54
8/13/2019 vnk-6 http://slidepdf.com/reader/full/vnk-6 1/54 Flow Nets

vnk-6

Embed Size (px)

Citation preview

Page 1: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 1/54

Flow Nets

Page 2: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 2/54

k    hx

k    hz

H V

2

2

2

2   0 For a homogeneous soil

For an isotropic soil

2

2

2

2  0

h

x

h

z

Laplace Equation

Page 3: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 3/54

Laplace Equation -1 D solution

The 1D solution of the Laplace equation the simplest

Boundary Value Problem. Now consider the case of only the

vertical flow exists, then the Laplace equation is simplified to

02

2

z h 

    

The solution of this equation is easy to get by having a

integration of h with respect to z twice

02

2

  

  

1tant   Acons 

  

  

21  Az Ah   

Page 4: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 4/54

Laplace Equation -1 D solutionThe constants A1 and A2 can be determined by the boundary

conditi ons. For soil 1

Condition 1: h= h1  at z =0

Condition 2: h= h2  at z =H1

1

1

12h z 

h h h   

10   H z for   

Page 5: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 5/54

Laplace Equation -1 D solution

For soi l 2

Condition 1: h= h2  at z = H1 

Condition 2: h= 0 at z =H1+ H2

 

  

 

 

  

 

2

1

2

2

21

H h z 

h h 

211  H H z H for   

Page 6: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 6/54

Laplace Equation -1 D solution

From the continuity of flow q1 = q2 = q

AH 

h k A

h h k q 

 

 

 

   

 

 

 

   

2

2

2

1

21

1

0

or

 

  

 

2

2

1

1

1

11

2

k H 

k h h 

Page 7: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 7/54

Laplace Equation -1 D solution

Substituting for h2 in equation of head for soil 1

1

1

12h z 

h h h   

We obtain

 

 

 

 

1221

2

1  1

H k H k 

z k h h 

Now we can predict the head in soil 1 if we know the hydraulic

conductivities in soil 1 and soil 2

10   H z for   

Page 8: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 8/54

Laplace Equation -1 D solution

Now for soil 2

Substituting for h2 We obtain

 

 

 

 

  z H H H k H k 

k h h 

21

1221

1

1

Now we can predict the head in soil 2 if we know the hydraulic

conductivities in soil 1 and soil 2

211  H H z H for   

 

  

 

 

  

 

2

1

2

2

21

H h z 

h h 

Page 9: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 9/54

Flow Net for One Dimensional Flow

Page 10: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 10/54

Seepage is defined as the flow of a fluid,usually water, through a soil under a

hydraulic gradient.

10

Page 11: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 11/54

concrete dam

impervious strata

soil

Stream line is simply the path of a water molecule.

datum

hL 

TH = 0TH = hL 

From upstream to downstream, total head steadily decreasesalong the stream line.

Page 12: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 12/54

Equipotential line is simply a contour of constant

total head.

concrete dam

impervious strata

soil

datum

hL 

TH = 0TH = hL 

TH=0.8 hL 

Page 13: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 13/54

A network of selected stream lines and equipotential lines.

concrete dam

impervious strata

soil

curvilinearsquare

90º

Page 14: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 14/54

Page 15: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 15/54

Graphical representation of solution

1. Equipotentials Lines of constant head, h(x,z)

Equipotential (EP)

Page 16: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 16/54

Phreatic line

Flow line (FL)

2. Flow lines Paths followed by water particles -

tangential to flow

Graphical representation of solution

Equipotential (EP)

Page 17: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 17/54

Properties of Equipotentials

h(x,z) = constant (1a)

Flow line (FL)

Equipotential (EP)

Page 18: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 18/54

  h(x,z) = constant (1a)

hx

dx   hz

dz  0Thus: (1b)

Properties of Equipotentials

Flow line (FL)

Equipotential (EP)

Page 19: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 19/54

  h(x,z) = constant (1a)

hx

dx   hz

dz  0Thus: (1b)

Equipotenial sloped z

d x

h x

h zE P

 

 

/

/(1c)

Properties of Equipotentials

Flow line (FL)

Equipotential (EP)

Page 20: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 20/54

  z

  x

Geometry

vz

vx

Kinematics

Properties of Flow Lines

From the geometry (2b)dx

dz

v

vFL

x

z

 

Flow line (FL)

Equipotential (EP)

Page 21: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 21/54

  z

  x

Geometry

vz

vx

Kinematics

Properties of Flow Lines

From the geometry (2b)

Now from Darcy‟s law 

dx

dz

v

vFL

x

z

 

v k    hx

x       v k    h

zz    

Flow line (FL)

