồn gốc toán học của tính chế ngự trong QCD, nhưng nó lại dễ dàng được chỉ ra bằng việc sử dụng phương pháp mắt lưới của thuyết gauge hay còn gọi là lattice gauge theory.

3. Các lepton:Lepton (tiếng Hy Lạp là λεπτόν) có nghĩa là "nhỏ" và "mỏng". Tên này có trước khi khám phá ra các

hạt tauon, một loại hạt lepton nặng có khối lượng gấp đôi khối lượng của proton.Lepton là hạt có spin bán nguyên, ½, và không tham gia trong tương tác mạnh. Lepton hình thành

một nhóm hạt cơ bản phân biệt với các nhóm gauge boson và quark.

Có 12 loại lepton được biết đến, bao gồm 3 loại hạt vật chất là electron, muon và tauon, cùng 3 neutrino tương ứng và 6 phản hạt của chúng. Tất cả các lepton điện tích đều có điện tích là -1 hoặc + 1 (phụ thuộc vào việc chúng là hạt hay phản hạt) và tất cả các neutrino cùng phản neutrino đều có điện tích trung hòa. Số lepton của cùng một loại được giữ ổn định khi hạt tham gia tương tác, được phát biểu trong định luật bảo toàn số lepton.

4. Hạt Gause Boson:Boson, đặt tên theo nhà vật lý người Ấn

Độ Satyendra Nath Bose, là một trong hai loại hạt cơ bản trong tự nhiên (loại hạt kia là fermion). Chúng là loại hạt duy nhất tuân theo thống kê Bose-Einstein, nghĩa là chúng có thể nằm cùng một trạng thái lượng tử (không tuân thủ nguyên lý Pauli). Theo lý thuyết thống kê spin, chúng có spin lấy giá trị nguyên.

Các tính chất nêu trên của boson hoàn toàn đối lập với fermion (có spin bán nguyên, tuân thủ nguyên lý Pauli).

Theo mô hình chuẩn, một lý thuyết gauge, lực giữa các fermion được mô hình hóa bằng cách tạo ra các boson, có tác dụng như các thành phần trung gian. Hệ Lagrange của mỗi tập hợp hạt boson trung gian không thay đổi dưới một dạng biến đối gọi là biến đổi gauge, vì thế các boson này còn được gọi là gauge boson. Gauge boson là các hạt cơ bản mang tương tác cơ bản. Chúng là W boson của lực hạt nhân yếu, gluon của lực hạt nhân mạnh, photon của lực điện từ, và graviton của lực hấp dẫn.

Biến đổi gauge của các gauge boson có thể được miêu tả bởi một nhóm unita, gọi là nhóm gauge. Nhóm gauge của tương tác mạnh là SU(3), nhóm gauge của tương tác yếu là SU(2)xU(1). Vì vậy, mô hình chuẩn thường được gọi là SU(3)xSU(2)xU(1). Higg boson là boson duy nhất không thuộc gauge boson, các tính chất của boson này vẫn còn đươc bàn cãi.

Mọi hạt trong tự nhiên đều hoặc là boson hoặc là fermion. Các hạt tạo nên từ các hạt cơ bản hơn (như proton hay hạt nhân nguyên tử) cũng thuộc một trong hai nhóm boson và fermion, phụ thuộc vào tổng spin của chúng.

Các tính chất boson của photon giải thích bức xạ vật đen và hoạt động của laser. Tính chất boson của heli-4 giải thích khả năng tồn tại ở trạng thái siêu lỏng. Những boson cũng có thể nằm ở trạng thái đông đặc Bose-Einstein, một trạng thái vật chất đặc biệt ở đó mọt hạt đều ở cùng một trạng thái lượng tử.

Đông đặc Bose-Einstein chỉ xảy ra tại nhiệt độ rất thấp. Ở nhiệt độ thường, boson và fermion đều ứng xử rất giống nhau, giống hạt cổ điển tuân thủ gần đúng thống kê Maxwell-Boltzmann. Lý do là vì cả thống kê Bose-Einstein và thống kê Fermi-Dirac (thống kê hạt fermion) đều tiệm cận đến thống kê Maxwell-Boltzmann ở nhiệt độ phòng.

Các boson trong mô hình chuẩn là: * Photon, hạt trung gian trong tương tác điện từ. * W và Z boson, hạt trung gian trong lực hạt nhân yếu. * 8 gluon, hạt truyền trung gian trong lực hạt nhân mạnh. 6 trong số các gluon được đánh dấu

bằng các cặp "màu" và "đối màu" (ví dụ như một hạt gluon mang màu "đỏ" và "đối đỏ"), 2 gluon còn lại là cặp màu được "pha trộn" phức tạp hơn.

* Higgs boson, hạt gây ra bất đối xứng trong các nhóm gauge, và cũng là loại hạt tạo ra khối lượng quán tính.

Graviton là boson được cho là hạt truyền tương tác của tương tác hấp dẫn, nhưng không được nhắc đến trong mô hình chuẩn.

Các ví dụ boson khác:

* Hạt nhân với spin nguyên * Nguyên tử Heli-4 * Nguyên tử Natri-23 * phonon

III. TƯƠNG TÁC CỦA CÁC HẠT SƠ CẤP .1. Tương tác mạnh:Lực tương tác mạnh là một trong bốn lực cơ bản của tự nhiên. Lực này giữ các thành phần của hạt

nhân nguyên tử lại với nhau, chống lại lực đẩy rất lớn giữa các proton. Lực này được chia làm hai thành phần, lực mạnh cơ bản và lực mạnh dư. Lực tương tác mạnh ảnh hưởng bởi các hạt quark, phản quark và gluon, cũng như các boson truyền tương tác của chúng. Thành phần cơ bản giữ các quark lại với nhau để hình thành các hadron như proton và neutron. Thành phần dư giữ các hadron lại trong hạt nhân của một nguyên tử. Ở đây còn có một hạt gián tiếp là bosonic hadron, hay còn gọi là meson.

Theo thuyết sắc động lực học lượng tử, mỗi quark mang trong mình điện tích màu, ở một trong 3 dạng "đỏ", "xanh lam" hoặc "xanh lơ". Đó chỉ là những tên, hoàn toàn không liên hệ gì với màu thực tế. Đối quark là các hạt như "đối đỏ", "đối xanh lam", "đối xanh lơ". Cùng màu đẩy nhau, trái màu hút nhau. Lực hút giữa hạt màu và hạt đối màu của nó là rất mạnh. Các hạt chỉ tồn tại nếu như tổng màu của chúng là trung hòa, nghĩa là chúng có thể hoặc được kết hợp với đối đỏ, đối xanh lam và đối xanh lơ như trong các hạt baryon, proton và neutron, hoặc một quark và một đối quark của nó có sự tương ứng đối màu (như hạt meson).

Lực tương tác mạnh xảy ra giữa hai quark là nhờ một hạt trao đổi có tên là gluon. Nguyên lý hoạt động của hạt gluon có thể hiểu như trái bòng bàn, và hai quark là hai vận động viên. Hai hạt quark càng r a xa thì lực tương tác giữa chúng càng lớn, nhưng khi chúng gần xát nhau, thì lực tương tác này bằng 0. Có 8 loại gluon khác nhau, mỗi loại mang một màu điện tích và một đối màu điện tích (có 3 loại màu, nhưng do có sự trung hòa giống như đỏ + xanh + vàng = trắng ngoài tự nhiên, nên chỉ có 8 tổ hợp màu giữa chúng).

Mỗi một cặp tương tác của quark, chúng luôn luôn thay đổi màu, nhưng tổng màu điện tích của chúng được bảo toàn. Nếu một quark đỏ bị hút bởi một quark xanh lam trong một baryon, một gluon mang đối xanh lam và đỏ được giải phóng từ quark đỏ và hấp thụ bởi quark xanh lam, và kết quả, quark đầu tiên chuyển sang quark xanh lam và quark thứ hai chuyển sang quark đỏ (tổng màu điện tích vẫn là xanh lam + đỏ). Nếu một quark xanh lơ và một đối xanh lơ quark tuơng tác với nhau trong một meson, một gluon mang, ví dụ như đối đỏ và xanh lơ sẽ được giải phóng bởi quark xanh lơ và hấp thụ bởi một đối xanh lơ quark, và kết quả, quark xanh lơ chuyển sang màu đỏ và đối xanh lơ đối quark chuyển sang màu đỏ (tổng màu điện tích vẫn là 0). Hai quark xanh lam đẩy nhau và trao đổi một gluon mang điện tích màu xanh lam và đối xanh lam, các quark vẫn dữ nguyên điện tích màu xanh lam.

Hiện tượng không thể tách rời các quark xa nhau gọi là hiện tượng giam hãm (confinement). Có một giả thuyết rằng các quark gần nhau sẽ không tồn tại lực tương tác mạnh và trỏ thành tự do, giả thuyết này còn gọi là sự tự do tiệm cận và có thể được giải thích bằng nguyên lý quả bóng bàn như trên.

Tương tác mạnh là một dạng tương tác gần, với bán kính tương tác vào khoảng ≤10-13 cm. Ra ngoài khoảng cách này, tương tác mạnh gần như biến mất.

2. Tương tác điện từ:Lực điện từ là lực mà điện-từ trường tác dụng lên hạt mang điện tích (chuyển động hay đứng yên).

Theo biểu diễn cổ điển của lực điện từ, lực này gồm hai thành phần, do điện trường tạo ra (lực điện) và do từ trường tạo ra (lực từ).

Lực điện từ đôi khi còn được gọi là lực Lorentz, mặc dù thuật ngữ này cũng có thể chỉ dùng để nói về thành phần gây ra bởi từ trường. Lý do là trong lý thuyết điện từ và lý thuyết tương đối, từ trường và điện trường được thống nhất thành một trường tạo ra tương tác duy nhất gọi là trường điện từ. Đặc biệt, trong lý thuyết tương đối, biểu thức lực từ và lực tĩnh điện quy tụ về một biểu thức duy nhất.

Việc thống nhất lực điện và lực từ thành một loại lực điện từ cũng phù hợp với quan điểm của lý thuyết điện động lực học lượng tử. Theo lý thuyết này, lực điện từ được gây ra bởi sự trao đổi của hạt trường là photon.

Mô hình chuẩn ghi nhận lực điện từ là một trong bốn lực cơ bản của tự nhiên.3. Tương tác yếu:Lực tương tác yếu là 1 trong 4 loại lực cơ bản của tự nhiên xảy ra ở mọi hạt cơ bản, trừ các hạt

proton và gluons, ở đó có sự trao đổi của các hạt truyền tương tác là vector W boson và Z boson.Lực tương tác yếu xảy ra ở một biên độ rất ngắn, bởi vì khối lượng của những hạt W boson và Z

boson vào khoảng 80 GeV, nguyên lý bất định bức chế chúng trong một khoảng không là 10 − 18 m, kích thước này chỉ nhỏ bằng 0,1% so với đường kính của proton. Trong điều kiện bình thường [cần dẫn nguồn], các hiệu ứng của chúng là rất nhỏ. Có một số định luật bảo toàn hợp lệ với lực tương tác mạnh và lực điện từ, nhưng lại bị phá vỡ bởi lực tương tác yếu. Mặc dầu có biên độ và hiệu xuất thấp, nhưng lực tương tác yếu lại có một vai trò quan trọng trong việc hợp thành thế giới mà trong đó ta quan sát.

4. Tương tác hấp dẫn:Trong vật lý học, lực hấp dẫn là lực hút giữa mọi vật chất và có độ lớn tỷ lệ với khối lượng của

chúng.Lực hấp dẫn là một trong bốn lực cơ bản của tự nhiên theo mô hình chuẩn được chấp nhận rộng rãi

trong vật lý hiện đại, ba lực cơ bản khác là lực điện từ, lực hạt nhân yếu, và lực hạt nhân mạnh. Lực hấp dẫn là lực yếu nhất trong số các lực đó, nhưng lại có thể hoạt động ở khoảng cách xa và luôn thu hút.

Trong cơ học cổ điển, lực hấp dẫn xuất hiện như một ngoại lực tác động lên vật thể. Trong thuyết tương đối rộng, lực hấp dẫn là bản chất của không thời gian bị uốn cong bởi sự hiện diện của khối lượng, và không phải là một ngoại lực. Trong thuyết hấp dẫn lượng tử, hạt graviton được cho là hạt mang lực hấp dẫn.

Lực hấp dẫn của Trái Đất tác động lên các vật thể có khối lượng và làm chúng rơi xuống đất. Lực hấp dẫn cũng giúp gắn kết các vật chất để hình thành Trái Đất, Mặt Trời và các thiên thể khác; nếu không có nó các vật thể sẽ không thể liên kết với nhau và cuộc sống như chúng ta biết hiện nay sẽ không thể tồn tại. Lực hấp dẫn cũng là lực giữ Trái Đất và các hành tinh khác ở trên quỹ đạo của chúng quanh Mặt Trời, Mặt Trăng trên quỹ đạo quanh Trái Đất, sự hình thành thủy triều, và nhiều hiện tượng thiên nhiên khác mà chúng ta quan sát được

Phaàn 2:HEÄ MAËT TRÔØI

Hệ Mặt Trời (cũng được gọi là Thái Dương Hệ) là một hệ hành tinh có Mặt Trời ở trung tâm và các thiên thể nằm trong phạm vi lực hấp dẫn của Mặt Trời, gồm 8 hành tinh chính quay xung quanh, 7 trong số các hành tinh này có vệ tinh riêng của chúng, cùng một lượng lớn các vật thể khác gồm các hành tinh lùn (như

Diêm Vương Tinh), tiểu hành tinh, sao chổi, bụi và plasma.

