21
INTRODUCCION A LA ELECTROQUIMICA CONTENIDO NUMERO DE OXIDACION BALANCEO DE ECUACIONES POR EL METODO DE OXIDACION REDUCCION CELDAS ELECTROQUIMICAS ECUACIÓN DE NERST POTENCIAL DE ELECTRODO CONSTANTE DE EQUILIBRIO CURVAS DE TITULACION DE OXIDACIÓN REDUCCIÓN NUMERO DE OXIDACIÓN El # de oxidación de los Iones se calcula en base a la base de la tabla periódica de los elementos. Los elementos de los grupos I, II y III A tienen un # de oxidación de 1 + ,2 + y 3 + respectivamente, mientras que los elementos V, VI y VII A tienen un # de oxidación de 3 - , 2 - , y 1 - respectivamente. Muchos elementos tienen un varios # de oxidación, ejemplos el S y el P. En este caso se siguen las siguientes reglas para calcular el # de oxidación: (a) El oxígeno tiene un # de oxidación igual a 2 O 2- (b) El Hidrógeno tiene un # de oxidación igual a 1 + H + (c) En una fórmula química las cargas positivas(+) deben ser iguales al # de cargas negativas(-). Ejemplos: HCl: El H tiene un # de oxidación igual a 1 + , luego el Cl debe tener un # de oxid 1 - H 2 O: El H tiene un # de oxidación iguala 1 + , luego el O debe tener un # de oxidación igual a 2 - . CaO: El O tiene un # de oxidación de 2 - , luego el Ca debe tener un # oxidación de 2 + Ca 2+

Unidad X: electroquimica teoria

Embed Size (px)

DESCRIPTION

fundamentals of Electrochemistry: Redox, cells, Nerst Equation, Ke, Redox equation and curves of titration Redox.

Citation preview

Page 1: Unidad X: electroquimica teoria

INTRODUCCION A LA ELECTROQUIMICA

CONTENIDO NUMERO DE OXIDACION

BALANCEO DE ECUACIONES POR EL METODO DE OXIDACION

REDUCCION

CELDAS ELECTROQUIMICAS

ECUACIÓN DE NERST

POTENCIAL DE ELECTRODO

CONSTANTE DE EQUILIBRIO

CURVAS DE TITULACION DE OXIDACIÓN REDUCCIÓN

NUMERO DE OXIDACIÓN

El # de oxidación de los Iones se calcula en base a la base de la tabla

periódica de los elementos.

Los elementos de los grupos I, II y IIIA tienen un # de oxidación de

1+,2+ y 3+ respectivamente, mientras que los elementos V, VI y VIIA tienen un

# de oxidación de 3-, 2-, y 1- respectivamente.

Muchos elementos tienen un varios # de oxidación, ejemplos el S y el P.

En este caso se siguen las siguientes reglas para calcular el # de oxidación:

(a) El oxígeno tiene un # de oxidación igual a –2 O2-

(b) El Hidrógeno tiene un # de oxidación igual a 1+ H+

(c) En una fórmula química las cargas positivas(+) deben ser iguales

al # de cargas negativas(-).

Ejemplos: HCl: El H tiene un # de oxidación igual a 1+, luego el Cl

debe tener un # de oxid 1-

H2 O: El H tiene un # de oxidación iguala 1+, luego el O

debe tener un # de oxidación igual a 2- .

CaO: El O tiene un # de oxidación de 2-, luego el Ca debe

tener un # oxidación de 2+ Ca2+

Page 2: Unidad X: electroquimica teoria

BaCl2 : El Cl tiene un # de oxidación de 1-, luego el Ba

debe tener un # de oxidación de 2+ Ba2+

(d) En formulas poli atómicas la diferencia entre las cargas (-) y las

cargas (+) corresponden a las cargas del átomo central, de tal

manera que la suma de las cargas sea igual acero:

cargas(+) = cargas(-)

Ejemplos:

H3PO4

Hay 3 cargas positivas(3+) del H y 8 cargas negativas del O(4x2-

= 8-). Al sumar las cargas se obtiene:

8- + 3+ = 5-

El P debe tener 5+ para que la suma de las cargas sea igual a

cero.

