79
Neutrino Neutrino Oscillation Studies Oscillation Studies with a Massive with a Massive Magnetized Magnetized Calorimeter Calorimeter Università degli Studi di Bologna Università degli Studi di Bologna Marco Selvi

Università degli Studi di Bologna

  • Upload
    rusty

  • View
    37

  • Download
    1

Embed Size (px)

DESCRIPTION

Università degli Studi di Bologna. Neutrino Oscillation Studies with a Massive Magnetized Calorimeter. Marco Selvi. Neutrino Oscillations Status of the experimental scenario and need for new detectors Magnetized calorimeter performances Atmospheric neutrino physics CNGS beam physics - PowerPoint PPT Presentation

Citation preview

Page 1: Università degli Studi di Bologna

Neutrino Oscillation Neutrino Oscillation Studies with a Studies with a

Massive Magnetized Massive Magnetized CalorimeterCalorimeter

Università degli Studi di Università degli Studi di BolognaBologna

Marco Selvi

Page 2: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

SummarySummary

• Neutrino Oscillations• Status of the experimental scenario

and need for new detectors• Magnetized calorimeter performances• Atmospheric neutrino physics• CNGS beam physics• -factory physics

Page 3: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Neutrino OscillationsNeutrino Oscillations

Page 4: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Neutrino OscillationsNeutrino Oscillations : 2 : 2 flavorsflavors

If neutrinos have mass the flavour eigenstates could not coincide with mass eigenstate:

|(0)> = cos |> + sin|>

|(0)> = -sin |> + cos|>

|(t)> = cos exp(-iE1t) |> + sinexp(-iE2t) |>

|(t)> = -sin exp(-iE1t) |> + cosexp(-iE2t) |>

After time evolution:

Page 5: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Neutrino OscillationsNeutrino Oscillations : 2 : 2 flavorsflavors

Oscillation Probability:P() = sin2 sin2(1.27 m2

L/E)

m2 = m22- m1

2

Survival Probability: P() = 1 - P()

sin2m2 =0.003 eV2

Page 6: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Atmospheric neutrinosAtmospheric neutrinos

Page 7: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Atmospheric neutrinosAtmospheric neutrinos

P + air --> (, K)

e + e

• < h > = 10 km

• ~ E-3.7

Page 8: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

From Battistoni & Lipari (1998)

Updated NuMI beam

the LBL nightmareThe L/E rangeThe L/E range

L (down-going) ~ 10 km

L (up-going) ~ 104 km

E from 100 MeV up to 100 GeV

L

Page 9: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Status of neutrino studies Status of neutrino studies with Atmosphericswith Atmospherics

Page 10: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Status of atmospheric neutrino Status of atmospheric neutrino datadata

•Up/down asymmetry: robust indication of disappearance

(10)

(fixes the mixing in a model independent way)

•Disappearance occurs near the horizon

+ upgoing, througoing, multiring muon-like and NC-like, indication of appearance

+ MACRO, Soudan 2

Superkamiokande: 79.3 kty (Y. Totsuka, TAUP2001)

deficit increasing with Ldeficit increasing with L no anomalyfor eno anomalyfor e

Page 11: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Interpretation of atmospheric Interpretation of atmospheric neutrino dataneutrino data

• SK data interpreted as 2 oscillations in the channel • (Supported by MACRO,

SOUDAN2,CHOOZ)

• Pure–s oscillations excluded

• Pure –e oscillations excluded • Dinamycs of disappearance fit

an L/E law (FCNC, VLI, VEP excluded)

• Is pure - oscillation the end of atmospheric neutrino history?

Best fit:

m2 = 2.5 x 10-3 eV2 sin22 = 1

Page 12: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Explicit detection of Explicit detection of oscillation?oscillation?

• L/E resolution of SuperKamiokande not sufficient to detect oscillations explicitely

• Limited precision on m2

• There are viable alternative hypotheses with L/E law:

• Decay• Decoherence

• At least one full oscillation cycle has to be detected to prove oscillations (disprove alternative hypotheses).

