YiChun Liu

Embed Size (px)

Citation preview

  • 8/14/2019 YiChun Liu

    1/39

    Key Laboratory of UV Light-Emitting Materials andTechnology, Ministry of Education, Northeast Normal

    University, Changchun

    The properties and application ofThe properties and application of

    nanonano--ZnOZnO

    Y.C. Liu

  • 8/14/2019 YiChun Liu

    2/39

    TiO2 Photocatalysis: Advantages and ShortcomingsAdvantages:

    1) Cheap material

    2) Nontoxic and stable3) Suitable valence and conduction band positions

    Shortcomings:

    1) Charge recombination problemResolution: Photochemical diode type photocatalystssuch as TiO2/SnO2, TiO2/Pt

    2) Transparent for visible light

    Resolution: non-metal doping, such as N, C, S-doped TiO23) Low extinction coefficient in UVA range due to its nature of

    indirect bandgap semiconductor

    How to resolve this problem?

    Environmental issues

  • 8/14/2019 YiChun Liu

    3/39

    Our Strategy for Highly Efficient Semiconductor Photocatalysis

    ZnO: a direct wide band-gap semi-conductor with intense absorption inUVA; a chemically unstable oxidematerial, easy to be dissolved inacidic or alkaline medium

    TiO2: a indirect band-gap semi-conductorwith weak absorption in UVA; achemically stable oxide material, stable inacidic or alkaline medium either in dark orunder excitation.

    E vs vacuum level

    ZnO TiO2

    e- e-

    h+ h+

    O2

    O2-

    RH

    R

    -2

    -5

    -6

    -7

    -8

    -4

    In such a array structure, UV-absorption and photoreactioncan be site-separately carried

    out, which may favor theefficiency of photocatalyticprocess.

    ZnO/nano-rode coreas antennafor UV light

    TiO2/shell asreaction site

  • 8/14/2019 YiChun Liu

    4/39

    PVP/ZnO t ubes

    ZnO/TiO2 nano-f ibers for phot oc at a lys is

    Langm uir ,23 (2007)10920

    J .Chem .Phys, 2008

  • 8/14/2019 YiChun Liu

    5/39

    J.Chem.Phys., (2009)

    to be acceptedThe top view FESEM images of the

    as-prepared well-aligned ZnO

    nanorod arrays on a ZnO-coated Si

    substrate

    Resonance Raman Mapping to Identify nano-ZnO Array Orientation

  • 8/14/2019 YiChun Liu

    6/39

    Scheme 1. Schematic illustration of the

    super-hydrophobicity ZnO/SiO2 core-shell

    nanowire array. Figure 1.The SEM images of the top and tilt

    view of nanowire array before UV irradiation.

    (a, b) ZnO nanowire array; (c, d) ZnO/SiO2core-shell nanowire array.

    Figure 2. Evolution of water contact angle onZnO nanowire and ZnO/SiO2 core-shell

    nanowire arrays modified with

    octadodecyltrimethylsilane monolayers during

    irradiation with ultraviolet light.

    Langmuir,25 (2009)xxxx

  • 8/14/2019 YiChun Liu

    7/39

    n-nano-ZnO/p-GaN LED

    P-NiO/n-nanoMgZnO UV-de t ec t or

  • 8/14/2019 YiChun Liu

    8/39

    EL from p-GaN

    The results of n-ZnO/p-GaN from

    n-ZnO/p-GaN diode by ZN Technology, CA,USA

    GaN

    A homostructural ZnO p-i-n light emitting diode

    naturematerials

    ,4,2005

    A great breakthrough in ZnO homojunction LED----------Kawasaki et al. nature materials, 4, 47 (2005)

  • 8/14/2019 YiChun Liu

    9/39

    Why choose to construct GaN/ZnO heterojunction LED ?

    ZnOUV LED

    & LD

    pn homojunction

    pn heterojunction

    p-ZnO

    ZnMgO, GaN,

    SiC, AlN, et al

  • 8/14/2019 YiChun Liu

    10/39

    Researching progresses in GaN/ZnO heterojunction LED

    Why choose GaN?