I. CẤU TRÚC .

1. Bao quát: Từ trong ra ngoài, Hệ Mặt Trời gồm: Mặt Trời. Các hành tinh là Thủy Tinh, Kim Tinh, Trái Đất, Hỏa Tinh, các tiểu hành tinh , Mộc Tinh,

Thổ Tinh, Thiên Vương Tinh, Hải Vương Tinh. Ba hành tinh lùn là Ceres, Diêm Vương Tinh và Eris (được chính thức xếp loại hành tinh lùn

kể từ tháng 8 năm 2006). Ngoài cùng là Vòng đai Kuiper và Đám Oort.

2. Quỹ đạo: Đa số các vật thể trên quỹ đạo quanh Mặt Trời đều nằm trong mặt phẳng quỹ đạo gần nhau, và gần mặt phẳng hoàng đạo, và cùng quay một hướng.

3. Phân bố khối lượng:Mặt Trời, một sao thuộc dãy chính G2, chiếm 99,86% khối lượng hiện được biết đến của cả hệ Mặt

Trời. Hai vật thể có đường kính lớn nhất của hệ, Sao Mộc và Sao Thổ, chiếm 91% phần còn lại. Đám Oort có thể chiếm một phần đáng kể, nhưng hiện nay sự hiện diện của nó còn chưa được xác định rõ.

II. MẶT TRỜI .

1. Cấu tạo:Mặt Trời (còn gọi là Thái Dương) là một ngôi sao ở trung tâm của hệ Mặt Trời, hình thành cách đây

khoảng 5 tỷ năm. Mặt Trời quay xung quanh tâm của Ngân Hà ở khoảng cách khoảng 25.000 đến 28.000 năm ánh sáng tính từ tâm thiên hà này, nó hoàn thành một chu kỳ quay vào khoảng 226 triệu năm, vận tốc quỹ đạo là 217 km/s.

Nhìn tổng quát, Mặt Trời được cấu tạo thành 2 phần là quang cầu và khí quyểnQuang cầu (còn gọi là quang quyển) có bán kính 7.105. Mật độ vật chất trong quang cầu vào khoảng 1021 hạt / m3.

Khí quyển Mặt Trời được cấu tạo chủ yếu bởi Hidro, Heli,…Vì có nhiệt độ rất cao nên khí quyển Mặt Trời có đặc tính rất phức tạp, được phân ra 2 lớp có tính chất vật lý khác nhau là sắc cầu và nhật hoa.

Mặt Trời trong thiên văn được ký hiệu là

2. Năng lượng của mặt trời:Mặt Trời liên tục bức xạ năng lượng ra xung quanh, nó duy trì được năng lượng bức xạ là do trong

lòng Mặt Trời đang diễn ra các phản ứng nhiệt hạch. Lượng năng lượng bức xạ Mặt Trời truyền vuông góc tới 1 đơn vị diện tích cách nó 1 đơn vị thiên

văn trong 1 đơn vị thời gian gọi là hằng số Mặt Trời H. Qua đo đạc cho thấy H có trị số như nhau và H = 136 W/m2.

3. Sự hoạt động của mặt trời:Qua ảnh chụp Mặt Trời trong nhiều năm cho ta thấy quang cầu sáng không đều, tùy từng thời kì còn

xuất hiện nhiều dấu vết khác: vết đen, bùng sáng, tai lửa. Tia X và dòng các hạt tích điện từ bùng sáng truyền tới Mặt Trời gây ra nhiều tác động đến Trái Đất:

nhiễu loạn thông tin liên lạc, làm cho từ trường Trái Đất biến thiên, gây ra bão từ…

4. Gió mặt trời:

Gió Mặt Trời là một luồng hạt điện tích giải phóng từ vùng thượng quyển của các ngôi sao. Gió Mặt Trời mang các hạt electron và proton ở năng lượng cao, khoảng 500KeV (Kiloelectronvolt), vì thế chúng có khả năng thoát khỏi lực hấp dẫn của các ngôi sao nhờ năng lượng nhiệt cao này. Nhiều hiện tượng có thể giải thích bằng gió Mặt Trời, trong đó bao gồm: Bão từ; hiện tượng cực quang; lời giải thích tại sao đuôi của các sao chổi luôn luôn hướng ra ngoài Mặt Trời; cùng với sự hình thành của các ngôi sao ở khoảng cách xa.

Sự ảnh hưởng của từ trường quay của Mặt Trời đối với không gian giữa các hành tinh tạo nên kết cấu lớn nhất trong Hệ Mặt Trời, gọi là nhật quyển.

III. CÁC HÀNH TINH TRONG THÁI DƯƠNG HỆ . .1. Các hành tin vòng trong: Sao Thủy (Mercury), Sao Kim (Venus), Trái Đất (Earth) và Sao Hỏa

(Mars)

Bốn hành tinh kiểu Trái Đất (terrestrial planet) ở vòng trong có đặc trưng ở sự rắn đặc của chúng, được tạo thành từ đá. Chúng được tạo thành trong những vùng nóng hơn gần Mặt Trời, nơi các vật liệu dễ bay hơi hơn đã bay mất chỉ còn lại những thứ có nhiệt độ nóng chảy cao, như silicate, tạo thành vỏ rắn của các hành tinh và lớp phủ bán lỏng bên ngoài, và như sắt, tạo thành lõi của các hành tinh này. Tất cả đều có các hố tạo ra bởi va chạm và nhiều đặc trưng kiến tạo bề mặt, như các thung lũng nứt rạn và các núi lửa. Chúng tự quay quanh trục chậm chạp và có rất ít hoặc không có vệ tinh nào cả. Tổng cộng cả nhóm chỉ có 3 vệ tinh.

Với tính chất lí hóa gần như Trái Đất, nhóm hành tinh bên trong đều có bề mặt là đá (nên lưu giữ được nhiều dấu vết những vụ va chạm với các thiên thạch), nhưng chỉ trên Trái Đất mới có mặt các hợp chất hữu cơ.

Sao Thủy (Mercury)Sao Thủy hay Thủy Tinh thật ra không phải là một ngôi

sao, mà là hành tinh gần Mặt Trời nhất và cũng là hành tinh nhỏ nhất trong Thái Dương Hệ (chỉ lớn hơn hành tinh lùn (dwarf planet) Sao Diêm Vương). Sao Thủy không có một vệ tinh tự nhiên nào. Độ sáng biểu kiến của Sao Thủy thay đổi từ −2,0 đến 5,5, nhưng vì quá gần Mặt Trời nên sự quan sát hành tinh này qua viễn vọng kính hay qua các kỹ thuật khác rất khó khăn và ít khi thực hiện được.

Sao Thủy có một cấu tạo gồm 70% kim loại và 30% chất silicat. Sắt chiếm một tỉ lệ rất lớn trong cấu tạo kim loại của Sao Thủy – tỉ lệ cao nhất trong các hành tinh của Thái Dương Hệ. Ở giữa tâm của Sao Thủy là một lõi hình cầu bằng sắt chiếm 42% thể tích của hành tinh và tạo ra từ trường cho hành tinh này, bằng khoảng 1% của Trái Đất. Phần đất và đá ở phía trên của lõi dầy vào khoảng 600 km.

Sao Kim (Venus)Sao Kim, còn gọi là Kim Tinh, Sao Hôm, Sao Mai (tên tiếng Anh: Venus) thật ra không phải là một ngôi sao, mà là hành tinh gần Mặt Trời thứ nhì của Thái Dương Hệ và là loại hành tinh có đất và đá giống như Trái Đất (terrestrial planet). Kích thước, khối lượng và trọng lực[cần dẫn nguồn] của Sao Kim suýt soát với Trái Đất nên hai hành tinh này vẫn thường được coi như hai hành tinh sinh đôi. Ngoại trừ các điểm đó, Trái Đất và Sao Kim, trên thực tế, khác hẳn nhau: một nơi có khí hậu ôn hoà, nơi kia cực kỳ nóng; áp suất khí quyển ở một nơi thì vừa phải, áp suất nơi kia cực cao đủ để bóp bẹp một chiếc xe bọc sắt; không khí một nơi có nhiều hơi nước, dưỡng khí và thuận lợi cho sự sống, không khí nơi kia dầy đặc với chất độc, thán khí và các axít ăn thủng được kim loại. Với mắt trần Sao Kim là thiên thể sáng thứ ba trên bầu trời, sau Mặt Trời và Mặt Trăng. Cấp sao biểu kiến của Sao Kim biến đổi trong khoảng -4,6m đến -3,8m

Trái đất (The Earth)Trái Đất, cũng còn được gọi là Địa Cầu hay Quả Đất, là hành tinh thứ ba

trong Thái Dương Hệ tính từ Mặt Trời trở ra. Địa Cầu là hành tinh lớn nhất trong các hành tinh có đất và đá của Thái Dương Hệ. Cho đến nay đây là nơi duy nhất trong toàn vũ trụ được biết là có sự sống. Tuổi của Địa Cầu được ước lượng vào khoảng 4,6 tỷ năm; trẻ hơn một ít là Mặt Trăng, vệ tinh tự nhiên của nó.

Loài sinh vật có tri giác chính của Trái Đất là loài người (Homo sapiens sapiens).

Ký hiệu của Trái Đất là hình chữ thập viền tròn, đại diện cho đường kinh tuyến và xích đạo; một biến thể khác là hình chữ thập ở trên hình tròn Unicode.

Sao Hỏa (Mars)Sao Hỏa hay Hỏa Tinh (Tên tiếng Anh: Mars) thật ra không phải là một ngôi sao, mà là hành tinh thứ tư gần Mặt Trời trong Hệ Mặt Trời và cũng là hành tinh thứ nhất có quỹ đạo nằm ở ngoài quỹ đạo của Trái Đất. Sao Hỏa giống Trái Đất về nhiều điểm: bốn mùa, hai cực có băng đá, một bầu khí quyển có mây, gió, bão cát, một ngày dài độ 24 giờ,... Vì sự có mặt của một khí quyển tương đối dầy nên nhiều người tin là có thể có sự sống ở đây. Vì sự hiện diện của nhiều lòng sông khô nên nhiều nhà khoa học chắc chắn rằng trong quá khứ đã có một thời nước chảy trên bề mặt của Sao Hỏa. Sao Hỏa có hai vệ tinh tự nhiên là Deimos và Phobos.Sao Hỏa cũng là nguồn gốc của nhiều truyện giả tưởng nói đến "người Sao Hỏa" và các giả thuyết khoa học như "kênh đào",

sự hiện diện của nước ở thể lỏng và của sự sống trên Sao Hỏa. Trong khi "người sao Hỏa" cũng như các "kênh đào" đã được chứng nghiệm là không có, sự hiện diện của nước và của sự sống trên Sao Hỏa – nhất là dưới dạng của vi khuẩn – được một số nhà khoa học chấp nhận sau những khám phá vào năm 2004.

2. Vành đai tiểu hành tinh:Tiểu hành tinh cũng là thiên thể chuyển động quanh Mặt Trời nhưng do có kích thước khá bé (vài

chục đến vài trăm km) nên lực hấp dẫn tạo ra không ffủ để làm chúng có dạng hình cầu. Trong hệ Mặt Trời có khoảng 100,000 tiểu hành tinh, trong đó khoảng 10% đã được đặt tên. Đại đa số tập trung vào khoảng giữa sao Hỏa và sao Mộc.

Tập hợp các tiểu hành tinh tạo thành vành đai các tiểu hành tinh có quỹ đạo nằm chủ yếu giữa Sao Hoả và Sao Mộc (giữa 2,3 và 3,3 AU từ Mặt Trời), và cấu tạo chủ yếu từ các khoáng chất không bay hơi

Tiểu hành tinh, hành tinh nhỏ là những từ đồng nghĩa để chỉ một nhóm các thiên thể nhỏ trôi nổi trong hệ mặt trời trên quỹ đạo quanh Mặt trời. Asteroid (từ tiếng Hy Lạp có nghĩa "giống sao") là từ được sử dụng nhiều nhất trong tiếng Anh để chỉ các tiểu hành tinh, và đã trở thành thuật ngữ ưu tiên của Liên đoàn Thiên văn học Quốc tế; một số ngôn ngữ khác thường sử dụng planetoid (tiếng Hy lạp: "giống hành tinh"), vì từ này miêu tả chính xác hơn thực tế hiện trạng của chúng. Cuối tháng 8, 2006, IAU đã đưa ra thuật ngữ "các vật thể nhỏ hệ mặt trời" (SSSBs), bao gồm đa phần các vật thể không được xếp hạng là hành tinh nhỏ, cũng như là sao chổi; chúng đồng thời được xếp loại "hành tinh lùn" đối với những vật thể lớn nhất. Bài viết này đặc biệt chú trọng tới các hành tinh nhỏ ở phía bên trong hệ mặt trời (gần quỹ đạo Sao Mộc) và có lẽ có thành phần chính là "đá". Đối với các loại vật thể khác, như sao chổi, các vật thể Trans-Neptunian, và các tiểu hành tinh Centaur

3. Các hành tinh vòng ngoài: Sao Mộc (Jupiter), Sao Thổ (Saturn), Sao Thiên Vương (Uranus) và Sao Hải Vương (Neptune)

Sao Mộc (Jupiter)Sao Mộc hay Mộc Tinh thật ra không phải là một ngôi sao, mà là

hành tinh to lớn nhất của Thái Dương Hệ và đứng thứ năm nếu đếm từ Mặt Trời trở ra. Sao Mộc được cấu tạo bởi các chất khí ở thể lỏng vì nhiệt độ thấp; loại hành tinh này, do đó, không có đất và đá và thường thường lớn hơn loại hành tinh có đất và đá giống như Trái Đất. Đôi khi người ta còn gọi loại hành tinh này là các "sao lùn nâu" (brown dawrf) vì nếu khối lượng của hành tinh chỉ cần khoảng 100 lần nặng hơn thì sức hút của trọng lực đã đủ mạnh để tạo nên phản ứng hợp hạt nhân của các chất khí và biến hành tinh này thành một ngôi sao.