P5+

H2Cr2O7

7(2-)=14-

Hay 14 cargas negativas del O y 2 cargas positivas del H. Luego

sobran:

14- + 2+ = 12-

Los 2 Cr deben tener 12+

Luego el # de oxidación del Cr es 12/2 Cr6+

(e) Cuando la especie química tiene un numero de Oxidación, se

debe tener en cuenta al contar las cargas.

Ejemplos:

MnO4- o MnO4

1-

4(2-)=8- ; estas son las cargas del Oxígeno. El Ion tiene una carga de 1-, luego debo restar este valor de las 8 cargas

negativas que tienen los Oxígenos:

8- - 1- = 7-

Luego la carga del Mn es 7+ .

C2O42-

4(2-)=8- ; estas son las cargas de los oxígenos.

8- -2-=6-

Luego la carga de los 2 carbonos(C2 ) es 6+ . El C tiene un #Oxid = 3+

Page 3: Unidad X: electroquimica teoria

Asignación:

Comprobar que el # de oxidación P en el H3PO4 es 5+ y que el # de

oxidación del Cl en el compuesto HClO4 es 7+

BALANCEO DE ECUACIONES POR EL METODO DE

OXIDACION REDUCCION

En una reacción de Oxidación el elemento pierde generalmente sus electrones de valencia y por cada electrón que pierda, gana una carga positiva: Ca – 2e- Ca2+

El Calcio perdió 2 electrones, luego ganó dos cargas positivas. En una reacción de REDUCCIÓN el elemento gana electrones, y por cada electrón gana una carga: Ca2++ 2e- Ca0 Cl + 1e-

Cl- O+ 2e O2-

Los pasos para balancear las reacciones de oxidación- Reducción(Redox) son los siguientes:

Obtener las semireacciónes de Oxidación y de reducción y balancear las cargas con electrones.

se suman las dos semireacciónes con el fin de eliminar los electrones.

Si el # de electrones es diferente en cada reacción, se multiplican los coeficientes de los electrones de las dos semireacciónes por un #, de tal manera que al sumarlas, los electrones se eliminen.

Ejemplo: Balancear la reacción Cu + Zn2+

Cu2+ +Zn° Las dos semireacciónes son: Cu- 2e-

Cu2+ (reducción) Zn2++2e-

Zn° (oxidación) Aquí no se necesita multiplicar por 2, porque al sumar las dos reacciones se eliminan los electrones. Cu- 2e-

Cu2+ (reducción)

Page 4: Unidad X: electroquimica teoria

Zn2++2e- Zn° (oxidación

Al sumar las dos semireacciónes, se obtiene la Reacción Neta: Cu + Zn2+

Cu2+ +Zn° Ejercicio # Balancear la reacción Cu + Ag+ Cu2+ + Ag Cu - 2e-

Cu2+ (oxidación) Ag+ + 1e- Ag0 (Reducción) Se multiplica la segunda reacción por 2, para que tenga el mismo # de electrones que la primera: 2(Ag+ + 1e- Ag0 ) 2Ag+ + 2e- 2Ag0 Se suman las dos semireacciónes: Cu0 - 2e-

Cu2+ 2Ag+ + 2e- 2Ag0

La reacción neta será: Cu0 + 2Ag+ Cu2+ + 2Ag0

Reacción Neta: Cu0 + 2Ag+ Cu2+ + 2Ag0

BALANCEO DE REACCIONES EN MEDIO ÁCIDO

Se deben seguir los siguientes Pasos:

1. Identifique la especie que se oxida y la que se reduce en la reacción. 2. Escriba la semireacción de reducción y la de oxidación

respectivamente.

3. Balancee cada semireacción:

a. Balancee por tanteo los elementos diferentes al oxígeno y al hidrógeno en cada semireacción.

b. Balancee los átomos de oxígeno del lado izquierdo, añadiendo moléculas de agua en el lado derecho(un mol de Agua por cada Oxígeno.

c. Balancee los átomos de hidrógeno del lado derecho, añadiendo iones hidronio (H+) al lado izquierdo.

Page 5: Unidad X: electroquimica teoria

d. Balancee el # de cargas a cada lado de la semireacción, añadiendo electrones al lado más positivo(cada electrón vale una carga negativa).

e. Al añadir los electrones, el # de cargas deben deben ser iguales en ambos lados de la reacción.

f. Multiplique el coeficiente del # de e- de una semireacción por el coeficiente de los e- de la otra semireacción y viceversa. De esta manera el # de electrones es el mismo para cada las dos semireacciónes.

g. Sume algebraicamente las semireacciónes.

h. Si los coeficientes de la reacción neta se pueden dividir por un # común, haga esta operación.