The oscillation is damped by finite detector L/E resolution !!

Page 13: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Damped oscillationDamped oscillation

Perfect resolution

Damped Oscillation

Critical damping

sin2m2 =0.003 eV2

Page 14: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Physics Physics

with a Massive Magnetized with a Massive Magnetized Spectrometer Spectrometer

on Atmosphericon Atmospheric

Page 15: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

New detector conceptsNew detector concepts

Overcome limitations of current atmospheric neutrino detectors:

•High L/E resolution•Fully exploit far/near source method

for disappearance•Systematic-free analysis of the oscillation pattern

Page 16: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Atmospheric: comparison Atmospheric: comparison up/downup/down

It is a good experimental rule that precise measurements are obtained by comparison with a reference

For E > 2 GeV • The atmospheric neutrino flux is up/down

symmetric at the source • The downward is not affected by oscillations (m2

< 10-2 eV2) reference near source• Upward flux is affected by oscillations: L/E goes

up to 6·104 km/GeV far source

Page 17: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Measurement of disappearanceMeasurement of disappearance

The disappearance probability can be measured with a single detector and two equal sources:

= P( ; L/E) N up(L/E)

N down(L’/E)

L’

L

L(up) = 2Rcos(up) L’(down) = L( –down)

= 1 - sin2 (2) sin2 (1.27 m2 L/E)

An oscillation pattern should appear in the experimental ratio of up to down fluxes (*)

*) method first suggested by P.Picchi and F.Pietropaolo

Page 18: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

What affects the L/E What affects the L/E resolutionresolution

The L/E resolution is determined by the capability of the experiment to reconstruct the neutrino energy and the neutrino direction of flight (L ~ 2R cos):

But is not measured; just ... so events near the horizon are of no use: resolution is

spoiled by the tan2 term

Low L/E values must be obtained with high E

A detector with a modest hadronic energy resolution, but a good muon momentum measurement can be effectively used provided that low-y events are selected

• Limitation of SK: due to the limited acceptance at high energies, oscillations occur near the horizon

Page 19: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Detector choiceDetector choice

• Magnetized tracking calorimeterMagnetized tracking calorimeter E by range measurement for fully contained events

E by tracking in magnetic field for partly-contained

events

by tracking

Up/Down by time of flight (plus vertex identification)

high time resolution (< 2 ns) is also required

Page 20: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

The Monolith DetectorThe Monolith DetectorLarge mass 34 ktonMagnetized Fe spectrometer B = 1.3 TeslaTime resolution ~ 1 ns (for up/down discrimination)Space resolution ~ 1 cm (rms on X-Y coordinates)Momentum resolution p/p ~ 20% from track curvature for outgoing ~ 6% from range for stopping Hadron E resolution Eh /Eh ~ 90%/Eh 30%

~52000 m2 of detector : Glass Spark Counters

8 cm

2.2 cm

Fe

Fe

29.5 m

13 m

14.5 m B B

Page 21: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Event selectionEvent selection

Event selection developed to optimise the observation of the oscillation pattern

(keep under control the relative L/E resolution)

1. E > 1.5 GeV

2. Fiducial selection of 40 cm on each side

FC events: inside fiducial volume

PC events: one single outgoing track with range > 4 m

3. Nb. of fired layers > 6

4. Selection on combination of the observables E, , Eh to ensure the required L/E resolution

Page 22: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

L/E resolution in L/E resolution in MONOLITHMONOLITH

Contributions to L/E resolution

Angular spread

Energy measurement

Final L/E resolution

contribution of track fit error

Page 23: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Efficiencies and Efficiencies and resolutionsresolutions

• Selected CC (downgoing only!) after 4 y of data taking:

• Fully contained: 931

• Partially contained: 259

• Total: 1190

Page 24: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Effect of the Magnetic Effect of the Magnetic FieldField

Higher efficiency in the low L/E region Higher efficiency in the L/E region of physical interest (102-103) Slightly higher cost and complexity (anti-seismic rules for LNGS impose expensive mechanics anyway)

Page 25: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Expected L/E distributions Expected L/E distributions (1)(1)

Central value in each bin is obtained with a 26 years statistics.Event rates, error bars and contour lines correspond to 4 years.