Equipotential (EP)

Page 22: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 22/54

  z

  x

Geometry

vz

vx

Kinematics

Properties of Flow Lines

From the geometry (2b)

Now from Darcy‟s law 

Hence (2c)

dx

dz

v

vFL

x

z

 

v k    hx

x    

dx

dz

h x

h zFL

   

v k    hz

z    

Flow line (FL)

Equipotential (EP)

Page 23: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 23/54

Orthogonality of flow and equipotential lines

d z

d x

h x

h zE P

 

 

/

/

dxdz

h xh zFL

   

On an equipotential

On a flow line

Flow line (FL)

Equipotential (EP)

Page 24: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 24/54

Orthogonality of flow and equipotential lines

d z

d x

h x

h zE P

 

 

/

/

dxdz

h xh zFL

   

On an equipotential

On a flow line

Hencedx

dz

dx

dzFL EP

   

  1 (3)

Flow line (FL)

Equipotential (EP)

Page 25: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 25/54

  Q

X

y

z

t

T

 Y

Z

X

FL

FL

Geometric properties of flow nets

Q

hh+h

h+2h

EP

G i i f fl

Page 26: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 26/54

  Q

X

y

z

t

T

 Y

Z

X

FL

FL

v

  Q

yx

 (4a)

From the definition of flow

Geometric properties of flow nets

Q

hh+h

h+2h

EP

G t i ti f fl t

Page 27: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 27/54

  Q

X

y

z

t

T

 Y

Z

X

FL

FL

v

  Q

yx

 

v k   h

zt

 

(4a)

(4b)

From the definition of flow

From Darcy‟s law 

Geometric properties of flow nets

Q

hh+h

h+2h

EP

G t i ti f fl t

Page 28: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 28/54

  Q

X

y

z

t

T

 Y

Z

X

FL

FL

v

  Q

yx

 

v k   h

zt

 

Q

k h

yx

zt

(4a)

(4b)

(4c)

From the definition of flow

From Darcy‟s law 

Combining (4a)&(4b)

Geometric properties of flow nets

Q

hh+h

h+2h

EP

G t i ti f fl t

Page 29: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 29/54

  Q

X

y

z

t

T

 Y

Z

X

FL

FL

v

  Q

yx

 

v k   h

zt

 

Q

k h

yx

zt

  Q

k h

YX

ZT

(4a)

(4b)

(4c)

(4d)

From the definition of flow

From Darcy‟s law 

Combining (4a)&(4b)

Similarly

Geometric properties of flow nets

Q

hh+h

h+2h

EP

G t i ti f fl t

Page 30: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 30/54

  Q

X

y

z

t

T

 Y

Z

X

FL

FL

v

  Q

yx

 

v k   h

zt

 

Q

k h

yx

zt

  Q

k h

YX

ZT

(4a)

(4b)

(4c)

(4d)

From the definition of flow

From Darcy‟s law 

Combining (4a)&(4b)

Similarly

Geometric properties of flow nets

Q

hh+h

h+2h

EP

Conclusion

yx

zt

YX

ZT (5)

G t i ti f fl t

Page 31: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 31/54

 Q

a

b

c

d

D

B

C

A

h

h h 

Geometric properties of flow nets

FL

Q

EP( h )

EP ( h + h )

G t i ti f fl t

Page 32: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 32/54

v

  Q

cd 

(6a)

From the definition of flow

Q

a

b

c

d

D

B

C

A

h

h h 

Geometric properties of flow nets

FL

Q

EP( h )

EP ( h + h )

G t i ti f fl t

Page 33: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 33/54

v

  Q

cd 

v k  h

ab 

(6a)

(6b)

From the definition of flow

From Darcy‟s law Q

a

b

c

d

D

B

C

A

h

h h 

Geometric properties of flow nets

FL

Q

EP( h )

EP ( h + h )

G t i ti f fl t

Page 34: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 34/54

v

  Q

cd 

Q

k h

cd

ab

v k  h

ab 

Q

k h

CD

 AB

(6a)

(6b)

(6c)

(6d)

From the definition of flow

From Darcy‟s law 

Similarly

Combining (6a)&(6b)

Q

a

b

c

d

D

B

C

A

h

h h 

Geometric properties of flow nets

FL

Q

EP( h )

EP ( h + h )

Geometric properties of flow nets

Page 35: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 35/54

v

  Q

cd 

Q

k h

cd

ab

v k  h

ab 

Q

k h

CD

 AB

(6a)

(6b)

(6c)

(6d)