Ejercicio: Balancear la semireacción: MnO4

- Mn2+ (medio ácido)

MnO4

- Mn2+

se balancean los O con H2O (lado derecho) MnO4

- Mn2+ +4 H2O

se balancean los 8H del agua con H+ (a la izquierda) MnO4

-+ 8H+ Mn2+

4 H2O se balancean las cargas agregando electrones(e-) en el lado izquierdo.

MnO4

- + 8H+ Mn2++ 4H2O

1-+ 8+ = 7+ 2+ ; luego faltan 5e- en el lado izquierdo para que el # de cargas sea igual en ambos lados. MnO4

- + 8H+ + 5e- Mn2++ 4H2O

Reacción Neta: MnO4- + 8H+ + 5e-

Mn2++ 4H2O

Ejercício: Balancear la semireacción: C2O4

2- CO2 C2O4

2- 2CO2 Aquí no se necesita agregar moleculas de H2 O porque por tanteo se balancean los carbonos y los oxígenos C2O4

2- 2CO2 Se agregan 2e- en el lado derecho para balancear las cargas C2O4

2- 2CO2 + 2e -

Page 6: Unidad X: electroquimica teoria

Reacción Neta C2O42- 2CO2 + 2e

Ejercício: Balancear la reacción Zn2++Ag° Zn°+Ag+

Se sacan las dos semireacciones

(a) Zn2+ + 2e- Zn° (reducción)

(b) Ag0 - 1e- Ag+ (oxidación) La segunda semireacción se multiplica por 2 para igualar los e- en ambas semireacciones: 2(Ag0 - 1e- Ag+ ) (oxidación) 2Ag0 -2e- 2Ag+

Zn2+ + 2e- Zn° 2Ag0 - 2e-

2Ag+)

Zn2++ 2Ag0 Zn° + 2Ag+ En la reacción neta no aparecen electrones.

Reacción neta: Zn2++2Ag0 Zn°+ 2Ag+

BALANCEO DE REACCIONES REDOX EN MEDIO ALCALINO

1. Se balancea la reacción del mismo modo que se balancea una reacción en medio ácido (pasos 1- 3 de balanceo en medio ácido).

2. Después de balanceada la reacción en medio ácido, se añaden suficientes iones OH- al lado izquierdo para cancelar los iones H+ que existen en este lado. Utilice la siguiente reacción para formar moléculas de Agua: H+ + OH- H2O.

2. Se suman las moléculas de agua que puedan estar en ambos lados de la reacción.

Ej.: Balancear la reacción Redox, en medio básico: MnO4

- + SO32- --->MnO2 + SO4

2- MnO4

- MnO2 SO3

2- SO42-

2( MnO4

- + 4 H+ + 3 e- MnO2 + 2 H20) 3(SO3

2- + H20 SO42- + 2 H+ + 2 e-)

Page 7: Unidad X: electroquimica teoria

Al seguir los pasos para balancear una reacción en medio ácido se obtiene:

2 H+ + 2 MnO4- + 3 SO3

2- 3 SO42- + 2 MnO2 + H2O

Se deben añadir 2 moles de OH-

en el lado izquierdo para eliminar los H:

2H+ + 2 OH- + 2 MnO4- + 3 SO3

2- 3 SO42- + 2 MnO2 + H2O + 2OH-

Luego se combinan los H+ con los OH- para formar HO:

2H+ + 2 OH- 2 H20

2H2O + 2 MnO4- + 3 SO3

2- 3 SO42- + 2 MnO2 + H20 + 2 OH-

Se suman las moléculas de H20:

H20 + 2 MnO4- + 3 SO3

2- 3 SO42- + 2 MnO2 + 2 OH-

CELDAS ELECTROQUIMICAS Una celda electroquímica consiste de dos conductores llamados Electrodos, cada uno sumergido en una solución electrolítica. Las celdas que se discutirán consisten de dos compartimientos separados que se conectan a traves de un puente salino. En los compartimientos o semiceldas se colocan separadamente cada una de las soluciones salinas. El puente salino está compuesto de una sal( ej. KCl ) disuelta en un gel. Generalmente en la celda de la derecha sucede la semireacción de Reducción y en la celda de la izquierda sucede la semireacción de Oxidación. Los electrodos pueden ser del metal de la sal o un electrodo inerte. Las dos soluciones de las celdas se conectan externamente a traves de un conductor metálico(cable) que está conectado a los electrodos. De esta manera se crea un circuito cerrado entre las dos celdas. El electrodo de donde proceden los electrones se llama Ánodo(polo negativo) y el electrodo donde llegan los electrones se llama Cátodo. La siguiente figura presenta un diagrama de una celda electroquímica.