Sao Mộc cũng là nơi mà nền móng của giả thuyết cho rằng Trái Đất là trung tâm của vũ trụ bị lung lay khi Galileo Galilei khám phá ra 4 thiên thể quay chung quanh hành tinh này vào năm 1610 – thay vì chu ng quanh Trái Đất.

Sao Thổ (Saturn) Sao Thổ hay Thổ Tinh (tên tiếng Anh: Saturn) thật ra không phải

là một ngôi sao, mà là hành tinh thứ sáu tính từ Mặt Trời trở ra và cũng là hành tinh lớn thứ nhì của Hệ Mặt Trời. Sao Thổ là một hành tinh khí khổng lồ (loại hành tinh cấu tạo bằng các chất khí ở thể lỏng do đó không có đất và đá giống như Trái Đất). Tuy lớn thứ nhì sau Sao Mộc nhưng khối lượng của Sao Thổ chưa bằng 1/3 khối lượng của Sao Mộc.

Sao Thổ là hành tinh biểu tượng nhiều cho đất và gió, khí, sự lạnh lẽo nhưng lại có sự ấm áp do màu sắc của các vệ tinh lân cận. Đây còn là hành tinh nhẹ nhất trong Hệ Mặt Trời.

Hình ảnh của Sao Thổ rất nổi bật vì một vòng đai nhiều mầu xung quanh xích đạo. Chính vì vòng đai này làm cho Galileo Galilei lầm tưởng là Sao Thổ có hai "tai", hay hai "quai".

Sao Thiên Vương (Uranus)Sao Thiên Vương hay Thiên Vương Tinh hay Thiên Tinh thật ra không

phải là một ngôi sao, mà là hành tinh thứ bảy tính từ Mặt Trời trở ra và cũng là hành tinh lớn thứ ba của Thái Dương Hệ nếu theo đường kính, hay thứ tư nếu theo khối lượng. Các quốc gia Tây phương dùng tên của thần Uranus (Ουρανός), vị thần của bầu trời trong thần thoại Hy Lạp, cho hành tinh này; vị thần tương đương trong thần thoại La Mã có tên là Caelus. Tên tiếng Việt của hành tinh được dịch ra dựa vào Uranus vì Sao Thiên Vương, có nghĩa là "ngôi sao của vị vua trên trời"

Sao Hải Vương (Neptune)Sao Hải Vương hay Hải Vương Tinh hay Hải Tinh thật ra không phải là một ngôi sao, mà là hành tinh thứ tám tính từ Mặt Trời trở ra và cũng là hành tinh nặng thứ ba trong Thái Dương Hệ. Sao Hải Vương còn là hành tinh xa Mặt Trời nhất. Các văn hóa Tây phương dùng tên thần Neptune, vị thần cai trị biển cả trong thần thoại La Mã, cho hành tinh này; vị thần tương đương trong thần thoại Hy Lạp là Poseidon (Ποσειδώνας). Tên tiếng Việt của hành tinh này được dựa trên tên Neptune vì Sao Hải Vương, có nghĩa là "ngôi sao của vị vua của biển cả".

4. Ngoài Hải Vương:

Vành đai KuiperVùng này, thực tế bắt đầu bên trong quỹ đạo Sao Hải

Vương, là một vành đai gồm những mảnh vỡ, giống với vành đai các tiểu hành tinh nhưng được tạo thành chủ yếu từ băng và rộng lớn hơn. Nó nằm ở khoảng giữa 30 AU và 50 AU tính từ Mặt Trời. Vùng này được cho là nơi khởi nguồn của những sao chổi ngắn hạn, như sao chổi Halley. Mặc dù người ta ước tính có khoảng 70.000 vật thể ở vành đai Kuiper có đường kính lớn hơn 100km, tổng khối lượng của vành đai Kuiper rất nhỏ, có lẽ tương đương hay hơi lớn hơn khối lượng Trái Đất.

Nhiều vật thể ở vành đai Kuiper có quỹ đạo bên ngoài mặt phẳng hoàng đạo. Sao Diêm Vương được coi là một phần của vành đai Kuiper. Giống như những vật thể khác trong vành đai, nó có quỹ đạo lệch tâm nghiêng 17 độ so với mặt phẳng hoàng đạo và ở khoảng cách từ 29,7 AU ở điểm cận nhật đến 49,5 AU ở điểm viễn nhật. Các vật thể thuộc vành đai Kuiper có quỹ đạo giống với Sao Diêm Vương được gọi là thiên thể kiểu Diêm Vương Tinh. Một số vật thể có quỹ đạo tương tự nhau cũng được gộp thành nhóm. Những vật thể còn lại của vành đai Kuiper với các quỹ đạo "truyền thống" hơn, được xếp vào loại thiên thể ngoài Sao Hải Vương (Cubewanos).

Vành đai Kuiper có một khoảng trống rất rõ ràng. Ở khoảng cách 49 AU, số lượng các vật thể được quan sát thấy giảm sút, tạo thành "Vách đá Kuiper" và hiện vẫn chưa biết nguyên nhân của nó. Một số người cho rằng một thứ gì đó phải tồn tại ở phía ngoài vành đai và đủ lớn tới mức quét sạch mọi mảnh vỡ còn lại, có lẽ lớn như Trái Đất hay Sao Hoả. Tuy nhiên, quan điểm này vẫn còn gây tranh cãi.

Sao Diêm Vương (Pluto) và Charon:Sao Diêm Vương là một hành tinh lùn nằm trong vành đai Kuiper. Hiện vẫn còn đang tranh cãi liệu

Charon có còn là một vệ tinh của Sao Diêm Vương hay được xếp loại thành một hành tinh lùn vì đây là một hệ kép.

Charon được khám phá bởi J. Christy vào năm 1978, với bán kính xích đạo dài 593 km và khối lượng ứơc tin khoảng 1.62 x 1021 kg, Charon được xem là đồng bộ với Pluto.

Đĩa phân tán và ErisTrải rộng hơn ra phía bên ngoài của Vành đai Kuiper là đĩa phân tán. Các vật thể của đĩa phân tán

được cho rằng có cùng nguồn gốc với Vành đai Kuiper nhưng bị bắn vào các quỹ đạo thất thường hơn ở ngoài rìa.

Một vật thể đặc biệt của đĩa phân tán là 2003 UB313, được tìm ra vào năm 2003 nhưng được khẳng định hai năm sau đó bởi Mike Brown (Caltech), David Rabinowitz (Đại học Yale) và Chad Trujillo (Gemini Observatory), đã khởi động lại cuộc tranh cãi cũ về cái gì tạo nên một hành tinh bởi vì nó lớn hơn Sao Diêm Vương tới 30%, với đường kính ước tính khoảng 1864 dặm. Hiện nay nó không có tên, nhưng được trao cho cái tên tạm là 2003 UB313; nó cũng được gọi là "Xena" bởi những người tìm ra nó, lấy tên một nhân vật truyền hình. Nó có nhiều điểm tương đồng với Sao Diêm Vương: quỹ đạo của nó rất lệch tâm, với điểm cận nhật là 38,2 AU (gần bằng khoảng cách của Sao Diêm Vương tới Mặt Trời) và điểm viễn nhật 97,6 AU, và nó rất nghiêng so với mặt phẳng hoàng đạo, tới 44 độ, hơn nhiều so với bất kỳ vật thể nào được biết đến trong Hệ Mặt Trời, trừ một vật thể mới được khám phá gần đây là 2004 XR190. Giống như Sao Diêm Vương, nó được tin rằng được cấu thành phần lớn từ đá và băng, và có một mặt trăng. Tuy nhiên, việc nó và các vật thể lớn nhất trong vành đai Kuiper phải được coi là hành tinh hay Sao Diêm Vương phải bị xếp hạng lại là một thiên thể ngoài Hải Vương Tinh vẫn còn là vấn đề chưa được giải quyết.

136199 Eris (trước đây được gọi là 2003 UB313) là hành tinh lùn lớn nhất trong Thái Dương hệ và là thiên thể thứ chín quay quanh Mặt Trời (tính theo khoảng cách, không kể vành đai Kuiper và các mặt trăng). Đầu tiên, Eris được nhận diện là thiên thể ngoài Hải Vương tinh (TNO) mà các nhà thiên văn California tại đài thiên văn trên đỉnh Palomar miêu tả là "lớn hơn rõ rệt" so với hành tinh Diêm Vương. Thiên thể này được các nhà phát hiện, NASA và một số phương tiện thông tin đại chúng coi là hành tinh thứ mười, nhưng vẫn chưa rõ ràng là nó sẽ được chấp nhận rộng rãi như là một hành tinh mới hay không. Nó có ít nhất một vệ tinh, điều này sẽ cho phép các nhà điều tra đo đạc khối lượng của hệ thống này.

III. SAO CHỔI .

Sao chổi là một thiên thể gần giống một tiểu hành tinh nhưng không cấu tạo nhiều từ đất đá, mà chủ yếu là băng. Nó được miêu tả bởi một số chuyên gia bằng cụm từ "quả bóng tuyết bẩn" vì nó chứa cácbonníc, mêtan và nước đóng băng lẫn với bụi và các khoáng chất. Đa phần các sao chổi có quỹ đạo elíp rất dẹt, một số có viễn điểm quỹ đạo xa hơn nhiều so với Diêm Vương Tinh.

Quỹ đạo của sao chổi còn khác biệt so với các vật thể khác trong Hệ Mặt Trời ở chỗ chúng không nằm gần mặt phẳng hoàng đạo mà phân bố ngẫu nhiên toàn không gian. Nhiều sao chổi có viễn điểm nằm ở vùng gọi là Đám Oort. Đây là nơi xuất phát của các sao chổi, một vùng hình vỏ cầu, gồm các vật chất để lại từ thủơ Hệ Mặt Trời mới bắt đầu hình thành. Vật chất ở đây nằm quá xa nên chịu rất ít lực hấp dẫn từ trung tâm, đã không rơi vào đĩa tiền Mặt Trời, để trở thành Mặt Trời và các hành tinh. Tại đây nhiệt độ cũng rất thấp khiến các chất như cácbonníc, mêtan và nước đều bị đóng băng. Thỉnh thoảng một vài va chạm hay nhiễu loạn quỹ đạo đưa một số mảnh vật chất bay vào trung tâm. Khi lại gần Mặt Trời, nhiệt độ tăng làm vật chất của sao chổi bốc hơi và, dưới áp suất của gió Mặt Trời, tạo nên các đuôi bụi và đuôi khí, trông giống như tên gọi của chúng, có hình cái chổi.

Đôi khi cũng có những sao chổi có mang hai đuôi rõ rệt, nhìn thấy bằng mắt thường: Đuôi dài ở phía đối diện với Mặt Trời, và đuôi ngắn hướng thẳng về phía Mặt Trời. Nguyên nhân là do: Khi ở cự ly đủ gần, sức công phá của tia Mặt Trời lên bề mặt sao chổi mạnh mẽ đến độ làm cho vật chất trong sao chổi bùng nổ mãnh liệt và bắn ra xa. Gió mặt trời không đẩy hết đám mây bụi khí này về phía sau mà còn lại cái đuôi ngắn này.

Các sao chổi chứa đựng vật chất của thời kỳ khai sinh Hệ Mặt Trời, do vậy, đối với các nhà khoa học, chúng là đối tượng nghiên cứu quý báu để trả lời những câu hỏi về quá trình tiến hóa của Hệ Mặt Trời chúng ta, cũng như các hệ hành tinh khác trong vũ trụ. Đã có những chuyến thám hiểm bằng tàu vũ trụ để tiếp cận trực tiếp với sao chổi như tàu Deep Impact.

Phaàn 3:SAO – THIEÂN HAØ

I. SAO .

1. Định nghĩa:Một ngôi sao là một thiên thể chứa chủ yếu vật chất ở trạng thái

plasma, khối lượng khoảng từ 1020 đến 1040 kg, duy trì ở nhiệt độ hàng nghìn độ K, do đó tỏa ra bức xạ vật đen tương ứng có cực đại trong phổ nhìn thấy đến UV gần, nhờ các phản ứng nhiệt hạch trong lòng. Các ngôi sao thường có hình dạng gần hình cầu, tự duy trì trạng thái cân bằng thủy động lực học, nhờ sự cân bằng giữa áp suất bức xạ điện từ phát ra từ bên trong với trường hấp dẫn của bản thân.

Các sao thường là trung tâm của một hệ hành tinh, trong đó các hành tinh và các thiên thể khác (như sao chổi, khí và bụi, ...) chịu ảnh hưởng lực hấp dẫn của sao trung tâm và bay quanh sao trung tâm. Mặt Trời là ngôi sao gần chúng ta nhất và là ngôi sao trung tâm của Hệ Mặt Trời.

Có những hệ gồm hai sao bay xung quanh nhau, tạo thành sao đôi. Các sao đôi thường không có hành tinh bay quanh, do hệ như vậy không cân bằng bền. Cũng lý do này, các hệ gồm 3 sao thường có một sao đôi, hai sao bay sát nhau, và một sao đơn nằm xa. Các nhóm gồm nhiều sao có mối liên kết hấp dẫn với nhau cũng thường chứa các sao đôi và sao đơn bên trong. Ở khoảng cách lớn hơn, các sao tụ tập, cùng với các dạng thiên thể khác, thành các thiên hà.