99% C.L90% C.L.68% C.L.

m2 = 710-4 eV2

m2 = 210-3 eV2

Page 26: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Expected L/E distributions Expected L/E distributions (2)(2)

m2 = 510-3 eV2

m2 = 810-3 eV2

Page 27: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Monolith sensitivity – 4 yMonolith sensitivity – 4 y

•Comparison of MONOLITH sensitivity to oscillations with Kamiokande and SuperKamiokande• 90% C.L. allowed regions after 4 years for different m2 (left)• Exclusion regions if no effect is found (right)

Page 28: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Detection of the oscillation Detection of the oscillation patternpattern

Four simulated experiments of 4 years with m2 = 0.003 eV2

• best fit to oscillation• best fit to decay• best parametric fit

Page 29: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

A staged approachA staged approach

15 m

13.1 m

14.5 m B

16 m

8.5 m

13.5 m B

1 module = 17 kt

Maximum size that fits in Gran Sasso Hall A (between LVD and GNO)

12 kt

Page 30: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

L 2REarthcosE= E+Eh

=

Resolution comparable to the full detector (34

kt)

Efficiencies and resolution in a Efficiencies and resolution in a 12 kt module12 kt module

Efficiency loss < 20% w.r.t. the full detector (fiducial cut against cosmic muon background)

34 kt 17 kt

Page 31: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

A 12 kt detector (4 years)A 12 kt detector (4 years)

Kamiokande

SK

0.007 eV2

0.003 eV2

0.001 eV2

10kt

90% C.L. allowed regions

Efficiency for decay model rejection at 95% C.L.

RMS Precision on sin22RMS Precision on m2

SK 90% C.L.

region

Page 32: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

12 kt detector12 kt detector

Page 33: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

34 kt detector34 kt detector

Page 34: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

100 kt detector100 kt detector

3.0 10-3

1-3% precision in the oscillation parameters is achievable

Page 35: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Vertical vs horizontal Vertical vs horizontal layers for atmospheric layers for atmospheric neutrinos (FAQ)neutrinos (FAQ)

Selected atm. ’s events for fixed L/E resolution • Lower reconstruction

efficiency along the vertical direction with vertical plates

• About the same efficiency at small L/E (where the 1st minimum is expected):

• Events near the horizon filtered by resolution requirements!

• Need for an external VETO Pay on mixing, but marginally on m2

Page 36: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Physics Physics

with the with the

CNGS beamCNGS beam

Page 37: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

CNGS beamCNGS beam

• from , K

• < E > ~ 20 GeV

• L = 732 km

• Optimized for tau appearence

• Rate CC ~ 2600/kt y

Page 38: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Detector layoutDetector layout

Page 39: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

CNGS event exampleCNGS event example

Page 40: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Efficiencies and Efficiencies and resolutionsresolutions

Almost flat around 50% for E>10 GeV

Page 41: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

L/E RangeL/E Range

L/E distributions after selections• 4 y atmospheric (shaded)• 1 y CNGS beam

High sensitivity to m2 values down to a few 10-4 eV2

AtmosphericsThe L/E distribution, resulting after

selections, is populated up to 5·103 km/GeV

The Log(l/E) distribution is more populated at high L/E

The sensitivity of the experiment decreases for

increasing values of m2

Can the beam help at high m2 ?• atmospheric no systematic• beam systematic to be understood

Page 42: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Monolith on CNGS beamMonolith on CNGS beam

CNGS beam will cover with very high statistics the region L/E < 100 km/GeV: ~ 40,000 events/year CC after selections vs. ~ 200 events/year from up-going atmospheric.