Celda

Fig. 1

Page 8: Unidad X: electroquimica teoria

Celda Electroquímica

En electroquímica una celda se representa de la siguiente manera:

Cu | Cu2+(xM) || Zn2+(yM) | Zn

En donde el xM y yM representan las Actividades de los iones en

sus respectivas celdas y el símbolo del elemento significa el electrodo correspondiente. Las líneas verticales representan los limites de separación entre las fases de las celdas en las que se producen los potenciales. La primera línea indica que se desarrolla un potencial en la interfase entre el ánodo del metal(Cu0) y la sal del metal( ej. CuSO4). En estas semiceldas suceden las siguientes reacciones:

Page 9: Unidad X: electroquimica teoria

Anodo: Semireacción de Oxidación Pierde electrones Cu°- 2e Cu2+ Cátodo: Semireacción de Reducción gana electrones Zn2++ 2e-

Zn0

En la reacción anterior los electrones resultantes de la oxidación del Cu se transmiten externamente por el cable y reducen el Zn2+ a Zn0. Por lo tanto el Cu es el Agente Reductor. En el puente salino las sales generalmente generan un potencial denominado Potenciales de Unión Liquido, el cual no se tendrá en cuenta en nuestros cálculos.

Las celdas que producen un potencial(E) se llaman celdas galvánicas ya que la reacción es espontánea, mientras que las celdas que no son espontáneas se denominan Celdas electrolíticas. Estas celdas se pueden forzar aplicándole electricidad desde una fuente externa. POTENCIAL DE ELECTRODO La corriente eléctrica dentro de la celda es conducida por los cationes y aniones y exteriormente es conducida por los electrones que salen del ánodo y van hacia el cátodo. Las semireacción en cada semicelda genera un potencial que depende de la naturaleza de las especies químicas involucradas. Los Potenciales normales o estándar de electrodo aparecen en el apéndice del texto. Estos potenciales estándar de reducción se obtienen tomando como base el Potencial del electrodo de Hidrogeno, al cuál se le asigna un valor relativo de 0.00 voltios. Potencial de Hidrógeno: La semicelda del Hidrógeno se representa así:

H+ (a= 1.00M) H2(P= 1atm), Pt

Pt ==> electrodo de platino que se considera como un electrodo inerte. La reacción de reduccion es:

2H+ + 2e- H2(g) E°= 0.00 v.

Se presentan aquí algunos valores de la tabla de Potencial

Estándar(PE):

Semireacción Potencial Estándar( voltios)

2H+ + 2e- H2(g) 0.00

Ag++ e- Ag(s) +0.799

2H++2e- H2(g) +0.000

Cd2++2e- Cd(s) -0.403

Zn2++2e- Zn(s) -0.763

Page 10: Unidad X: electroquimica teoria

MnO4-+8H++5e Mn2++4H2O +1.51

Cr2O72-+ 14H++6e 2Cr3++7H2O +1.33

El potencial de electrodo(PE) de una celda se calcula en base a los PE individuales que aparecen en tablas. Cuando la actividad (a) de cada ión es igual a la unidad, el potencial(E) de una celda es igual a la diferencia entre los potenciales de los dos electrodos:

Ecelda = Ecatodo - Eanodo

Por ejemplo, para la celda:

ZnZn2+(a=1.0) || H+ (a= 1.00M) H2(P= 1atm), Pt

El potencial será:

Ecelda = Ecatodo - Eanodo = 0.00v – 0.763 = - 0.763v

Para la celda:

Cu|Cu2+(1M) || Zn2+(1M)Zn

El potencial será:

Ecelda = 0.34v – (- 0.763v)

Ecelda = 1.1v

Observe que sí las soluciones se invierten en la celda, también se invierte el signo del potencial; luego en este caso el E será igual a –1.1v:

Zn Zn2+(1M) || Cu2+(1M)Cu

Ecelda = - 1.1v

Esta celda se conoce como una celda Electrolítica. A las celdas electrolíticas se le puede aplicar corriente desde el exterior de la celda.