    Similar material properties

    GaN ZnO

    Crystal Structure Wurtzite Wurtzite

    Lattice Constant()

    a = 3.189c = 5.186

    a = 3.249c = 5.205

    Bandgap (eV) 3.42 3.37

    Commercial availability of high-quality p-GaN

  • 8/14/2019 YiChun Liu

    11/39

    p-GaN/n-ZnO

    Samples (cm) (cm2V-1s-1) N (cm-3)

    p-GaN 1.63 5.34 7.131017

    n-ZnO 3.1510-2 26.21 7.571018

    p-GaN/n-ZnO

    n-ZnO

    p-GaN

  • 8/14/2019 YiChun Liu

    12/39

    p-GaN/n-ZnO

    p-GaN

  • 8/14/2019 YiChun Liu

    13/39

    Why does EL originate from p-GaN?

    conduction and valence band offset :

    Ec=0.15 eV andEv=0.12 eV

    electrons in n-ZnO and holes in p-

    GaN overcame almost equal barrier

    to realize the carrier injection.

    The source of EL would be mainly determined by the differences

    of carrier mobility and concentration between n-ZnO and p-GaN.

    Idea of designing p-GaN/i-ZnO/n-ZnO device

  • 8/14/2019 YiChun Liu

    14/39

    UV LED based on p-GaN/i-ZnO/n-ZnO heterojunction

    Device structure

    Mg doped p-GaN: MOCVD

    i-ZnO: rf reactive magnetron sputtering

    Zn-rich n-ZnO: electron beam evaporation

    p-GaN

    n-ZnO

    i-ZnO

  • 8/14/2019 YiChun Liu

    15/39

    Samples (cm) (cm2V-1s-1) N (cm-3)p-GaN 1.63 5.34 7.131017i-ZnO 1.12103 1.28 4.381015n-ZnO 4.1410-2 20.0 7.531018

    p-i-n heterojunctions exhibites a

    rectifying, diode-like behavior.

    The forward turn-on and reverse

    breakdown voltages is ~9 and ~11 V.

    Electrical properties

  • 8/14/2019 YiChun Liu

    16/39

    p-GaN/i-ZnO/n-ZnO

  • 8/14/2019 YiChun Liu

    17/39

    UV EL from P-GaN/i-ZnO/n-ZnO

    3.21 eV EL---UV NBE emission from

    i-ZnO layer

    2.1 eV EL---deep-level emission related

    to native defects

    3.08 eV EL---Mg-levels related emission

    in p-GaN layer

    App l. Phys . B 80 (2005 ) 871

  • 8/14/2019 YiChun Liu

    18/39

    Mechanism

    The i-ZnO has the lowest carrier

    concentration and mobility among thethree layers, thus, the carriers

    including holes from p-GaN and

    electrons from n-ZnO can inject into i-

    ZnO layer, where the radiative

    recombination occurs.

    RT EL spectra of p-GaN/i-ZnO/n-ZnO heterojunctions LED at

    different injection currents;