Systematic effects: a tough job!

10% bin per bin systematics assumed

Accordingly with BMPT .

Page 43: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Impact of CNGS beamImpact of CNGS beam

Atmo’s alone

Atmo’s + Beam

m2 =0.007 eV2

Page 44: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

CNGS beam: CC/NC ratioCNGS beam: CC/NC ratio

m2 = 0.003 eV2

MONOLITH 12ktx5y

(CC

/NC

)ob

s /(

CC

/NC

)no-o

sc

Visible hadron energy (GeV)

CC/NC

Atm. full MONOLITH

90% allowed regions(includes uncertainties of beam shape and composition, detector effects, …)

CC/NC ratio can supplement atmospheric data constraints on sterile neutrinos

Page 45: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Physics at the Physics at the -factory-factory

with awith a

MonolithMonolith-like-like

DetectorDetector

Page 46: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Neutrino OscillationsNeutrino Oscillations : 3 : 3 flavorsflavors

If neutrinos have mass the flavour eigenstates could not coincide with mass eigenstate:

3 mixing angles: 12, 23, 13

2 mass differences: m212 m2

23

1 CP-violation fase:

Page 47: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

One-mass scale One-mass scale dominancedominance

at terrestial distancesPe-= sin2(23 ) sin2(213) sin2(1.27 m2

23 L/E)

13 bounded by CHOOZ exp. to be smallsin2(213) < 0.1 (90% C.L.)

<<

Very high intensity beam needed

Page 48: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

factoryfactory

Features:

• High intensity

• Well-known beam

• Both flavors

• Different helicity

Page 49: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

•Circulating 50 GeV in a NuFactory(1021 decays in 5 years)

•Beam made by and e (ee)

•Search at LBL for wrong sign muons () coming frome oscillated into

sign of m2, study of matter effects, CP violation

Physics at a Physics at a FactoryFactory

Page 50: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Golden channel: wrong sign Golden channel: wrong sign muonsmuons

Page 51: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

CC rate (background)CC rate (background)

eeee

XX

3.5 103.5 107 7

CCCCat 732 kmat 732 km

Page 52: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

CC rate (signal)CC rate (signal)

eeee

oscillationoscillation

XX

1.1 101.1 105 5 CCCCat 732 kmat 732 km

Page 53: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Two main sources:

•Fake WSM (due to charge misidentification)

• WSM from hadrons

BackgroundsBackgrounds

Page 54: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

o Generate interaction using Pythia + q.e. + 1 corrections (Lipari code).o Simulate the whole event in Geant:o Multiple scattering with Moliere theory option ON

(not just gaussian approximation)o Full B field description o Fit muon track using GEANE and Kalman filter approach

(a real reconstruction, not just smearing)

both for signal and background

Charge identificationCharge identification

Page 55: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

B field detailsB field details

Page 56: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Long FC event example Long FC event example ((--))

Page 57: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

background event background event example (example (++))

Page 58: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Wrong event exampleWrong event example

Large Large angle angle scatterinscatteringg• Overestimated in GEANT (~30) ...see OPERA

• Recognizable via Kalman filter (change in slope)

Page 59: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Selection cuts:

• Pfrom range > 7.5 GeV

•In each region:• At least 4 points•Track lenght > 300 cm

•Same charge assigned in each region

Charge identification: Charge identification: resultsresults

Fractional bkg.1 x 10-6

Efficiency 35%

Page 60: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Wrong sign muonsWrong sign muons

from hadronsfrom hadrons

Page 61: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Wsm from hadronsWsm from hadrons

Page 62: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Large Magnetic Detector people (Dydak et al.) showed (see NuFact '00)that it is possible to reject such bkg up to

~ 2 x 10-6 with 30% efficiency

just using two cuts:

• P > 7.5 GeV

• Qt > 1. GeV

Wsm from hadronsWsm from hadrons

Page 63: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

• P cut may be easily reproduced: • good muon momentum resolution

• Qt depends on hadronic angular resolution• in LMD analysis they assume to have the same performances of MINOS

(MINOS proposal - chapter 7)

... What can Monolith ... What can Monolith say?say?