ECUACIÓN DE NERST

Una reacción Redox general reversible se expresa así: * aA + bB + ne-

cC + dD

a,b,c,d coeficientes. Nerst dedujo la siguiente ecuación para cualquier reacción Redox: E= E°- (RT /nF)ln [C]c D]d/([A]a [B]b) R= 0.082 atm x l (constante de los gases) * ln es el logaritmo natural mol x K

R = 8.31 JK-1 mol-1 F Faraday, e igual a 96485 Coulombios. n # de electrones

Page 11: Unidad X: electroquimica teoria

E° Potencial de electrodo estándar que aparece en el apéndice del texto

Reemplazando estos valores se obtiene la siguiente ecuación:

E = E°- 0.059/nlog [C]c D]d/([A]a [B]b)

En esta reacción las actividades de los sólidos son iguales a 1, lo mismo que la actividad del agua. En el caso de los gases se utiliza la presión en atmósferas. M0 significa que el elemento esta en forma sólida. Las concentraciones para nuestri caso se pueden expresar en términos de las concentraciones molares, en lugar de las actividades. Ejercicio # Calcule la expresión de la ecuación de Nerst para las siguientes semireacciones: (a) Zn2++2e-

Zn° Zn°= Zn(s) [Zn°]= 1 E= E°Zn

2+/Zn - 0.059/2log([1]/ [Zn

2+]) E°Zn

2+/Zn

= -0.763 voltios(este valor aparece en las tablas) (b) MnO4

-+ 8H++ 5e- Mn2++ 4H2O

* a = 1 ; b = 8 ; c = 1 ; n = 5 ; la [H2O] tiene un valor unitario. E = E°- 0.059/5log [Mn2+]/ [H+]8[MnO4

-]

(f) O2(g) + 4H+ + 4e- 2H2O E0 = 1.23v

E = E°- 0.059/4log 1/(PO2 x[H+]4

(g) AgCl(s) + e- Ag(s) + Cl-

E = E0 - 0..059/1log[Cl- ] La ecuación de Nerst nos permite calcular el Potencial de una celda cuyas concentraciones sean diferentes a la unidad. En este caso se calculan los potenciales individuales para cada semicelda y se aplica la ecuación anterior La diferencia entre el potencial del Cátodo y el del Anodo.

Ecelda = Ecátodo - Eánodo

Page 12: Unidad X: electroquimica teoria

Ejercicio # Calcular el potencial de la celda:

FeFe2+(.50M), Fe3+(0.1M)||MnO4-(005M), 8H+(0.1M), Mn2+(0.01M), Pt

Ecelda = Ecatodo - Eanodo

Ecatodo = E0 - 0.059log [Mn2+] /([MnO4-] [H+]8)

Ecatodo = 1.52v – 0.059/5log (0.01) / (0.05x(0.1)8)

Ecatodo = 1.51v

Eanodo = E0 – 0.059/1log [Fe2+]/ [Fe3+]

Eanodo = 0.77v – 0.059/1log0.50/0.1

Eanodo = 0.81

Ecelda = 1.51 – 0.81 = 0.7v

CONSTANTES DE EQUILIBRIO

La constante de equilíbrio para una reacción se expresa de la siguiente

manera:

* aA + bB cC + dD

Ke = [C]c[D]d / [A ]a [B]b

Donde a, b, c, y d son los coeficientes.

La condición de que las especies en el estado sólido tienen un valor unitario

también se aplica.

[ X(s)] = 1

Ejercicio #

Calcule la expresión de la Ke para las siguientes reacciones: (a) Zn2++2Ag0 Zn°+ 2Ag+

(b) MnO4- + 8H+ + 5Fe2+ Mn2+ + 5 Fe3+

(a) Ke = [Zn°][Ag+]2 / [Zn2+][Ag0 ]2

[Zn0] = 1 [Ag0] = 1 ; luego

Page 13: Unidad X: electroquimica teoria

Ke = [Ag+]2 / [Zn2+]

(b) Ke = [Mn2+][Fe3+]5/([MnO4- ][H+ ]8[Fe2+ ]5 )

La ecuación de Nerst nos permite calcular la Ke en un reacciones Redox:

E = E°- ( 0.059/n)log[C]c [D]d /( [A]

a [B]

b )

Ke = [C]c [D]d /[A]a [B]b

Luego: E = E°- ( 0.059/n)log(Ke)

En una semireacción en equilibrio los potenciales de la celda de las especies

que reaccionan es igual a cero(0).