2. Phân loại:Trong thiên văn học, phân loại sao là phân loại của các sao ban đầu dựa trên nhiệt độ quang quyển

và các đặc trưng quang phổ liên quan của nó, rồi sau đó chuyển đổi thành thuật ngữ của các đặc trưng khác. Nhiệt độ của sao có thể được phân loại bằng cách sử dụng định luật thay thế Wien; nhưng nó gây ra những khó khăn đối với các sao ở xa. Quang phổ thiên văn cho ta một cách để phân loại sao theo các vạch hấp thụ của chúng; đặc biệt các vạch hấp thụ chỉ có thể quan sát được trong một khoảng nhất định của nhiệt độ vì chỉ trong khoảng nhiệt độ này thì các mức năng lượng nguyên tử mới phổ biến. Các sơ đồ có từ thế kỷ 19 phân loại các sao từ A đến P, là xuất xứ của các phân loại quang phổ hiện nay.

Phân loại quang phổ Morgan-Keenan

Sơ đồ này được phát triển trong những năm 1900 bởi Annie J. Cannon và Đài thiên văn đại học Harvard (Harvard College Observatory). Biểu đồ Hertzsprung-Russell liên kết phân loại sao với cấp sao tuyệt đối, độ trưng và nhiệt độ bề mặt. Cũng cần phải lưu ý rằng các miêu tả về màu sắc các sao là truyền thống trong thiên văn, thực tế chúng miêu tả ánh sáng sau khi đã bị tán xạ trong bầu khí quyển Trái Đất. Ví dụ: Mặt Trời trên thực tế không phải là một sao có màu vàng mà có nhiệt độ màu sắc của vật đen khoảng 5.780 K; đó là màu trắng không có dấu vết của màu vàng, một màu đôi khi được sử dụng như là định nghĩa của màu trắng tiêu chuẩn.

Lý do phân bổ cọc cạch của các chữ cái có nguyên nhân lịch sử. Khi người ta lần đầu tiên lấy quang phổ của các sao, họ nhận thấy các sao có các vạch quang phổ hiđrô có độ đậm rất khác nhau, vì thế họ phân loại sao trên cơ sở độ đậm của các vạch thuộc chuỗi balmơ của hiđrô từ A (mạnh nhất) đến Q (yếu nhất). Các vạch khác của các chất trung hòa hay ion hóa sau đó cũng được xét đến (các vạch H và K của canxi, vạch D của natri v.v). Sau đó người ta nhận thấy một số phân loại trên thực tế là đúp và các phân loại đó đã bị loại ra. Muộn hơn nữa, người ta nhận ra rằng độ đậm các vạch của hiđrô có liên hệ với nhiệt độ bề mặt của các sao. Công việc nền tảng này được hoàn thành bởi "các cô gái" của Đài thiên văn đại học Harvard, chủ yếu là Cannon và Antonia Maury, dựa trên các công trình của Williamina Fleming. Các phân loại này sau đó được phân loại nhỏ hơn theo các số Ả Rập (0-9). A0 có nghĩa là sao "nóng" nhất trong lớp A và A9 là sao "lạnh" nhất trong lớp này. Mặt Trời của chúng ta được phân loại là G2.

Các dạng quang phổCác sao thuộc lớp O cực kỳ nóng và cực kỳ chói lọi, về màu sắc rất gần với màu xanh. Naos (trong

chòm sao Puppis) sáng gấp khoảng một triệu lần Mặt Trời. Các sao này có các vạch quang phổ hêli ion hóa và trung hòa rõ nét và các vạch hiđrô yếu. Các sao lớp O phát ra phần lớn bức xạ trong dạng tia tử ngoại.

Các sao lớp B rất chói lọi, Rigel (trong chòm sao Orion) là siêu khổng lồ xanh thuộc lớp B. Quang phổ của chúng có các vạch hêli trung hòa và các vạch hiđrô vừa phải. Vì các sao lớp O và B hoạt động rất mạnh nên tuổi thọ của chúng rất thấp. Chúng không rời xa khỏi khu vực chúng đã sinh ra vì không đủ thời gian. Do đó chúng có khuynh hướng liên kết với nhau trong cái gọi là các liên kết OB1, một loại liên kết có liên quan với các đám mây phân tử khổng lồ. Liên kết Orion OB1 là nguyên một nhánh xoắn ốc thuộc về thiên hà của chúng ta (các sao sáng hơn sẽ làm cho nhánh xoắn ốc sáng hơn, nhưng thực ra không có nhiều sao ở đó) và chứa toàn bộ chòm sao Orion.

Các sao lớp A thì phổ biến hơn trong số các sao có thể quan sát bằng mắt thường. Deneb trong chòm sao Cygnus là một sao có sức hoạt động ghê gớm, trong khi Sirius cũng là sao lớp A, nhưng không hoạt

động mạnh như thế. Các sao lớp A có màu trắng. Rất nhiều sao lùn trắng cũng thuộc lớp A. Chúng có các vạch quang phổ hiđrô đậm và của các ion kim loại.

Các sao lớp F cũng là những sao hoạt động mạnh nhưng chúng có xu hướng là những sao trong chuỗi chính, chẳng hạn như Fomalhaut trong chòm sao Piscis Austrinus. Quang phổ của chúng được đặc trưng bởi các vạch hiđrô yếu và của ion kim loại, màu của chúng là trắng pha màu vàng nhẹ.

Các sao lớp G có lẽ được biết đến nhiều nhất do Mặt Trời của chúng ta thuộc lớp này. Chúng có quang phổ hiđrô yếu hơn lớp F nhưng cùng với các quang phổ ion kim loại, chúng còn có các quang phổ của kim loại trung hòa. Các sao siêu khổng lồ thông thường là thuộc lớp O hay B (xanh) hay K hoặc M (đỏ) (do chúng là như vậy nên chúng khó có khả năng thuộc về lớp G bởi vì đây là những khu vực không ổn định cho các sao siêu khổng lồ tồn tại).

Các sao lớp K là các sao màu da cam, có nhiệt độ thấp hơn Mặt Trời một chút. Một số sao lớp K là sao khổng lồ và siêu khổng lồ, chẳng hạn như Arcturus trong khi một số khác như Alpha Centauri B là sao thuộc chuỗi chính. Chúng có vạch quang phổ hiđrô cực yếu (nếu như có), và chủ yếu là của các kim loại trung hòa.

Lớp M là phổ biến nhất nếu tính theo số lượng sao. Mọi sao lùn đỏ nằm ở đây và chúng có rất nhiều; hơn 90% sao là các sao lùn đỏ, chẳng hạn như Proxima Centauri. Một số sao khổng lồ và siêu khổng lồ như Antares và Betelgeuse, hay các sao đổi màu Mira thuộc về lớp này. Quang phổ của sao lớp M thuộc về các phân tử và kim loại trung hòa nhưng thông thường không có hiđrô. Titan ôxít có thể rất nhiều trong các sao lớp M. Sự mờ của màu đỏ làm người ta nhầm lẫn là ngôi sao ở một khoảng cách xa hơn thật sự. Khi có một vật thể có độ nóng tương tự như các sao này, chẳng hạn như đèn halogen (3.000 K) được đặt cách chúng ta vài kilômét, nó cũng sẽ xuất hiện đối với chúng ta như một nguồn sáng đỏ tương tự như các sao này.

II. THIÊN HÀ .

Thiên hà là một tập hợp từ khoảng 10 triệu (107) đến nghìn tỷ (1012) các ngôi sao khác nhau xen lẫn bụi, khí và có thể cả các vật chất tối xoay chung quay một khối tâm. Đường kính trung bình của thiên hà là từ 1.500 đến 300.000 năm ánh sáng. Ở dạng đĩa dẹt, thiên hà có các hình dạng khác nhau như thiên hà xoắn ốc hay thiên hà bầu dục. Khu vực gần tâm của thiên hà có kích thước ước chừng 1.000 năm ánh sáng, và có mật độ sao cao nhất cũng như kích thước các sao lớn nhất.

Dù vật chất tối lý thuyết dường như chiếm khoảng 90% khối lượng đa số thiên hà, tình trạng của những thành phần không nhìn thấy được này vẫn chưa được hiểu biết đầy đủ. Có một số bằng chứng cho thấy rằng những hố đen khối lượng siêu lớn có thể tồn tại tại trung tâm của đa số, nếu không phải là toàn bộ, các thiên hà.

Không gian liên thiên hà, khoảng không nằm giữa các thiên hà, được lấp đầy plasma loãng với mật độ trung bình chưa tới một nguyên tử trên mỗi mét khối. Có lẽ có hơn một trăm tỷ (1011) thiên hà trong khoảng không gian vũ trụ có thể quan sát được của chúng ta.

Trái Đất nằm trong một hệ mặt trời thuộc một thiên hà có tên là Ngân Hà; Hệ Mặt Trời của chúng ta nằm ở phía ngoài rìa của đĩa thiên hà Ngân Hà, trên nhánh Tráng Sĩ. Vào các buổi tối mùa hè, từ Trái Đất nhìn vào tâm sẽ thấy một dải các sao thường được gọi là dải Ngân Hà. Tuổi của Ngân Hà được ước lư ợng vào khoảng 13 tỷ năm, ngoài ra tuổi đời còn được tính bằng số vòng quay của nó.

Thiên hà gần Ngân Hà nhất có tên là thiên hà Andromeda. Các thiên hà ở gần nhau có xu hướng tiến lại gần và sát nhập vào nhau, tạo thành một thiên hà lớn hơn.

Các thiên hà cũng giống như các hành tinh và các hệ hành tinh, chúng cũng tập hợp thành những nhóm gọi là Quần tụ thiên hà. Các Quần tụ thiên hà lại họp lại trở thành Siêu thiên hà...

Các kiểu thiên hà

Có ba kiểu thiên hà chính: elíp, xoắn ốc, và không đều. Một cách miêu tả các kiểu thiên hà khác hơi rộng hơn dựa trên hình dáng bên ngoài của chúng là dãy Hubble. Bởi vì dãy Hubble hoàn toàn dựa trên hình thức nhìn thấy bên ngoài, nó có thể thiếu một số đặc điểm quan trọng của thiên hà như tỷ lệ hình thành sao (trong các starburst galaxy) hay hoạt động tại lõi (trong các thiên hà hoạt động).

Thiên hà của chúng ta, Ngân hà, thỉnh thoảng được gọi đơn giản là Thiên hà (viết hoa), là một thiên hà xoắn ốc có vạch kẻ hình đĩa 30 kiloparsecs hay đường kính khoảng một trăm nghìn năm ánh sáng và dày hàng nghìn năm ánh sáng. Nó chứa khoảng 3×1011 (ba trăm tỷ) ngôi sao và có tổng khối lượng khoảng 6×1011 (sáu trăm tỷ) lần Hệ mặt trời.

Trong các thiên hà xoắn ốc, những cánh tay xoắn có hình gần xoắn ốc loga, một mô hình về lý thuyết có thể là kết quả của một sự nhiễu loạn của một khối lượng các ngôi sao lớn không có cùng vận tốc quay. Giống như các ngôi sao, các cánh tay xoắn cũng quay quanh tâm, nhưng chúng quay với tốc độ góc không đổi. Điều này có nghĩa các ngôi sao đi vào và đi ra khỏi các cánh tay xoắn ốc. Các cánh tay xoắn được cho là những vùng có mật độ cao hay là vùng của các sóng mật độ. Khi các ngôi sao đi vào một cánh

tay, chúng chậm lại, vì thế tạo ra mật độ lớn hơn; nó tương tự như một làn "sóng" chậm lại di chuyển dọc theo một con đường cao tốc đầy những xe đang chuyển động. Các cánh tay có thể quan sát được bởi mật độ cao tạo điều kiện thuận lợi cho việc hình thành sao và vì thế chúng cũng là nơi chứa nhiều ngôi sao sáng và sao trẻ.

Dù đa số thiên hà hiện biết là các thiên hà elíp hay thiên hà xoắn ốc, đa số các thiên hà trong vũ trụ có lẽ là các thiên hà lùn. Những thiên hà tí hon này nhỏ hơn khoảng một trăm lần so với Ngân hà, chứa chỉ vài triệu ngôi sao. Nhiều thiên hà lùn có thể quay quanh một thiên hà lớn duy nhất; Ngân hà có ít nhất một tá vệ tinh như vậy. Các thiên hà lùn cũng có thể được xếp hạng là elíp, xoắn ốc hay không đều. Bởi vì các thiên hà elíp lùn ít giống với những thiên hà elíp lớn, chúng thường được gọi là thiên hà hình cầu lùn.

III. NGÂN HÀ .

Dải Ngân Hà là thiên hà mà Hệ Mặt Trời nằm trong đó. Trong văn học nó còn có tên gọi là sông Ngân. Nó xuất hiện trên bầu trời như một dải sáng trắng kéo dài từ chòm sao Tiên Hậu về phía bắc và chòm sao Nam Thập Tự về phía nam. Dải Ngân Hà sáng hơn về phía chòm sao Nhân Mã là chỗ trung tâm của dải Ngân Hà. Một dữ kiện thực tế là dải Ngân Hà chia bầu trời thành hai phần xấp xỉ bằng nhau chứng tỏ Hệ Mặt Trời nằm rất gần với mặt phẳng của thiên hà này. Từ Ngân Hà có nguồn gốc từ tiếng Trung Hoa, và cũng được sử dụng tại Nhật Bản và bán đảo Triều Tiên.