    inset shows the intensity ratios

    of EL peak at 3.21 eV from i-

    ZnO to one at 3.08 eV from p-

    GaN vs. the injection currents

  • 8/14/2019 YiChun Liu

    19/39

    EL from P-GaN/i-ZnO/n-ZnO (i-ZnO

    EL of p-GaN/n-ZnO and p-GaN/i-ZnO/n-ZnO w it h

    i -layer t h ic k ness of 20 nm , 40 nm , 80 nm

  • 8/14/2019 YiChun Liu

    20/39

    Opt ic a l St orage and

    Elec t r ic a l St orage Dev ic e

  • 8/14/2019 YiChun Liu

    21/39

    AgTiO2

    TiO2-Ag Film

    TiO2

    -Ag

    Y. Ohko, et al.Nat. Mater. 2003 (2)29.

    TiO2-Ag

  • 8/14/2019 YiChun Liu

    22/39

    Ag/ZnO film

    Interference fringe

  • 8/14/2019 YiChun Liu

    23/39

    TiO2/ZnO-Ag

    Ag

    AgAg+

    Ag+

    Ag

    Green

    laser

    UV

  • 8/14/2019 YiChun Liu

    24/39

    Thin film transistor of amorphousoxide semiconductor

    K. Nomura, et al., Nature 488 (2004) 432.

    IGZO TFT17.2 cm2/v.s

    IGZO TFT

    0 10 20 30 40

    0.0

    1.0x10-6

    2.0x10-6

    3.0x10-6

    4.0x10-6

    5.0x10-6

    0 10 20 30 40

    -5.0x10-7

    0.0

    5.0x10-7

    1.0x10-6

    1.5x10-6

    2.0x10-6

    2.5x10-6

    3.0x10-6

    3.5x10-6

    IDS

    (A)

    IDS

    (A)

    Vg (V)

    VDS

    (V)

    Vg

    increasing

    VDS

    increasing

    a-IGZOSiO2

    p-Si

    Al Al

  • 8/14/2019 YiChun Liu

    25/39

    S. H. Chang, et al., Phys. Rev. Lett. 102, 026801 (2009)

    0.0 0.5 1.0 1.5 2.0

    0.0

    5.0x10-3

    1.0x10-2

    1.5x10-2

    2.0x10-2

    0.01 0.1 110

    -7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    Set

    Current(A

    )

    Voltage (V)

    ResetSetReset

    ZnO:LiCu

    Al

    Unipolar memory ofreversible resistance switching

    NiOAl

    Al

  • 8/14/2019 YiChun Liu

    26/39

    The application of nano-ZnO materialsin bioseparation and sensitive Immunoassays

  • 8/14/2019 YiChun Liu

    27/39

    Au:ZnORamanZnOZnO ()/Au ()

    ZnO (c ore)/Au (Ag) (she l l ) w i t h Ram anspec t rosc op ic f ingerpr in t s fo r DNA det ec t ion

    TEM of ZnO (core)/Au (shell) nanocomposites

    J . PHYS. CHEM. C 111 (2007) 3290-3293

    ZnO

  • 8/14/2019 YiChun Liu

    28/39

    A

    target

    B

    probe

    3.DNA detection

    -S-A14-ATC-CTT-ATC-AAT-ATT

    TAG-GAA-TAG-TTA-TAA-ATT-GTT-ATT-AGG-GAG

    Nano-ZnO(core)/Au(shell)

    TAA-CAA-TAA-TCC-CTC-A14-S-

  • 8/14/2019 YiChun Liu

    29/39

    XPS

    DNA

    Zn

    O/Auna

    nocop

    ositi

    es

  • 8/14/2019 YiChun Liu

    30/39

    EcE

    F

    Ev

    = 5.2 eV

    ZnO

    EF

    = 5.1 eV

    AuE0

    ZnO

    Au SERS

  • 8/14/2019 YiChun Liu

    31/39

  • 8/14/2019 YiChun Liu

    32/39

    Im m unoassay based on ResonantRam an Sc at t e r ing of m agnet ic

    Fe 3O4/ZnO/Au nanoc om posi t es

  • 8/14/2019 YiChun Liu

    33/39

    (b)

    Fig.3. Resonant Raman scattering for the nanocomposites.

    Fig. 2 (a). TEM image of the nanocomposites.

    Fig.2(b). HRTEM image of the red region in (a).

  • 8/14/2019 YiChun Liu

    34/39

    The immunoassay process

    analyteAu

    Assay A:

    AuAu

    Fe3O4/ZnO/Au-antibody

    analyte

    Assay B:

    Au

    Fe3O4/ZnO/Au-antibody

    Magnetic seperated

    BSAanti-IgG

    Magnet

  • 8/14/2019 YiChun Liu

    35/39

    Assay A

    Au

  • 8/14/2019 YiChun Liu

    36/39

    Assay B

    Au

  • 8/14/2019 YiChun Liu

    37/39

  • 8/14/2019 YiChun Liu

    38/39

  • 8/14/2019 YiChun Liu

    39/39

    Thank you all