From the definition of flow

From Darcy‟s law 

Similarly

Combining (6a)&(6b)

Conclusion

cd

ab

CD

 AB

 Q

a

b

c

d

D

B

C

A

h

h h 

Geometric properties of flow nets

FL

Q

EP( h )

EP ( h + h )

Geometric properties of flow nets

Page 36: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 36/54

When drawing flow nets by hand it is most

convenient to draw them such that

Each flow tube carries the same flow Q

The head drop between adjacent EPs, h, is

the same

Then the flow net is comprised of

“SQUARES” 

Geometric properties of flow nets

Geometric properties of flow nets

Page 37: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 37/54

Geometric properties of flow nets

Demonstration of „square‟ rectangles with inscribed circles 

Page 38: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 38/54

Drawing Flow Nets

To calculate the flow and pore pressures in the

ground a flow net must be drawn.

The flow net must be comprised of a family of

orthogonal lines (preferably defining a squaremesh) that also satisfy the boundary conditions.

Common boundary conditions

Page 39: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 39/54

Water

Datum

H-z

z

H

(7)

Common boundary conditions

a. Submerged soil boundary - Equipotential

hu

zw

w

Common boundary conditions

Page 40: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 40/54

Water

Datum

H-z

z

H

(7)

Common boundary conditions

a. Submerged soil boundary - Equipotential

hu

z

now

u H z

w

w

w w

( )

Common boundary conditions

Page 41: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 41/54

Water

Datum

H-z

z

H

(7)

Common boundary conditions

a. Submerged soil boundary - Equipotential

hu

z

now

u H z

so

hH z

z H

w

w

w w

w

w

( )

( )

Common boundary conditions

Page 42: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 42/54

Permeable Soil

Flow Linevn=0

vt

Impermeable Material

Common boundary conditions

b. Impermeable soil boundary - Flow Line

Page 43: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 43/54

Mark all boundary conditions

Draw a coarse net which is consistent with the

boundary conditions and which has orthogonal

equipotentials and flow lines. (It is usually easier to

visualise the pattern of flow so start by drawing theflow lines).

Modify the mesh so that it meets the conditions

outlined above and so that rectangles between

adjacent flow lines and equipotentials are square.

Refine the flow net by repeating the previous step.

Value of head on equipotentials

Page 44: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 44/54

Value of head on equipotentials

Phreatic line

 h  H

 Number of potential drops

(9)

Datum

15 m

h = 15m

h = 12m h = 9m h = 6m

h = 3m

h = 0

Calculation of flow

Page 45: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 45/54

For a single Flow tube of width 1m: Q = k h (10a)

Calculation of flowPhreatic line

15 m

h = 15m

h =12m h = 9m h = 6m

h = 3m

h = 0

Page 46: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 46/54

Calculation of flow

Page 47: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 47/54

For a single Flow tube of width 1m: Q = k h (10a)

For k = 10-5 m/s and a width of 1m Q = 10-5 x 3 m3/sec/m (10b)

For 5 such flow tubes Q = 5 x 10-5 x 3 m3/sec/m (10c)

Calculation of flowPhreatic line

15 m

h = 15m

h =12m h = 9m h = 6m

h = 3m

h = 0

Page 48: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 48/54

Calculation of flow

Page 49: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 49/54

For a single Flow tube of width 1m: Q = k h (10a)

For k = 10-5 m/s and a width of 1m Q = 10-5 x 3 m3/sec/m (10b)

For 5 such flow tubes Q = 5 x 10-5 x 3 m3/sec/m (10c)

For a 25m wide dam Q = 25 x 5 x 10-5 x 3 m3/sec (10d)

Calculation of flowPhreatic line

15 m

h = 15m

h =12m h = 9m h = 6m

h = 3m

h = 0

Q k   H

 N

 Nh

f Note that per metre width (10e)

Calculation of pore pressure

Page 50: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 50/54

P5m h   u zw

w

 (11a)

Calculation of pore pressurePhreatic line

P5m

Pore pressure from

15 m

h = 15m

h = 12m h = 9m h = 6mh = 3m

h = 0

Calculation of pore pressure

Page 51: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 51/54

P5m h   u zw

w

 (11a)

u w w [ ( )]12 5   (11b)

Calculation of pore pressurePhreatic line

P5m

Pore pressure from

 At P, using dam base

as datum

15 m

h = 15m

h = 12m h = 9m h = 6mh = 3m

h = 0

Page 52: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 52/54

57

Page 53: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 53/54

58

Page 54: vnk-6

8/13/2019 vnk-6

http://slidepdf.com/reader/full/vnk-6 54/54