1. Cấu trúc:Dải Ngân Hà là một thiên hà xoắn ốc có thanh ngang kiểu SBbc theo phân loại Hubble (dạng thiên

hà hình đĩa có các nhánh liên kết không chặt chẽ và có phần gần trung tâm lồi hẳn lên) có khối lượng xấp xỉ 1012 khối lượng của Mặt Trời, có khoảng 200-400 tỷ ngôi sao (định tinh). Dải Ngân Hà có đường kính khoảng 100.000 năm ánh sáng. Khoảng cách từ Mặt Trời đến trung tâm dải Ngân Hà khoảng 27.700 năm ánh sáng.

2. Trung tâm Ngân Hà: Tiêu bản:Starbox short Các ngôi sao trong dải Ngân Hà quay xung quanh trung tâm Ngân Hà (được

cho là ranh giới của hố đen siêu khối lượng). Chòm sao Sagittarius A* (cung Nhân Mã) được coi là ranh giới của hố đen này.

Trái Đất của chúng ta cách tâm này khoảng 7.6 kiloparsecs (24,800 năm ánh sáng)[1]

Hệ Mặt Trời phải mất khoảng 226 triệu năm để hoàn thành một chu kỳ quay chung quanh tâm của dải Ngân Hà ("năm thiên hà") và như vậy nó đã hoàn thành khoảng 25 vòng quay chung quanh tâm dải Ngân Hà. Vận tốc quỹ đạo của Hệ Mặt Trời là 217 km/s, tương đương với 1.400 năm theo một năm ánh sáng, hay 1 AU trong 8 ngày. Vận tốc quỹ đạo của các ngôi sao trong dải Ngân Hà không phụ thuộc vào khoảng cách tới trung tâm: nó thường xuyên nằm trong khoảng 200-250 km/s đối với các láng giềng của Hệ Mặt Trời [1]. Vì thế chu kỳ quỹ đạo là tỷ lệ thuận với khoảng cách tới trung tâm dải Ngân Hà (không tính tới trường hợp của các thiên thể gần trung tâm phải nhân với hệ số 1.5). Dải Ngân Hà có thể coi như một cái đĩa với phần trung tâm lồi hẳn lên.

3. Các nhánh của Ngân Hà:

Người ta cho rằng có bốn nhánh xoắn ốc chính và ít nhất hai nhánh nhỏ, mà mọi điểm xuất phát của nó là từ trung tâm dải Ngân Hà. Dưới đây là tên các nhánh tính từ trung tâm Ngân Hà:

* nhánh Norma, hay 3 kpc Arm * nhánh Scutum-Crux hay nhánh Centaurus Arm * nhánh Sagittarius hay Sagittarius-Carina Arm * nhánh Orion là một nhánh xoắn ốc nhỏ. Hệ Mặt Trời có thể rất gần với nội biên của nhánh này,

ở trong các đám mây chứa khí giữa các thiên thể, với khoảng cách 8.0±0.5 kpc từ trung tâm dải Ngân Hà.

* nhánh Perseus. * nhánh Cygnus hay nhánh ngoài cùng

Khoảng cách từ nhánh Orion và nhánh kế tiếp, nhánh Perseus, vào khoảng 6.500 năm ánh sáng Mỗi nhánh xoắn ốc miêu tả một đường xoắn lôgarít với độ dốc khoảng 12 độ.

Đĩa của dải Ngân Hà được bao quanh bởi các quầng sáng hình ô van của các ngôi sao đã già và các tinh vân. Trong khi đĩa chứa khí và bụi bị mờ bởi sự quan sát trong một số các bước sóng, thì các quầng sáng không bị như vậy. Các ngôi sao đang hoạt động mạnh chiếm chỗ trong đĩa (đặc biệt trong các nhánh xoắn ốc, tiêu biểu cho các khu vực có mật độ cao), nhưng không có trong các quầng sáng. Nhóm các ngôi sao sinh ra bởi các đám mây phân tử cũng chủ yếu tìm thấy trong các đĩa.

4. Tuổi của Ngân Hà:Năm 2004, một nhóm các nhà thiên văn học đã tính toán

tuổi của dải Ngân Hà. (Nhóm này bao gồm Luca Pasquini, Piercarlo Bonifacio, Sofia Randich, Daniele Galli và Raffaele G. Gratton.) Nhóm này đã sử dụng quang phổ siêu tím - nhìn thấy của kính viễn vọng cực lớn để lần đầu tiên đo lượng Berili trong hai ngôi sao thuộc tinh vân NGC 6397. Điều này cho phép họ suy ra thời gian đã trôi qua giữa sự sinh ra đầu tiên của các ngôi sao trong toàn bộ dải Ngân Hà và sự sinh ra đầu tiên của các ngôi sao trong tinh vân này, từ 200 đến 300 triệu năm. Họ cộng khoảng thời gian này vào tuổi biểu kiến của các ngôi sao trong tinh vân là 13.400 ± 800 triệu năm. Tổng của nó là tuổi dự kiến của dải Ngân Hà: 13.600 ± 800 triệu năm.

5. Láng giềng của Ngân Hà:Dải Ngân Hà, thiên hà Andromeda và thiên hà Triangulum là các thành viên chính của nhóm địa

phương là một nhóm của khoảng 35 thiên hà có biên giới gần nhau; nhóm địa phương này là một phần của siêu nhóm Virgo (Thiên Bình).

Dải Ngân Hà được quay quanh bởi một số các thiên hà sao lùn trong nhóm địa phương. Lớn nhất trong số này là đám mây Magellan lớn với đường kính khoảng 20.000 năm ánh sáng. Nhỏ nhất là sao lùn Carina, sao lùn Draco và Sư Tử II chỉ có kích thước 500 năm ánh sáng. Các sao lùn khác quay quanh thiên hà của chúng ta là đám mây Magellan nhỏ; sao lùn chính Canis; gần nhất là thiên hà sao lùn hình elíp Sagittarius; sao lùn Tiểu Hùng Tinh; sao lùn Sculptor, sao lùn Sextans, sao lùn Fornax và Sư Tử I.

Hệ thống thiên hà vệ tinh của Ngân Hà gồm có Sagittarius Dwarf Galaxy, đám mây Magellan nhỏ, đám mây Magellan lớn, Canis Major Dwarf, Ursa Minor Dwarf, thiên hà lùn Draco, thiên hà lùn Carina, thiên hà lùn Sextans, thiên hà lùn Sculptor, thiên hà lùn Fornax, Leo I, Leo II, và Ursa Major Dwarf.

Hệ thống thiên hà vệ tinh của Andromeda gồm M32, M110, NGC 147, NGC 185, And I, And II, And III, And IV, And V, Pegasus dSph, Cassiopeia Dwarf, And VIII, And IX, và And X.

Phaàn 4:THUYEÁT BIG BANG

Vụ Nổ Lớn (Big Bang) là một lý thuyết khoa học về nguồn gốc của vũ trụ. Lý thuyết đó phát biểu rằng vũ trụ được bắt đầu từ một điểm kỳ dị có mật độ vật chất và nhiệt độ lớn vô hạn tại một thời điểm hữu hạn

trong quá khứ. Từ đó, không gian đã mở rộng cùng với thời gian và làm cho các thiên hà di chuyển xa nhau hơn, tạo ra một vũ trụ giãn nở như chúng ta thấy ngày nay.

Ý tưởng trung tâm của lý thuyết này là quá trình vũ trụ đang giãn nở. Nó được minh chứng bằng các thí nghiệm về dịch chuyển đỏ của các thiên hà (định luật Hubble). Điều đó có nghĩa là các thiên hà đang rời xa

nhau và cũng có nghĩa là chúng đã từng ở rất gần nhau trong quá khứ và quá khứ xa xưa nhất, cách đây khoảng 13,7 tỷ (13,7 × 109) năm, là một điểm kỳ dị. Từ "vụ nổ lớn" được sử dụng trong một nghĩa hẹp, đó là một thời điểm trong thời gian khi sự mở rộng của vũ trụ bắt đầu xuất hiện, và theo nghĩa rộng, đó là quá

trình tiến hóa, giải thích nguồn gốc và sự phát triển của vũ trụ.

I. LỊCH SỬ VŨ TRỤ VÀ THUYẾT VỤ NỔ LỚN (BIG BANG) .

Lược sử thuyết vụ nổ lớn

Cho đến đầu thế kỷ 20, bằng chứng thực tiễn duy nhất về nguồn gốc vũ trụ là bầu trời ban đêm tối đen. Nghịch lý Olbers (1823) cho rằng nếu vũ trụ vô tận trong không thời gian thì nó phải có nhiều sao đến mức khi nhìn lên bầu trời, tia mắt ta bao giờ cũng gặp một ngôi sao. Và ta sẽ thấy bầu trời, tia mắt ta bao giờ cũng gặp một ngôi sao. Và ta sẽ thấy bầu trời luôn sáng rực như mặt trời, ngay cả vào ban đêm. Nhưng thực tế bầu trời ban đêm lại tối đen. Thật thú vị là trong bài thơ văn xuôi dài Eureka năm 1848, Edgar Poe cho rằng, đó là do các ngôi sao không đủ thời gian để chiếu sáng toàn vũ trụ. Vậy bầu trời đêm tối đen chứng tỏ

vũ trụ không tồn tại mãi mãi. Không chỉ đứng vững trước thử thách của thời gian mà giả thuyết còn đóng vài trò quyết định trong việc hình thành lý thuyết Big Bang.

Cơ sở lý luận của Big Bang là thuyết tương đối tổng quát, cho rằng không thời gian là các đại lượng động lực, phụ thuộc vật chất đồng thời chi phối vật chất (lưu ý quan niệm của Engels, cho rằng không thời gian là hình thức tồn tại của vật chất). Điều đó dẫn tới việc không thời gian và do đó vũ

trụ có thể có khởi đầu và kết thúc, một ý tưởng mà ban đầu chính Einstein cũng tìm cách chống lại. Để vũ trụ là tĩnh (không tự suy sụp do hấp dẫn), ông đưa ra một hằng số vũ trụ có tác dụng phản hấp dẫn. Năm 1922, Friednam tìm được nghiệm của phương trình Einstein cho một vũ trụ động, gần như đồng thời với giả thuyết nguyên tử nguyên thuỷ của mục sư Lemaitre.

Bằng chứng quyết định là phát hiện vũ trụ giãn nở của Hubble những năm 1920. Cho đến lúc đó, dải Ngân hà của chúng ta được xem là toàn bộ vũ trụ. Với viễn kính 100 inch tại núi Wilson, Hubble thấy Tinh vân Tiên nữ, một thiên hà sáng đôi cách 2 triệu năm ánh sáng, đang tiến lại gần chúng ta (theo ngôn ngữ vật lý dựa trên hiệu ứng Dopler, phổ của nó dịch về phía xanh). Khảo sát các thiên hà khác, ông thấy chúng đang tản ra xa (phổ dịch về phía đỏ). Điều đó có nghĩa vũ trụ gồm hàng tỷ thiên hà đang tản xa nhau. Vũ trụ hiện đang giãn nở và các thiên hà ngày càng xa nhau chứng tở trong quá khứ chúng gần nhau, khi vũ trụ có kích thước nhỏ hơn. Suy diễn ngược thời gian sẽ đi đến thời điểm khai sinh, không toàn vũ trụ tập trung tại một điểm, nới có mật độ, nhiệt độ và độ cong không thời gian vô hạn. Và một vũ trụ bùng nổ 15 tỷ năm trước đã khiến vũ trụ sinh thành. Đó là mô hình Big Bang tiêu chuẩn.

Năm 1946, nhà vật lý Gamow thấy rằng, ngọn lửa sáng thế buổi hồng hoang vẫn để lại “vết lông ngỗng” qua bức xạ tàn dư trải trên toàn vũ trụ, nay lạnh chỉ còn cỡ 3 độ trên độ không tuyệt đối. Năm 1965, hai kỹ sư vô tuyến điện Penzias và Wilson tình cờ phát hiện được bức xạ này khi chế tạo một ăng ten có thể bắt sóng từ vệ tinh. Như từng xẩy ra trong lịch sử, giải Nobel danh giá được trao cho phát kiến tình cờ của hai người ngoại đạo! Năm 1991, vệ tinh Cobe đo được phông bức xạ hoá thạch 2,7 0K này với độ chính xác rất cao. Và Big Bang được thừa nhận rộng rãi.

Khá hài hước là cái tên Big Bang lại do nhà thiên văn Hoyle đặt ra năm 1950 nhằm chế diễu lý thuyết. Ông là người đề xuất thuyết vũ trụ dừng (steady state) năm 1948, theo đó vũ trụ không có khởi đầu và kết thúc. Sau khám phá bức xạ tàn dư, nó đã chêt vẻ vang như hầu hết các lý thuyết khoa học khác.

Thuyết Big Bang lạm phát

Cuối những năm 1970, mô hình Big Bang tiêu chuẩn đối mặt với một số thách thức, trong đó có vấn đề tính đồng nhất của vũ trụ. Tại sao vũ trụ lại tương đối đồng nhất, như bức xạ hoá thạch chứng tỏ? Đó là lý do Guth và Linde giả định một sự giãn nở lạm phát từ 10-35 tới 10-32 giây sau Big Bang. Trong giai đoạn cực ngắn đó, vũ trụ giãn nở nhanh hơn ánh sáng, với bán kính tăng một ngàn tỷ tỷ tỷ lần. Như quả bong bóng phồng lên rất nhanh thì các nếp nhăn ban đầu giãn ra với độ nóng gần như nhau, sự giãn nở đó khiến vũ trụ trở nên đồng nhất. Đó là thuyết Big Bang lạm phát, một lý thuyết giải quyết được nhiều bài toán vũ trụ học.

