Photosynthesis complete

  • View
    14.417

  • Download
    21

Embed Size (px)

DESCRIPTION

Bio P'Rung

Text of Photosynthesis complete

  • 1. Photosynthesis

2. 2

  • 4

3.

  • ( Jean Baptiste Van Helmont)
  • 5200
  • 5
  • 1693 2

4. 1 ( Moore, R., 1995 ) 5.

  • ?

6.

  • ( Joseph Priestley)

7. 8.

9. 2 ( Moore, R., 1995 ) 10.

  • ????

11.

  • (Jan Ingen Housz)
  • -

12. 4 13.

14.

  • ??

????????????? ????????????? 15.

  • ????

??????? 16.

  • ( Nicolas Theodore de Soussure )

17.

  • - - -

18.

  • . . 2405 ( . . 1862) (Julius Sachs)
  • (photosynthesis)

19.

  • . . 2438 ( . . 1895)(T.W.Engelmann)

20. 5 21.

  • ????

22.

  • . . 2473 ( . . 1973) (Van Niel)
  • . . 2484 ( . . 1941) (Sam Ruben) (Martin Kamen)18 O 6

23. 6 24.

  • ?????

25.

  • . .2475 ( . .1932) (Robin Hill)

26. Fe 3+ Fe 2+ O 2 27.

  • ???

28.

  • . .2494 ( . .1951) ( Daniel Arnon )
  • 1

29.

  • 2 ATP NADPH

30.

  • ??????

31.

    • Autotrophs : organic matter photosynthesis
    • Sunlight energy

(a) Mosses, ferns, and flowering plants (b) Kelp (c)Euglena (d) Cyanobacteria 32. Light Energy Harvested by Plants & Other Photosynthetic Autotrophs 6 CO 2+ 6 H 2 O + light energy -> C 6 H 12 O 6+ 6 O 2 33. WH Y AR E P LAN TS G RE EN? It's not that easy bein' greenHaving to spend each day the color of the leavesWhen I think it could be nicer being red or yellow or goldOr something much more colorful like that Kermit the Frog 34. Electromagnetic Spectrum and Visible Light Gamma rays X-rays UV Infrared & Microwaves Radio waves Visible light Wavelength (nm) 35. Different wavelengths of visible light are seen by the human eye as different colors. WHYAREPLA NTSGRE EN? Gamma rays X-rays UV Infrared Micro- waves Radio waves Visible light Wavelength (nm) 36. Sunlight minus absorbed wavelengths or colors equals the apparent color of an object. The feathers of male cardinals are loaded with carotenoid pigments.These pigments absorb some wavelengths of light and reflect others.Reflected light 37. Why are plants green?Reflected light Transmitted light 38. WHYAREPLA NTSGRE EN?Plant Cells have Green Chloroplasts The thylakoid membrane of the chloroplast is impregnated with photosynthetic pigments(i.e., chlorophylls, carotenoids). 39.

  • The light reactions convert solar energy to chemical energy
    • Produce ATP & NADPH
  • The Calvin cycle makes sugar from carbon dioxide
    • ATP generated by the light reactions provides the energy for sugar synthesis
    • The NADPH produced by the light reactions provides the electrons for the reduction of carbon dioxide to glucose

Light Chloroplast Light reactions Calvin cycle NADP ADP + P AN OVERVIEW OF PHOTOSYNTHESIS 40. .... ..

  • ( Epidermis ) Cuticle ( Mesophyll )
  • Mesophyll
  • 1. )Palisade mesophyll:
  • 2. )Spongy mesophyll:
  • (upper epidermis)
  • (lower epidermis) stoma ( ) Guard Cell

41. Epidermis Mesophyll Vascular bundle 42.

  • Photosynthesisis the conversion oflight energyintochemical energyby living

(Photosynthesis) ( H 2 O ) ( CO 2 ) ( C 6 H 12 O 6 ) ( H 2 O ) ( O 2 ) 43. chloroplast 44. 5 2 1-2 45. 2 46. 47. Pigments 48.

49. PIGMENT ABSORPTION Spectrophotometer 50. (visible light) ( pigments ) ( wavelength) 2 51.

  • ( Chlorophyll ) ( )
  • ( Mg ) ( Fe ) ( Mn )

52. ( accessory absorber) ( Carotene) ( Anthocyanin) 53.

  • ?????

54. (Photosynthetic pigment) a b c d a b c d ---- + - + -+ + + ---+ + ---- +--++ + ---- + -+- + - ---- + +-- + - ---- + +-- + - ---- + +-- + - ---- 55. 3

  • 1 . ( CHLOROPHYLL )

56.

  • 2.( CAROTENIOD ) 2 - ( CAROTENE ) - ( XANTHOPHYLL )

57.

  • 3 . ( PHYCOBILIN ) 2 - ( PHYCOERYTHRIN ) - ( PHYCOCYANIN )

58. Paper chromatography of plant photosynthetic pigment 59.

  • The location and structure of chloroplasts

LEAF CROSS SECTION MESOPHYLL CELL LEAF Chloroplast Mesophyll CHLOROPLAST Intermembrane space Outer membrane Inner membrane Thylakoid compartment Thylakoid Stroma Granum Stroma Grana 60. Chlorophyll a & b

  • Chl a has a methyl group
  • Chl b has a carbonyl group

Porphyrin ring delocalized e - Phytol tail 61. Where is chlorophyll? 62. Different pigments absorb light differently 63. Excited state e Heat Light Photon Light (fluorescence) Chlorophyll molecule Ground state 2 (a) Absorption of a photon (b) fluorescence of isolated chlorophyll in solution Excitation of chlorophyll in a chloroplast e 64. 65.