Ecatodo = Eanodo

Ecatodo - Eanodo = 0

E = E° - 0.059/n logKe 0 = E° - 0.059/n logKe E° = 0.059/n logKe

El E0 para una reacción es igual a la diferencia entre los potenciales estándar

de los dos electrodos:

E0reaccion = E0

reduccion – E0

oxidacion

Los valores de E0 se encuentran en las tablas de Potencial Estándar.

La formula general para calcular la Ke es la siguiente:

Log Ke = (nE0reduccion – nE0

oxidacion) /0.059

Log Ke = n(E0reduccion – E

0oxidacion) /0.059

Ejercicio # Calcular Ke para la reaccion: Zn2+ + Cu0 Cu2+ + Zn0

Celda: Zn0 Zn2+ ) || Cu2+)Cu0

E0 (Cu) = + 0.34v E0(Zn)= -0.763v

Log Ke = n(E0reduccion – E

0oxidacion) /0.059

Log Ke = 2(E0reduccion – E

0oxidacion) /0.059

Log Ke = 2( 0.34 – (-0763) /0.059

Log Ke = 2(1.1)/0.059

Log Ke = 37.3

Page 14: Unidad X: electroquimica teoria

Ke = 1037.3

Se observa que esta reacción tiene una Ke muy alta.

Ejercicio #

Calcule la constante de equilibrio para la reacción:

5Fe2+ + MnO4-+ 8H++ 5 Fe3+ + Mn2+ + 4H2O

Semireacciones:

5Fe2+ 5 Fe3+ + 5e-

MnO4-+ 8H++ 5e- Mn2++ 4H2O

Celda: FeFe2+, Fe3+||MnO4

-, 8H+, Mn2+, Pt Log Ke = n(E0(MnO4

- ) – E

0(Fe)) / 0.059

Log Ke = 5(1.51- 0.771)/0.059

Ke = 1x1046

La demostración matemática de este problema se presenta aquí:

Reacciónes de Nerst para las dos reacciones:

E(MnO4-) = E0 (MnO4

-) – 0.059/5 log([Mn2+] /( H+]8[MnO4-])

E(Fe)= E0Fe – 0.059/5 log[Fe2+]5[ Fe3+]5 E0

Fe es igual a PE del Fe.

En el equilibrio: E(Fe) = E(MnO4-] = 0

Luego igualando los dos potenciales se obtiene:

E0 (MnO4 )– 0.059/5xlog([Mn2+] /( H+]8[MnO4-]) = 0

E0 (MnO4 )= 0.059/5xlog([Mn2+] /( H+]8[MnO4-])

E =E0 (Fe) = 0.059/5 x log[Fe2+]5[ Fe3+]5

Factorizando y aplicando las propiedades de los logaritmos:

Log(xy) = logx + logy log(1/x) = -logx

Se obtiene la diderencia de los dos potenciales:

E0(MnO4) – E0(Fe) = 0.059/5xlog[Mn2+][Fe3+]5/([MnO4

- ][H+ ]8[Fe2+ ]5 )

Ke = [Mn2+][Fe3+]5 /([MnO4- ][H+ ]8[Fe2+ ]5

E0(MnO4) – E0(Fe) = 0.059/5xlog Ke

Log Ke = 5(E0(MnO4) – E0(Fe)) / 0.059

Log Ke = 5(1.51- 0.771)/0.059

Ke = 4x 1062

Como puede notarse, la Ke de la reacción es bien alta y por consiguiente se

desplaza casi totalmente hacia la derecha( principio de le Chatelieur).

Page 15: Unidad X: electroquimica teoria

CURVAS DE TITULACION DE OXIDACIÓN REDUCCIÓN

Las curvas de titulación de oxidación-reducción tienen también la forma

sigmoidal como las curvas estudiadas anteriormente para ácidos y bases.

En este caso se determina la concentración( Normalidad) de las especies que

se oxidan y de las que se reducen.

Aplicando la ecuacion de Nerst se puede calcular el Potencial(E) de la

reaccion al añadir incrementos de volumen del titulante.