Big Bang từ đâu xuất hiện? Big Bang sinh ra vũ trụ, vậy cái gì sinh Big Bang? Năm 1951, nhà thờ tuyên bố Big Bang chính là hiện tượng của đấng sáng tạo. Nên giới khoa học đưa ra nhiều giả định nhằm tránh quan điểm đó.

Một giả thuyết là vũ trụ luân hồi của Wheeler, cho rằng lực hấp dẫn sẽ thắng dần sự giãn nở và vũ trụ có về Vụ co lớn (Big Bang Crunch).

Và vụ bùng nổ tiếp theo sẽ khiến vũ trụ hồi sinh từ đống tro tàn. Quá trình cứ lặp lại mãi với các pha co giãn xen kẽ nhau. Đáng tiếc Big Crunch không phải là đối xứng gương hoàn hảo của Big Bang, và các vụ nổ sẽ ngày càng lớn hơn. Vì thế vũ trụ vẫn có thể có điểm khởi đầu tối hậu, một chủ đề thần học ưu thích.

Một vấn đề cũng được giới thần học ưu thích là giá trị của các hằng số vật lý (như khối lượng điện tử hay tốc độ ánh sáng). Người ta rất ngạc nhiên là chỉ cần một trong hàng chục hằng số vũ trụ đó thay đổi giá trị một phần trăm, vũ trụ đã diễn biến khác hẳn và con người không thể xuất hiện để nghiên cứu vũ trụ. Nên một số nhà khoa học cho rằng, vũ trụ đã được hiệu chỉnh cực kì chính xác nhằm tạo ra con người. Vì thế nhà thiên văn

học Trịnh Xuân Thuận, là một phật tử, đặt niềm tin vào ý chí tối cao. Không đồng ý với niềm tin đó, nhiều nhà khoa học nêu giả thuyết các vũ trụ song song hay đa vũ trụ. Có thể hình dung một cách trực quan qua trò thổi bong bóng xà phòng, mỗi bong bóng là một vũ trụ với hệ qui luật và các giá trị hằng số riêng. Phần lớn các vũ trụ không thích hợp với sự sống. Vũ trụ chúng ta chỉ là một bong bóng may mắn co các hằng số thích hợp để con người xuất hiện. Đây chính là sự tiếp bước Copernicus đến giới hạn tột cùng. Không chỉ tước bỏ vị trí trung tâm của trái đất hay mặt trời, nó còn cho rằng Ngân hà chỉ là một trong vô vàn các thiên hà vũ trụ; thậm chí vũ trụ chúng ta cũng chỉ là một bong bóng mất hút giữa ngút ngàn các bong bóng đa vũ trụ. Và đa vũ trụ này có thể mất hút giữa vô vàn các đa vũ trụ khác.Tuy nhiên dường như đó chỉ là những suy đoán thuần tuý, vì ta chưa có thuyết hấp dẫn lượng tử để nhìn qua bức tường Planck, hiện được xem là giới hạn của nhận thức (thời gian Planck là 10-43 giây, độ dài Planck là 10-33 cm, nhỏ hơn kích thước nguyên tử 10 triệu tỷ tỷ lần. Nếu khuếch đại nguyên tử lớn bằng vũ trụ nhìn thấy, độ dài Planck sẽ bằng một cái gậy!). Toàn bộ lập luận trên dựa trên thuyết tương đối tổng quát (mô tả cấu trúc vĩ mô) và cơ học lượng tử (mô tả cấu trúc vi mô). Đáng tiếc là hai thuyết không tương thích nhau. Ở qui mô vũ trụ, có thể bỏ qua các thăng giáng lượng tử xuất hiện do nguyên lý bất định Heisenberg. Còn ở các cấu trúc nhỏ cỡ kích thước Blanck, các thăng giáng đó rất mạnh nên giả thuyết không thời gian biến đổi liên tục và nhẵn của thuyết tương đối bị phá vỡ. Người ta nói các quy luật khoa học bị phá vỡ tại các kì dị (là vùng nhỏ hơn độ dài Planck nên mật độ vật chất lớn vô hạn).

Big Bang trong lý thuyết dây

Lý thuyết trường lượng tử xem các hạt cơ bản (như điện tử, quark....) là chất điểm không kích thước. Năm 1984, lý thuyết dây xuất hiện để thống nhất thuyết tương đối và thuyết lượng tử, hai nền tảng của vật lý hiện đại. Theo đó cấu tử cơ bản của vũ trụ là dây một chiều (giống đoạn dây nhìn từ xa nên dường như chỉ có chiều dài), màng hai chiều (giống tờ giấy mỏng vô hạn) hay các thực thể nhiều chiều hơn (đến 10 chiều). Chúng luôn dao động và các kiểu dao động cộng hưởng được xem là các hạt cơ bản mà ta thấy. Khác với không thời gian bốn chiều trong thuyết tương đối, không thời gian trong lý thuyết dây có 11 chiều, với bảy chiều cong lại và nhỏ bằng độ dài Planck. Đó là lý do ta sống trong 11 chiều mà chỉ “thấy” bốn chiều đã trải rộng ra nhờ vụ nổ lớn.

Quá đẹp nên chỉ có thể hoặc đúng hoàn toàn hoặc sai hoàn toàn (phê phán năm 1986 của nhà vật lý hạt cơ bản đoạt giải Nobel Glashow), lý thuyết dây chứng tỏ các qui luật vật lý của thế giới “nhỏ” sau bức tường Planck hoàn toàn đồng nhất thế giới “lớn” trước bức tường. Điều đó cho phép đưa ra kịch bản mới cho Big Bang, theo đó khởi thuỷ không phải là một kì dị, mà là một trạng thái “hấp dẫn lượng tử” kích thước Planck với 11 chiều. Rồi một vụ nổ khiến bốn chiều không thời gian giãn ra tạo nên vũ trụ (lý thuyết dây giải thích được tại sao bảy chiều khác vẫn cong nhỏ như trước). Và nếu co lại, vũ trụ cũng không co về điểm kì dị chung cục Big Crunch (như mô hình Big Bang tiêu chuẩn), mà chỉ co đến kích thước Blanck rồi lại nở ra. Quá trình có thể lặp lại mãi như thế.

Theo lý thuyết dây thì vũ trụ chúng ta cũng có thể là một màng bốn chiều, vốn là biên của một hình cầu năm chiều. Nằm cách ta một khoảng cách vi mô trong chiều thứ năm là một màng khác, được gọi là “màng bóng” (như hình với bóng, nhưng bóng cũng thực như hình). Hai màng hình và bóng chỉ tương tác nhau qua lực hấp dẫn. Khi đó vật chất hay năng lượng tối của màng này chính là vật chất thông thường của màng bên cạnh. Hai màng có thể tự co giãn và va chạm nhau. Đối với chúng ta (đang sống trên một màng), cú và chạm chính là Big Bang. Và có thể có nhiều vụ nổ và co lớn nhỏ nối tiếp hay xen kẽ nhau. Điều đó giúp loại bỏ niềm tin về một ý chí tối cao.

Đa vũ trụ từ đâu xuất hiện?

Vũ trụ chúng ta là một trong những bong bóng mang tên đa vũ trụ. Vậy đa vũ trụ từ đâu xuất hiện và xuất hiện như thế nào? Câu trả lời là đa vũ trụ xuất hiện từ hư vô do nguyên lý bất định Heisenberg.Nguyên lý bất định của cơ học lượng tử nói rằng, không thể xác định chính xác đồng thời vị trí và tốc độ của một hạt vi mô. Đó là hệ quả của lưỡng tính sóng hạt. Vì thế giá trị của các trường vật lý phải khác không ngay cả trong chân không, tức giá trị (hay vị trí) và sự biến thiên (hay tốc độ) được xác định chính xác đồng thời (đều bằng không). Đó là điều nguyên lý bất định cấm, nên các trường phải khác không và luôn thăng giáng. Trường là tập hợp các hạt, trường biến thiên có nghĩa các hạt luôn xuất hiện rồi biến mất. Năng lượng của hạt càng lớn thì nó biến mất càng nhanh. Tương tự như thế, một bong bóng năng lượng cũng có thể xuất hiện rồi lại biến mất. Đó là cách để đa vũ trụ xuất hiện từ hư vô.

Cần lưu ý rằng, năng lượng của vật chất là dương, còn năng lượng hấp dẫn là âm, nên nếu đa vũ trụ là “phẳng” trong không thời gian 11 chiều, hai dạng năng lượng có giá trị bằng nhau. Kết quả là năng lượng toàn vũ trụ bằng không, và nguyên lý bất định cho phép nó tồn tại mãi mãi. Đó là ý tưởng độc đáo đến mức, khi được Gamow kể cho nghe tại Viện nghiên cứu tiền phong Princeton (Mỹ) cuối những năm 1940, Einstein đứng sững giữa đường khiến hai người suýt bị xe đâm chết.

II. CƠ SỞ LÝ THUYẾT CỦA THUYẾT BIG BANG .

Lý thuyết Vụ Nổ Lớn ngày nay dựa trên ba giả thuyết sau: 1. Tính phổ quát của các định luật vật lý 2. Nguyên lý vũ trụ học 3. Nguyên lý Copernic

Ban đầu, các giải thuyết trên chỉ được thừa nhận nhưng ngày nay có rất nhiều thực nghiệm kiểm tra tính đúng đắn của chúng. Tính phổ quát của các định luật vật lý được chứng minh là đúng đắn vì các sai số lớn nhất về hằng số cấu trúc tinh tế trong một khoảng thời gian bằng tuổi của vũ trụ chỉ cỡ khoảng 10-5. Tính dị hướng của vũ trụ xác định nguyên lý vũ trụ và được kiểm nghiệm với độ chính xác 10-5 và vũ trụ được xác định là đồng nhất trên quy mô lớn với độ sai số khoảng 10%. Hiện nay người ta vẫn đang trong quá trình kiểm tra nguyên lý Copernic bằng cách nghiên cứu tương tác giữa các đám thiên hà bằng CMB thông qua hiệu ứng Sunyaev-Zeldovich với độ chính xác 1%.

Lý thuyết Vụ Nổ Lớn sử dụng giả thuyết Weyl để đo thời gian tại bất kỳ thời điểm nào sau kỷ nguyên Planck. Các phép đo này dựa trên các tọa độ quy chiếu trong đó khoảng cách quy chiếu và thời gian quy chiếu đã loại bỏ sự giãn nở của vũ trụ trên quan điểm của các phép đo không-thời gian. Khoảng cách quy chiếu và thời gian quy chiếu được định nghĩa sao cho các vật thể chuyển động trong các vũ trụ giãn nở khác nhau có cùng một khoảng cách và các chân trời hạt hay các giới hạn quan sát (của một vũ trụ nào đó) được xác định bởi thời gian quy chiếu.

Vì vũ trụ có thể được mô tả bởi các tọa độ như vậy, vụ nổ lớn không phải là một vụ nổ trong đó vật chất được phóng ra và lấp đầy một vũ trụ trống rỗng; cái đang giãn nở chính là không-thời gian. Đó chính là sự giãn nở làm cho khoảng cách vật lý giữa hai điểm cố định trong vũ trụ của chúng ta tăng lên. Các vật thể liên kết với nhau (ví dụ bị liên kết bởi lực hấp dẫn) thì không giãn nở cùng không-thời gian vì các định luật vật lý điều khiển chúng được giả thiết là đồng nhất và độc lập với các giãn nở metric. Hơn nữa, sự giãn nở của vũ trụ tại nấc thang cục bộ ngày nay quá nhỏ nên nếu có sự phụ thuộc nào của các định luật vật lý vào sự giãn nở thì sự phụ thuộc đó cũng rất nhỏ làm cho các máy đo không thể xác định được.

III. VŨ TRỤ TRƯỚC SỰ KIỆN BIG BANG .

Theo thuyết Tương đối của nhà bác học Einstein, vụ nổ Bigbang là sự khởi đầu của vũ trụ hiện nay, trong đó không chỉ vật chất mà cả không gian và thời gian cùng được sinh ra.

Tuy nhiên, Einstein đã không thể giải thích được điều gì đã xảy ra trước vụ nổ.

Sử dụng phối hợp cả thuyết Vật lý lượng tử và thuyết Tương đối để lần theo dấu vết các bằng chứng trong vũ trụ ngày nay, các nhà khoa học Mỹ đã phát hiện mô hình vũ trụ trước Bigbang là một vũ trụ có điều kiện vật lý giống như vũ trụ hiện nay nhưng đang co lại, đạt đến mức vật chất siêu đậm đặc và có thể sụp đổ. Sự sụp đổ này lại gây ra một vụ nổ lớn tạo nên vũ trụ ngày nay.

Các nhà khoa học Mỹ cho rằng trong mô hình vũ trụ bị co lại trước vụ nổ Bigbang, không gian và thời gian cũng giống như vũ trụ hiện nay nhưng trọng lực lại hướng nội và đạt đến mức các thuộc tính lượng tử của không gian và thời gian biến trọng lực thành lực đẩy chứ không phải lực hấp dẫn như trọng lực trong vũ trụ hiện nay.

Chính lực đẩy này đã gây ra vụ nổ lớn hình thành vũ trụ hiện nay và đang làm cho vũ trụ này tiếp tục mở rộng.