  • 1. CO 2

2. ( Xylem ) ( Phloem ) 66. 6CO 2 +12H 2 O C 6 H 12 O 6 +6H 2 O+6O 2 2

    • 1.( Light reactions)
  • 2. ( CO 2fixation )

67. ( light reaction )

  • Photosystem 2
    • Photosystem 1(P700)
    • Photosystem 2( P680 )

68. Antenna complex + Reaction center Protein Photosystem 69. 70.

  • chlorophyll areaction center
  • (antenna complex) chl. a

Primary election acceptor Photon Thylakoid Light-harvesting complexes Reaction center Photosystem STROMA Thylakoid membrane Transfer of energy Special chlorophylla molecules Pigment molecules THYLAKOID SPACE (INTERIOR OF THYLAKOID) e 71. 72.

  • A Photosynthesis Road Map

Chloroplast Light Stack of thylakoids ADP + P NADP Stroma Light reactions Calvin cycle Sugar used for Cellular respiration Cellulose Starch Other organic compounds 73. Photosystem I

  • ( P700)

74. Photosystem II

  • ( P680)

75. 76. (Light reaction)

  • chlorophyll areaction center
  • (antenna complex) chl. a

77. Carotenoids Chlorophyll b Chlorophyll a Reaction center Chlorophyll a Antenna complex e- Photosynthetic pigmentAccessory pigment Essentialpigment 78.

  • 2

79. 80. 81. - I(P700) PSI - PSI Ferredoxin Cytochrome b,Cytochrome fplastocyanin- PSI ATP 1 ATP1 82. PS I P700 Feredoxin 2e - Cytochrome b Cytochrome f Plastocyanin ADP ATP 2 e - 2e - 2e - 2e - 83. 84.

  • 2 PS I PS II
  • ( )
  • ATP NADPH + H +
  • ..........

85. 1.PS I PS II 2.PS I ( ) Ferredoxin NADP + PS I 1 3. 2 H ++2 OH - 2H 2 O2H ++ 2OH - 4.NADP + PS I2H + NADPH+H + NADP+ 2e - +2H + NADPH+H + 86. 5.2OH- 2 OH - H 2 O+ 1O 2 + 2 e - 6.2e - PS II 7.2e - PS II pheophytinplastoquinone Cytochrome bATPCytochrome f Plastocyanin PS I 87. Non-cyclic e- transfer Fd = Ferridoxin Pc = Plastocyanin Pq = Plastoquinone 88. 89. 90. 91. 92. 93. PS I P700 Feredoxin PS II P680 Pheophytin Plastoquinone Cytochrome b Cytochrome f Plastocyanin 2e- 2e- 2e- ATP ATP 94. Non-cyclic electron transfer:ATP, NADPH 95. Cyclic e- transfer: ATP 96. Free Energy Noncyclic Electron Transfer :ATP, NADPH Photosystem I Photosystem II P680 P680 * H 2 O Strong oxidant e - O 2 +2H + P700 P700* Fd NADP + NADPH Cyclic Electron Transfer 97. 1. 2. 3. photolysis 4. PSI 700nm PSI,PSII 700nm, 680nm 98. Photosystem II (PS II) Photosystem-I (PS I) ATP NADPH NADP + ADP CALVIN CYCLE CO 2 H 2 O O 2 [CH 2 O] (sugar) LIGHT REACTIONS Light Primary acceptor Pq Cytochrome complex PC e P680 e e O 2 + H 2 O 2 H + Light ATP Primary acceptor Fd e e NADP + reductase Electron Transport chain Electron transport chain P700 Light NADPH NADP + + 2 H + + H + 1 5 7 2 3 4 6 8 99. Photosystem II (PS II) Photosystem-I (PS I) ATP NADPH NADP + ADP CALVIN CYCLE CO 2 H 2 O O 2 [CH 2 O] (sugar) LIGHT REACTIONS Light Primary acceptor Pq Cytochrome complex PC e P680 e e O 2 + H 2 O 2 H + Light ATP Primary acceptor Fd e e NADP + reductase Electron Transport chain Electron transport chain P700 Light NADPH NADP + + 2 H + + H + 1 5 2 3 4 100. Photosystem II (PS II) Photosystem-I (PS I) ATP NADPH NADP + ADP CALVIN CYCLE CO 2 H 2 O O 2 [CH 2 O] (sugar) LIGHT REACTIONS Light Primary acceptor Pq Cytochrome complex PC e P680 e e O 2 + H 2 O 2 H + Light ATP Primary acceptor Fd e e NADP + reductase Electron Transport chain Electron transport chain P700 Light NADPH NADP + + 2 H + + H + 1 5 7 2 3 4 6 8 101.

  • O 2 H 2 O (H +and e - )

102. 103. ATP ??? 104. PSII PSI Stroma Lumen PC e - 2H + +O 2 Proton gradient Fd NADP + NADPH Thylaciod membrane H 2 O PQ e - Cytochrome e - H + H + e - e - e - 105. ATP Lumen Stroma H + H + H + H + H + H + H + H + H +