El Potencial de la celda se grafica contra el volumen del titulante añadido:

E(voltios) - Vs – mL Titulante como aparece en la figura.

Consideremos la titulación Redox(Reducción-Oxidadcion) del ion

ferroso(Fe2+) con una solucion de sulfato de Cerio(Ce4+):

La reaccion iónica neta es:

Fe2+ + Ce4+ Fe3+ + Ce3+

Las semireacciónes son las siguientes:

Fe2+ Fe3+ + 1 e- E0 (Fe)= 0.771 voltios

Ce4+ + 1 e- Ce3+ E0(Ce) = 1.44 voltios

Se distinguen cuatro puntos en la titulacion:

(a) Al principio de la titulacion

V(Ce4+ ))= 0.0mL

Debido al medio en que sucede la titulacion, el potencial de la reacción

se considera INDETERMINADO.

(b) En el Punto de Equivalencia. En este punto los dos potenciales son

iguales:

Page 16: Unidad X: electroquimica teoria

(1) E(equilibrio) = E0(Ce) – 0.059log [Ce3+]/[Ce4+]

(2) E(equilibrio)= E0(Fe) – 0.059log[Fe3+]/[Fe2+]

Se debe tener en cuenta que las concentraciones se expresan en

mEquivalentes/L o Normalidad(N)

Al sumar las reacciones (1) y (2) obtenemos:

2E(eq) = E0(Ce) – 0.059log [Ce3+]/[Ce4+] + E0(Fe) – 0.059log[Fe3+][Fe2+]

Agrupando la reacción y substituyendo los valores obtenidos debido a la

estequiometría de la reacción, obtenemos el valor del potencial en el

equilibrio(Eq):

[Fe3+] =[Ce3+]

[Fe2+] =[Ce4+]

Luego es logaritmo es iguaal a cero(0) y el E será:

E(eq) = (E0 Fe + E0 Ce) /2

Los valores de los potenciales estándar se encuentran en las tablas.

© En el VE/2

El VE/2 es el volumen de Ce+4 necesario para titular la mitad del contenido

de Fe2+ en la solución.

Luego: [Fe2+] = [Fe3+]

E = E0 Fe – 0.059log([Fe2+] /[Fe3+])

E = E0Fe

(c) En el VE:

En este punto el sistema esta en equilibrio, luego:

E(eq) = ((E0(Ce) + E0(Fe)) /2

Antes del VE:

Se calcula la concentración de los iones de Fe2+ que sobran y la

concentración de los iones de Fe3+ que se forman, considerando que el RL

es el Ce4+

N(Fe2+) = (VFe2+x NFe2+ - VCe

4+x NCe4+ ] / Vtotal

N(Fe3+] = (VCe4+x NCe4+ ) / Vtotal

E = E0(Fe) – 0.059log[Fe2+]/[Fe3+]

Page 17: Unidad X: electroquimica teoria

(d) Después del Punto de Equivalencia:

Se calcula la concentración de los iones de Ce4+ que sobran y la

concentración de los iones de Ce3+ que se formaron, considerando que el

RL es el Fe2+

E = E0(Ce) – 0.059log[Ce3+]/[Ce4+]

N(Ce4+) = ( -VFe2+x NFe2+ + VCe

4+x NCe4+ ] / Vtotal

N(Ce3+) = VFe2+x NFe2+ / Vtotal

E = E0(Ce) – 0.059log[Ce3+]/[Ce4+]

Ejercicio #

Deducir la curva de titilación de 50.0Ml de Fe2+ 0.0500N (como sulfato de

hierro en medio ácido), con una solución de Ce4+ (sulfato cerico) 0.100N.

En este caso tenemos que trabajar con la N de las especies químicas.

(a) Calcule el VE o V de Ce4+ necesario para titular completamente la

solución de Fe2+.

(b) Calcule el potencial(E) al agregar los siguientes volúmenes de Ce4+:

(a) 0 mL (b) VE/2 mL (c) VE-1 mL (d) VE y (e) VE+ 1 mL.