Ph ụ lục : LÒCH SÖÛ TRAÙI ÑAÁT

I. NGUỒN GỐC .

Trái Đất được hình thành cùng với Hệ Mặt Trời từ khi Hệ Mặt Trời ban đầu tồn tại như một đám mây bụi và khí lớn, quay tròn, gọi là tinh vân Mặt Trời. Tinh vân này gồm hydro và heli được tạo ra từ Vụ Nổ Lớn, và những nguyên tố hóa học nặng hơn khác được tạo ra từ các ngôi sao đã chết. Sau đó, vào khoảng 4,6 tỷ năm trước (mười lăm đến ba mươi phút trước khi chiếc đồng hồ tưởng tượng của chúng ta bắt đầu chạy), có thể một ngôi sao ở gần đó bắt đầu trở thành một siêu tân tinh. Vụ nổ gây sóng chấn động về hướng tinh vân Mặt Trời và làm nó bị nén vào. Vì đám mây tiếp tục quay, lực hấp dẫn và quán tính làm đám mây trở nên phẳng như hình dạng một cái đĩa, vuông góc so với trục quay của nó. Đa phần khối lượng tập trung ở giữa và bắt đầu nóng lên. Lúc ấy, khi trọng lực làm cho vật chất cô đặc lại xung quanh các hạt bụi vật chất, phần còn lại của đĩa bắt đầu tan rã thành những vành đai. Các mảnh nhỏ va chạm vào nhau và tạo thành những mảnh lớn hơn..[2] Những mảnh nằm trong tập hợp nằm cách trung tâm khoảng 150 triệu kilômét tạo thành Trái Đất. Khi Mặt Trời ngày càng đặc lại, nó nóng lên, phản ứng hạt nhân bùng nổ và tạo nên gió Mặt Trời thổi bay đa phần những vật chất ở trong đĩa vẫn còn chưa bị cô đặc vào những tập hợp vật chất lớn hơn.

II. MẶT TRĂNG .

Nguồn gốc của Mặt trăng hiện nay còn chưa chắc chắn, mặc dù đa số bằng chứng tồn tại ủng hộ giả thuyết sự va chạm dữ dội. Trái đất có thể không phải là hành tinh duy nhất được tạo thành ở khoảng cách 150 triệu km từ Mặt trời. Một giả thuyết cho rằng một tập hợp vật chất khác với khoảng cách 150 triệu km từ cả Trái đất và Mặt trời, ở điểm Lagrange thứ tư hay thứ năm. Hành tinh này được gọi là Theia, nó được cho là nhỏ hơn so với Trái đất lúc đó, có lẽ có cùng kích thước và khối lượng như Sao Hoả. Quỹ đạo của nó ban đầu là ổn định nhưng về sau khi Trái đất ngày càng có khối lượng lớn hơn khi thu thập thêm vật chất ở xung quanh, thì quỹ đạo của Theia trở nên bất ổn định. Theia đu đưa tới lui theo

Trái đất cho tới khi, cuối cùng, cách nay khoảng 4,533 tỷ năm[3] (có lẽ 0 giờ 05 phút đêm theo giờ cái đồng hồ của chúng ta), nó va chạm vào Trái đất theo một góc thấp và chéo. Tốc độ chậm và góc nhỏ không đủ để nó tiêu diệt Trái đất, nhưng một tỷ lệ lớn lớp vỏ của nó bị bắn ra. Những phần tử nặng từ Theia chìm sâu vào vỏ Trái đất, trong khi những phần còn lại và vật chất phóng ra tập hợp lại thành một vật thể duy nhất trong vài tuần. Dưới ảnh hưởng của trọng lực của chính nó, có lẽ trong một năm, nó trở thành một vật thể có hình cầu: là Mặt trăng.[4] Sự va chạm cũng được cho rằng đã làm thay đổi trục của Trái đất làm nó nghiêng đi 23,5°, trục quay nghiêng gây ra mùa trên Trái đất. (Một hình thức lý tưởng và đơn giản về nguồn gốc hành tinh sẽ có các trục nghiêng 0° và không gây ra mùa.) Có thể nó cũng đã làm tốc độ quay của Trái đất tăng thêm và khởi động những kiến tạo địa tầng.

III. LIÊN ĐẠI HỎA THÀNH (THÁI VIỄN CỔ) .

Trái đất buổi ban đầu, ở thời gian Liên đại Hỏa Thành hay Thái Viễn Cổ, rất khác biệt so với Trái đất của chúng ta ngày nay. Trái đất không có các đại dương và cũng không có ôxi trên khí quyển. Hành tinh luôn bị bắn phá bởi các tiểu hành tinh và các vật chất khác còn sót lại sau khi hình thành nên hệ mặt trời. Cuộc bắn phá dữ dội này, cộng với sức nóng từ sự phân chia kích hoạt phóng xạ, sức nóng còn sót lại, sức nóng từ áp lực co ngót, làm cho hành tinh ở giai đoạn này hầu như bị nấu chảy ra. Những vật chất nặng chìm vào tâm trong khi những vật chất nhẹ hơn nổi

lên bề mặt, tạo ra nhiều lớp của Trái đất (xem “Kết cấu Trái đất”). Khí quyển ban đầu của Trái đất có thể gồm những vật liệu bao quanh bên ngoài từ tinh vân mặt trời, đặc biệt là các khí nhẹ như hydro và heli, nhưng gió mặt trời và chính nhiệt lượng của Trái đất cỏ thể đã thổi bay khí quyển đó. Bề mặt dần lạnh đi, tạo nên vỏ cứng trong vòng 150 triệu năm (khoảng 12:45 buổi sáng theo đồng hồ của chúng ta)[5]. Hơi nước thoát ra từ lớp vỏ khi các khí gas bị núi lửa phun lên, tạo cho Trái đất một khí quyển thứ hai. Nước được cung cấp thêm từ những cuộc va chạm của sao băng. Hành tinh lạnh đi. Các đám mây được tạo thành. Mưa tạo nên các biển trong vòng 750 triệu năm (3,8 tỷ năm trước, khoảng 4:00 giờ sáng theo đồng hồ của chúng ta), nhưng cũng có thể sớm hơn. (Những bằng chứng gần đây cho thấy các đại dương có thể đã bắt đầu được tạo nên từ 4,2 tỷ năm trước — 1:50 sáng theo đồng hồ của chúng ta.)[6] Khí quyển mới có lẽ có chứa amoniac, metan, hơi nước, carbon dioxít, và nitơ, cũng như một lượng nhỏ các chất khí. Hoạt động núi lửa tăng lên, và vì không có một lớp ozone để ngăn cản, bức xạ tia cực tím thâm nhập khắp bề mặt Trái đất.

IV. KHỞI NGUỒN SỰ SỐNG .

Các chi tiết về nguồn gốc sự sống vẫn còn chưa được khám phá, mặc dù các nguyên lý rộng đã được lập nên. Một thiểu số các nhà khoa học tin rằng cuộc sống, hay ít nhất là các thành phần hữu cơ, có thể đã tới Trái đất từ vũ trụ (xem “Thuyết tha sinh”); tuy vậy, những cơ cấu theo đó sự sống có thể được phát sinh được tin là tương tự với những sự sống có nguồn gốc trên trái đất. Đa số các nhà khoa học tin rằng sự sống có nguồn gốc Trái đất, nhưng thời gian của sự kiện này rất khác biệt - có lẽ là vào khoảng 4 tỷ năm trước (khoảng 3:00 giờ sáng theo đồng hồ của chúng ta). Vì một lý do chưa xác định, trong sự hoạt động hóa học mạnh mẽ thời kỳ đầu của Trái đất, một phân tử (hay thậm chí là một thứ gì khác) đã có khả năng tự phân chia thành các bản sao của chính nó. Bản chất của phân tử này vẫn còn chưa được biết tới, từ đó các chức năng của nó được truyền lại cho các thế hệ bản sao về sau này, DNA. Khi tự mô phỏng, bản sao không phải bao giờ cũng thể hiện chính xác tương tự như thế hệ trước: một số bản sao có chứa "lỗi". Nếu sự thay đổi tiêu diệt khả năng tự mô phỏng của phân tử, thì nó sẽ mất đi, và con đường phát triển bị "tắt ngấm". Nếu không, một số thay đổi hiếm hoi sẽ làm cho phân tử được mô phỏng và được tái tạo một

cách nhanh chóng hơn và với khả năng tốt hơn: những "dòng dõi" đó sẽ trở nên đông đảo và "thành công" hơn. Khi sự lựa chọn các vật liệu thô ("thức ăn") trở nên thiếu thốn, các dòng dõi sau đó có thể khai thác các nguyên liệu khác, hay có lẽ là học cách tiến triển của các kiểu dòng dõi khác, và trở nên đông đảo hơn.

Nhiều kiểu phát triển khác nhau đã được đưa ra nhằm giải thích tại sao một bản sao lại có thể phát triển hơn. Nhiều bản sao đã được thử nghiệm, gồm cả các hóa chất hữu cơ như các protein hiện đại của các acid nucleic, phospholipid, crystal, hay thậm chí các hệ lượng tử. Hiện nay không có phương pháp nào có thể xác định kiểu nào trong số các kiểu trên, nếu có, là tương thích nhất với nguồn gốc sự sống trên Trái đất. Một trong những lý thuyết trước kia, và là một lý thuyết đã chứng minh là đúng đắn về một số mặt, sẽ được đem ra làm ví dụ về việc tại sao quá trình này có thể xảy ra. Năng lượng cao từ các núi lửa, sét, và bức xạ tia cực tím có thể làm cho các phản ứng hóa học tạo ra nhiều phân tử phức tạp hơn từ các hợp chất đơn giản như methan và amoniắc. Trong số chúng có nhiều hợp chất hữu cơ đơn giản là những nguyên tố căn bản của sự sống. Khi số lượng của những “hợp chất hữu cơ” đó tăng lên, các phân tử khác nhau phản ứng lẫn nhau. Thỉnh thoảng các phân tử phức tạp hơn có thể tạo thành các cơ thể sống, tạo ra một tổ chức để tập hợp và tập trung các vật chất hữu cơ. Sự hiện diện của một số phân tử có thể làm tăng tốc một phản ứng hóa học. Tất cả chúng tiếp diễn trong một thời gian dài, với các phản ứng thường hay ít xảy ra ngẫu nhiên, tới khi nó may mắn tạo nên một phân tử mới: phân tử tái tạo. Nó có tính chất kỳ dị thúc đẩy các phản ứng hóa học tạo thành bản sao của chính nó, và tiến trình phát triển thực sự bắt đầu. Các lý thuyết khác đưa ra các kiểu tái tạo khác. Trong bất kỳ trường hợp nào, DNA chiếm vai trò chức năng của các phần tử tái tạo; tất cả các hình thức sự sống từng được biết (ngoại trừ một số loại virus) sử dụng DNA làm hình thức tái tạo của chúng trong hầu hết phương pháp tái tạo.

V. TẾ BÀO ĐẦU TIÊN .Sự sống hiện đại có nguyên liệu tái tạo được đóng gói gọn bên trong một màng tế bào. Tìm hiểu

nguồn gốc màng tế bào dễ dàng hơn so với việc tìm hiểu nguồn gốc chất tái tạo, bởi vì các phân tử phospholipid tạo thành màng tế bào thường ở dạng hai lớp (bilayer) tự sinh khi được đặt trong nước. Dưới một số điều kiện, nhiều quả cầu như vậy có thể được hình thành (xem “Lý thuyết bong bóng”). Vẫn chưa biết được liệu quá trình này diễn ra trước hay sau khởi nguồn của chất tái tạo (hay có lẽ nó từng là chất tái tạo). Thuyết phổ biến nhất cho rằng chất tái tạo, có lẽ RNA tới lúc ấy (lý thuyết thế giới RNA), cùng bộ máy tái tạo của nó và có lẽ cả các biomolecules khác đã có tham gia vào quá trình. Các tiền tế bào ban đầu có lẽ đã đơn giản vỡ ra khi chúng phát triển quá lớn; những thứ bên trong có lẽ đã xâm lấn sang các “bong bóng” khác. Các protein làm ổn định màng, hay sau này giúp vào quá trình phân chia có trật tự, đã thúc đẩy quá trình tăng trưởng của các tế bào đó. RNA cũng có thể là một ứng cử viên của một chất tái tạo ban đầu bởi vì nó vừa có thể lưu giữ thông tin di truyền vừa làm xúc tác cho các phản ứng. Ở một số mặt, DNA đã chiếm giữ vai trò lưu giữ di truyền của RNA, và các protein được gọi là enzym chiếm vai trò xúc tác, để RNA chuyển thông tin và điều chỉnh quá trình này. Ngày càng có nhiều người tin rằng những tế bào ban đầu đó có thể đã tham gia cùng với các chất thoát từ miệng núi lửa dưới đáy biển được gọi là "black smoker". or even hot, deep rocks. Tuy nhiên, mọi người tin rằng trong vô số những tế bào hay những tiền tế bào này chỉ có một còn sống sót. Những bằng chứng hiện nay cho thấy vị tổ tiên của thế giới đã sống trong buổi đầu thời kỳ Archean, có lẽ khoảng 3,5 tỷ năm trước (5:30 sáng theo chiếc đồng hồ tưởng tượng của chúng ta) hay sớm hơn. Tế bào này là tổ tiên của mọi tế bào và vì thế là tổ tiên của mọi sự sống trên Trái đất. Có lẽ nó là một sinh vật nhân nguyên thuỷ, có một màng tế bào và có lẽ cả ribosome, nhưng không có nhân hay các cơ quan tế bào ngoài màng như ti thể hay lạp lục. Giống như mọi tế bào hiện đại, nó sử dụng DNA làm mã di truyền, RNA để trao đổi thông tin và tổng hợp protein, và các enzyme làm xúc tác cho phản ứng. Một số nhà khoa học tin rằng tế bào này không chỉ là một cá thể duy nhất mà là một số lượng các sinh vật trao đổi gen trong trao đổi gen bên.