Page 64: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Angular ResolutionAngular Resolution

• From true vertex to true shower’s center of gravity

• From

reconstructed vertex to rec. shower’s center of gravity

Page 65: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Vertex resolutionVertex resolution

• Transverse resolution x = 5.6 cm

• Longitudinal res. y = 5.8 cm

• Vertical res. z = 5.1 cm

Page 66: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

hadronic angular hadronic angular resolutionresolution

Reconstructing vertex:Reconstructing vertex:about twice about twice MINOSMINOS

Monolith fitMonolith fit3232.. 8.28.2

Page 67: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Second approachSecond approach

• Use LMD cuts (P >7.5 GeV; Qt > 1 GeV)

And take into account the different smearing

Charge id. CC e CC e NC

MONOLITH

1. 10-6 7.5 10-7 2.5 10-7 5.2 10-6 16.5 %

35 30 15 160

Monolith fitMonolith fit

3232.. 8.28.2

Page 68: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

ImprovementsImprovements

• Higher granularity• Planes orientation

... perform the same cuts (P >7.5 GeV; Qt > 1 GeV) and modify the fractional bkg accordingly with the obtained hadronic direction smearing

Efficiencies are considered to be the same (16.5%)

Very conservative hypothesis: improvements are expected in both cases

Page 69: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Horizontal plates – 4 cm Horizontal plates – 4 cm thickthick

Monolith fitMonolith fit2323.. 12.12.

Page 70: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Vertical planes – 8 cm Vertical planes – 8 cm thickthick

...Against ~5 cm in HOR configuration

Page 71: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Vertical plates – 8 cm Vertical plates – 8 cm thickthick

Monolith fitMonolith fit1515.. 12.12.

Page 72: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Test beam with the Baby-Test beam with the Baby-MonolithMonolith

prototype: prototype:

Hadronic angular resolutionHadronic angular resolution

Page 73: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Experimental setupExperimental setup

Beam of e, of2, 4, 6, 8, 10 GeV

Page 74: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Event display: Event display:

Page 75: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

hadronic angular hadronic angular resolutionresolution

Resolution better than the Resolution better than the requested one.requested one.

Baby-Baby-Monolith fitMonolith fit1010..44 10.10.11

Page 76: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

SinSin22(2(21313) sensitivity) sensitivity

• Oscillation probability:Pe-= s23

2 sin2(213) sin2(1.27 m2 L/E)

• Fix 23=45°, change 13 and m2

• Compare number of signal events (efficiency corrected) with the error in the surviving background events(statistical + 5% syst.)

• Draw a 4 region

Page 77: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

SinSin22(2(21313) sensitivity – 4) sensitivity – 4

Strong muon momentum cut

P > 20 GeV

P > 7 GeV

Qt > 1 GeV

8 cm VERT plane

P > 7 GeV

Qt > 1 GeV

Page 78: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

Baseline: 3500 kmBaseline: 3500 km

Baseline 732 km

Vertical layers

Baseline 3500 km

Vertical layers

Bkg ~ L-2 (fluxes)

Signal ~ L-2 (fluxes) x L2 (oscillation) = L0

... up to O(3000 km)

Page 79: Università degli Studi di Bologna

Massive Magnetized Detector M. Selvi – Università di Bologna

ConclusionsConclusions

We show that a massive magnetized calorimeter can significantly contribute to the actual and

future neutrino physics framework:

• Explicitely prove the oscillation pattern in L/E

• Precisely measure the osc. parameter values (if oscillations)

• CNGS beam can help in disappearence analysis and NC/CC ratio, especially if m2 > 0.005 eV2

• The proposed detector is well-suited for the wrong sign muons detection on a -factory beam.