E0(Ce) = 1.44v E0(Fe) = 0.771v

VFe2+x MFe2+ = VCe

4+x MCe4+

VCe4+ = VFe

2+x MFe2+ /M Ce4+

VFe2+x MFe2+ - VCe

4+x MCe4+

VCe4+ = 50.0mLx 0.050M/0.1M = 25Ml

En 0 mL :

E = INDETERMINADO

En el Ve/2 (12.5 mL)

E = E0 = 0.771v

En el (VE – 1)mL(24 mL)

[Fe2+] = (50.0mLx0.050M – 24mLx0.1M) /74mL

[Fe2+] = 0.0014M

Page 18: Unidad X: electroquimica teoria

[Fe3+] = 24mLx0.1M / 74mL

[Fe2+] = 0.0324M

Ecuación de Nerst:

E = 0.771v – 0.059/1log(0.014/0.0324) = 0.69v

En el VE(25 mL)

E = (E0(Fe) + E0(Ce)) /2

E = 0.771 + 1.44) /2

E = 1.06v

En el (VE + 1)mL(26mL)

[Ce4+] = ( VCe4+x MCe4+ - VFe

2+x MFe2+ ] / Vtotal

[Ce4+] = 26mLx0.1M - 50.0mLx0.050M

[Ce4+] =0.0013M

[Ce3+] = VFe2+x MFe2+ / Vtotal

[Ce3+] = 50.0mLx0.0500M / 76mL

[Ce3+] = 0.0329M

Se observa que en este caso el RL es el Fe2+, luego sobra Ce4+

En este caso se usa la reacción de Nerst aplicada al Ce4+.

Ce4+ + e- Ce3+

E = E0(Ce) – 0.059 log[Ce3+]/[Ce4+]

E = 1.44 – 0.059 log( 0.0329/0.0013

E = 1.52v

Información adicional sobre el capitulo de electroquímica

PROBLEMAS DE ELECTROQUIMICA

Problema #1

Balancear la reacción:

Fe3+ + Sn2+ = Fe2+ + Sn4+

Escriba las semireacciónes e incluya los electrones.

Problema #2

Calcule el potencial de la celda:

Page 19: Unidad X: electroquimica teoria

Pb|Pb2+ || Fe2+| Fe

Pb2+ + 2e- = Pb(s)

Fe2+ + 2e- = Fe(s)

Problema #3

Calcule el potencial de la celda:

Pb|Pb2+ ( 5x10-3M) || Fe2+( 6.5x10-5M)| Fe

Problema #4

Calcule el potencial de la celda:

Hg|Hg2+ (0.090M)|| Cl1-( 2x10-4M)| Pt El Pt es un metal inerte. Ept = 0.0v

Hg2+ + 2e- = Hg(s)

Cl2 + 2e- = 2 Cl-

Problema #5

Calcule el potencial de la semicelda:

Pt|VO2+ (0.0002M), UO2+( 2x10-4M), U4+(1x10-4M), H+(0.002M)

El Pt es un metal inerte. Ept = 0.0v

UO2+ 4 H+ = U4+ + 2 H2O

Problema #6

Calcule el potencial de la celda:

Zn| Zn2+ (1M)|| Cu2+( 1M)| Pt El Pt es un metal inerte. Ept = 0.0v

Zn2+ + 2e- = Zn(s)

Cu2+ + 2e- = Cu(s)

Problema #7

Calcule el potencial de la celda:

Zn| Zn2+ (0.05M)|| Cu2+( 0.25M)| Pt El Pt es un metal inerte. Ept = 0.0v

Zn2+ + 2e- = Zn(s)

Cu2+ + 2e- = Cu(s)

Problema #8

Calcule la Ke para la reacción:

Zn2+ + Cu(s) = Cu2+ + Zn(s)

Problema #9

Calcule la Ke para la reacción:

Page 20: Unidad X: electroquimica teoria

Cu2+ + 2 Ag(s) = 2Ag+ + Cu(s)

Problema #10

Escriba la reacción balanceada para la semireacción:

Cr2O2_ + H+ = Cr3+ + H2O ( en medio ácido)

Problema #11

Calcule la expresión de la Cha para la semireacción:

Cr2O2_ + 14 H+ + 6e- = 2 Cr3+ + 7H2O ( en medio ácido)

Problema #12

40 mL de Fe2+ 0.05N se titulan con una solución de Ce4+ 0.25M en medio

ácido.

(a) Calcule el VE

(b) Calcule el potencial de la solución al añadir los siguientes Volúmenes

de la solución de Ce4+ :

0 ml ; VE/2 mL ; VE-5 mL ; VE mL ; VE+2 mL.

Page 21: Unidad X: electroquimica teoria