VI. ĐA BÀO .Archaeans, bacteria, và eukaryotes tiếp tục đa dạng hóa và trở nên tinh vi cũng như thích ứng tốt hơn với môi trường của chúng. Mỗi vực lại liên tiếp chia thành nhiều giống, dù chúng ta còn biết rất ít về lịch sử archaea và bacteria. Khoảng 1.1 tỷ năm trước (6:15 chiều trên chiếc đồng hồ của chúng ta), siêu lục địa Rodinia bắt đầu hình thành; những sự di chuyển lục địa trước đó chưa được biết rõ. Thực vật, động vật, và các loài nấm đều đã phân chia, dù chúng vẫn tồn tãi như những tế bào đơn độc. Một số chúng sinh sống thành các tập đoàn, và dần dần một số hành vi phân công lao động bắt đầu diễn ra; ví dụ, các tế bào ngoại biên có thể bắt đầu đảm nhận một số vai trò khác biệt so với các tế bào bên trong. Dù sự phân chia giữa một tập đoàn với các tế bào chuyên biệt và một sinh vật đa bào không phải lúc nào cũng rõ ràng, khoảng 1 tỷ năm trước (khoảng 7:00 giờ tối theo đồng hồ chúng ta), các thực vật đa bào đầu tiên xuất hiện, có lẽ là tảo xanh. Có thể vào khoảng 900 triệu năm trước (7:15 tối theo đồng hồ của chúng ta), đa bào thực sự đã xuất hiện ở động vật. Ban đầu có lẽ là một thứ gì đó tương tự với đa bào của hải miên ngày nay, theo đó tất cả các tế bào đều totipotent và một cơ quan bị mất có thể tự tái tạo. Khi sự phân chia lao động trở nên đầy đủ hơn trong mọi giống sinh vật đa bào, các tế bào bắt đầu chuyên biệt hóa hơn và phụ thuộc vào nhau hơn; các tế bào riêng biệt sẽ chết. Tới khoảng 750 triệu năm trước (8:00 giờ tối theo đồng hồ của chúng ta) Rodinia bắt đầu tan vỡ.

VII. XÂM CHIẾM MẶT ĐẤT .Như chúng ta đã thấy, sự tích tụ khí ôxy trong khí quyển Trái Đất dẫn tới việc hình thành ôzôn, tạo

nên một lớp ngăn chặn đa phần bức xạ tia cực tím của mặt trời. Vì thế, các sinh vật đơn bào đi lên mặt đất sẽ có cơ hội sống sót cao hơn, và các sinh vật chưa có nhân đã bắt đầu sinh sôi và trở nên thích ứng tốt hơn với môi trường sống bên ngoài đại dương. Có lẽ các sinh vật chưa có nhân đã chinh phục mặt đất ngay từ 2,6 tỷ năm trước(10:17 sáng), thậm chí trước cả khi sinh vật nhân chuẩn xuất hiện. Trong một thời gian dài, lục địa vẫn là nơi không thể sinh sống đối với các sinh vật đa bào. Siêu lục địa Pannotia đã hình thành từ khoảng 600 triệu năm trước và đã vỡ thành nhiều mảnh 50 triệu năm sau đó (từ khoảng 8:50 chiều tới 9:05 chiều trên chiếc đồng hồ tưởng tượng). Cá, những động vật có xương sống sớm nhất, đã bắt đầu xuất hiện tại các đại dương từ khoảng 530 triệu năm trước(9:10 p.m). Một cuộc tuyệt chủng đã xảy ra thời kỳ cuối kỷ

Cambri, kỷ này chấm dứt 488 triệu năm trước(9:25 p.m.).Nhiều triệu năm trước, thực vật (có lẽ giống với tảo)

và nấm bắt đầu mọc trên rìa mặt nước, và sau đó tách hẳn khỏi nó. Những hóa thạch nấm và thực vật cổ nhất trên đất liền có niên đại từ 480–460 triệu năm trước (9:28–9:34 chiều), dù bằng chứng phân tử cho thấy nấm có thể đã xâm chiếm đất liền ngay từ 1 tỷ năm trước (6:40 chiều) và thực vật là 700 triệu năm (8:20 chiều). Ban đầu chúng vẫn ở gần mặt nước, các sự kiện đột biến và biến thể khiến chúng ngày càng xâm chiếm sâu hơn vào môi trường mới. Thời gian những động vật đầu tiên rời đại dương hiện vẫn chưa được biết chính xác: bằng chứng rõ rệt sớm nhất là những động vật chân đốt trên đất liền khoảng 450 triệu năm trước (9:40 chiều), có lẽ chúng đã phát triển và trở nên thích nghi với môi trường nhờ vào nguồn thực phẩm phong phú từ các loài thực vật trên đất liền. Cũng có một số bằng chứng chưa được xác nhận cho rằng những động vật chân đốt có thể đã xuất hiện trên mặt đất ngay từ 530 triệu năm trước (9:12 chiều).

Khoảng 380 tới 375 triệu năm trước (10:00 chiều) những động vật bốn chân đầu tiên xuất hiện từ loài cá. Mọi người cho rằng có lẽ các vây đã phát triển để trở thành chi cho phép những động vật bốn chân đầu tiên nhấc cao đầu khỏi mặt nước để hít thở không khí. Điều này giúp chúng sống được ở những vùng nước ít ôxy hay đuổi theo những con mồi nhỏ vào trong vùng nước nông.[46] Có thể sau này chúng đã tiến vào đất liền trong những khoảng thời gian ngắn. Cuối cùng, một số loài trở nên thích ứng tốt đến mức chấp nhận cuộc sống trên mặt đất và toàn bộ thời gian trưởng thành chúng đều sống trên đất liền, dù chúng sinh sản trong nước và quay lại đó để đẻ trứng. Đây là nguồn gốc của các động vật lưỡng cư. Khoảng 365 triệu năm trước (10:04 chiều), một giai đoạn tuyệt chủng khác diễn ra, có lẽ là do sự lạnh đi toàn cầu. Thực vật tiến hóa thêm hạt, giúp chúng tiến sâu hơn rất nhiều vào đất liền, khoảng thời gian này (khoảng 360 triệu năm trước hay 10 giờ).

Khoảng 20 triệu năm sau (340 triệu năm trước, 10:12 chiều theo đồng hồ của chúng ta), quá trình tiến hóa màng ối đã cho phép trứng được ấp trên đất liền, chắc chắn đó là một lợi thế tồn tại cho phôi của loài động vật bốn chân. Điều này dẫn tới sự phân nhánh động vật có màng ối ra khỏi động vật lưỡng cư. 30 triệu năm sau nữa (310 triệu năm trước, 10:22 chiều) sự phân nhánh giữa Synapsida (gồm các loài động vật có vú) với Sauropsida (gồm các loài chim và những loài bò sát không bay hay không phải là động vật có vú) diễn ra. Tất nhiên, những nhóm sinh vật khác tiếp tục tiến hóa và phân nhánh thành cá, côn trùng, vi khuẩn và các loài khác, nhưng chúng ta không có nhiều thông tin chi tiết như các loài trên. 300 triệu năm trước (10:25 chiều) siêu lục địa gần đây nhất hình thành, được gọi là Pangaea. Sự kiện tuyệt chủng lớn nhất cho tới nay diễn ra 250 triệu năm trước (10:40 chiều theo đồng hồ của chúng ta), ở khoảng thời gian phân tách giữa kỷ Permi và Trias; 95% các loài sinh vật trên Trái Đất biến mất. Nhưng sự sống vẫn tồn tại, và khoảng 230 triệu năm trước [53] (10:47 chiều theo đồng hồ của chúng ta), các loài khủng long bắt đầu chia tách khỏi tổ tiên bò sát của chúng. Một cuộc tuyệt chủng ở thời gian giữa hai kỷ Trias và Jura 200 triệu năm trước (10:56 chiều) nhưng không ảnh hưởng tới nhiều loài khủng long, chúng nhanh chóng chiếm vai trò thống trị trong số động vật có xương sống. Dù một số loài có vú cũng bắt đầu phân chia tương tự trong thời gian này, các loài có vú thời đó có lẽ đều nhỏ như chuột chù ngày nay. 180 triệu năm trước (11:03 chiều), Pangea vỡ thành Laurasia và Gondwana. Ranh giới giữa các loài khủng long bay và không bay là không rõ ràng nhưng Archaeopteryx, theo truyền thống thường được coi là một trong những con chim đầu tiên, sống vào khoảng 150 triệu năm trước (11:12 chiều). Bằng chứng sớm nhất về thực vật hạt kín tiến hóa thành các loài có hoa là ở thời kỳ kỷ Creta, khoảng 20 triệu năm sau (132 triệu năm trước, 11:18 tối) Cuộc cạnh tranh với những loài chim khiến nhiều loài thằn lằn bay tuyệt chủng, và những con khủng long có lẽ cũng đã ở thời kỳ suy thoái vì một số nguyên nhân khi, 65 triệu năm trước (11:39 chiều), một thiên thạch đường kính 10 kilômét dường như đã đâm vào Trái Đất ngay ngoài khơi bán đảo Yucatán, tung một lượng lớn vật chất và hơi nước lên không, che khuất ánh sáng Mặt Trời, ngăn cản quang hợp. Đa số các loài động vật lớn, gồm cả những loài khủng long không bay, bị tuyệt chủng., đánh dấu sự chấm dứt thời kỳ kỷ Creta và đại Trung Sinh. Sau đó, ở thời kỳ thế Paleocen, các loài động vật có vú nhanh chóng phân chia, trở nên lớn hơn và chiếm vai trò thống trị trong số các động vật có xương sống. Có lẽ vài triệu năm sau (khoảng 63 triệu năm trước, 11:40 chiều), vị tổ tiên chung cuối cùng của toàn bộ động vật linh trưởng đã có mặt.Tới cuối thời kỳ thế Eocen, 34 triệu năm trước (11:49 chiều), các loài động vật có vú trên mặt đất đã quay trở về biển để trở thành các loài động vật như Basilosaurus sau này sẽ trở thành các loài cá heo và cá voi.

VII. LOÀI NGƯỜI .Một loài khỉ họ người Châu Phi đã có mặt khoảng

sáu triệu năm trước đây (11:58 chiều theo chiếc đồng hồ của chúng ta) là loài vật cuối cùng có con cháu gồm cả loài người hiện đại và loài tinh tinh, họ hàng gần nhất của con người. Chỉ hai nhánh trong cây dòng họ của nó là có hậu duệ tồn tại tới ngày nay. Ngay sau khi phân nhánh, vì các lý do hiện còn chưa được xác định, các giống khỉ họ

người trong một nhánh đã phát triển khả năng đứng thẳng. Kích thước não tăng nhanh chóng, và hai triệu năm trước đây (11:59:22 chiều, hay 38 giây trước lúc nửa đêm) những động vật đầu tiên được xếp loại Con người đã xuất hiện. Tất nhiên, giới hạn giữa các loài khác nhau hay thậm chí giữa các loại khá rộng bởi vì các sinh vật tiếp tục thay đổi theo từng thế hệ. Cùng khoảng thời gian này, nhánh kia chia thành các tổ tiên của tinh tinh thông thường và tổ tiên của bonobo khi quá trình phát triển tiếp tục diễn ra đồng thời ở mọi dạng sự sống. Khả năng kiểm soát lửa dường như đã bắt đầu có ở Homo erectus (hay Homo ergaster), có lẽ ít nhất từ 790,000 năm trước nhưng có thể sớm từ 1.5 triệu năm trước (từ mười lăm tới hai mươi giây trước). Rất khó để xác định nguồn gốc của ngôn ngữ; chúng ta không biết liệu Homo erectus có thể nói hay khả năng này chỉ xuất hiện từ Homo sapiens. Khi kích thước não tăng lên, trẻ em được sinh ra sớm hơn, trước khi đầu chúng trở nên quá to để đi lọt xương chậu. Vì thế, chúng có quãng thời gian sống phụ thuộc dài hơn, mềm yếu hơn, và có khả năng học tập tốt hơn. Các kỹ năng xã hội trở nên phức tạp hơn, ngôn ngữ phát triển, và các công cụ được chế tạo tinh vi hơn. Điều này khiến sự hợp tác trở nên chặt chẽ cũng như lại kéo theo sự phát triển thêm của não. Về mặt giải phẫu con người hiện đại—Homo sapiens—được cho là đã có nguồn gốc xuất hiện từ khoảng 200,000 năm (hai giây) hay sớm hơn tại Châu Phi; những hóa thạch cổ nhất có niên đại từ khoảng 160,000 năm trước. Con người đầu tiên thể hiện bằng chứng về khả năng tinh thần là người Neanderthal (thường được xếp loại là một giống riêng biệt và không có hậu duệ còn tồn tại ngày nay); họ biết chôn người chết, thường chôn theo cả thực phẩm hay công cụ. Tuy nhiên, bằng chứng về những đức tin phức tạp hơn, như những bức tranh tường Cro-Magnon giai đoạn sớm (có lẽ có ý nghĩa ma thuật hay tôn giáo) chỉ xuất hiện khoảng 32,000 năm trước (0.6 giây). Cro-Magnons cũng để lại những bức tượng đá nhỏ như Vệ nữ Willendorf, có lẽ cũng thể hiện đức tin tôn giáo. Tới 11,000 năm (0.2 giây) trước, Homo sapiens đã mở rộng phạm vi sinh sống tới mũi phía nam Nam Mỹ, lục địa có người ở cuối cùng. Kỹ năng sử dụng công cụ và ngôn ngữ tiếp tục được cải thiện; những quan hệ giữa các cá nhân trong cộng đồng trở nên phức tạp hơn.